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Abstract
Exercise plays an important role in regulating energy homeostasis, which affects the diver-
sity of the intestinal microbial community in humans and animals. To the best of the authors’ 
knowledge, few studies have reported the associations between horse gut microbiota along 
with their predicted metabolic activities and the athletic ability of Jeju horses and Thorough-
breds living in Korea. This study was conducted to investigate the association between the 
gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 
hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples 
and compared the fecal microbiota between high- and low-performance Jeju horses and 
Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance 
Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thor-
oughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-perfor-
mance horse groups had a higher diversity of the bacterial community than the low-perfor-
mance horse groups. Two common functional metabolic activities of the hindgut microbiota 
(i.e., tryptophan and succinate syntheses) were observed between the low-performance 
horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other 
hand, high-performance horse groups showed enriched production of polyamines, butyrate, 
and vitamin K. The racing performance may be associated with the composition of the intesti-
nal microbiota of Jeju horses and Thoroughbreds in Korea.
Keywords: Fecal microbiota, Jeju horse, Next generation sequencing (NGS), Racing perfor- 
 mance, Thoroughbred

INTRODUCTION
The gut microbiota performs various essential digestive, protective, and metabolic functions for the 
host’s health [1]. Such benefits include the digestion of complex host-indigestible polysaccharides 
and endogenous intestinal mucus, pathogen displacement, and synthesis of vitamins [2]. Horses are 
herbivores whose digestive system has evolved to handle large amounts of a plant-based diet in the large 
intestine [3–5]. Therefore, horses can obtain energy effectively through fermentation by the microbial 
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activities in their hindgut, mainly in the cecum [1]. 
Although dietary habits play a major role in regulating the gut microbiota, physical exercise is 

also considered one of the main environmental factors that might alter the intestinal microbiota 
[6]. Exercise has many physiological effects, including the improved athletic ability of the bone and 
muscle, digestion of nutrients, and stimulation of the immune system in humans [7]. The horse 
study reported that exercise promotes intestinal motility, accelerates the passage rate of intestinal 
contents, and decreases the contact time between mucosa and pathogens in the intestine [8]. In 
addition, physical exercise contributes to the production of bile acids and short-chain fatty acids 
(SCFAs) for energy production in rats, which modifies the gut microbiota [9]. 

The host’s energy requirement increases during physical activities in humans and animals. 
Previous studies reported that regular exercise could significantly shift the gut microbial 
composition, positively affecting energy homeostasis in humans [10]. Exercise can increase the 
alpha-diversity of the gut microbiota and enhance the gut microbiota-derived SCFAs within 
athletes [11]. It has been reported that habitual marathon runners had a larger amount of Veillonella, 
which provided energy sources to the muscle, improving their athletic ability [12]. Overweight 
women who exercised for six weeks had increased an abundance of Akkermansia that enhanced 
their metabolic activities while decreasing Proteobacteria that could cause inflammation in the gut 
[13]. Other studies reported changes in the gut microbiota for Standardbreds and Thoroughbreds, 
in which the levels of Firmicutes, Bacteroidetes, Proteobacteria, and Spirochaetes phyla increased 
significantly after training [14]. 

A horse study reported that fatigue and inadequate recovery cause physical stress, leading to 
performance decline [15]. Although genetic factors likely play major roles in maintaining the high 
performance of racehorses, other factors, such as age, conformation, training, diet, and fitness, also 
affect the racing performance [16]. Several studies have examined the association of the athletic 
performance with gut microbiota in humans and animals [6,14,17]. The roles of gut microbiota on 
the racing performance of horses, however, are not entirely understood. The aim of this study was to 
evaluate the association of the microbial composition and their predicted metabolic activities with 
the racing performance of Jeju horses and Thoroughbreds in Korea based on the analysis of partial 
16S rRNA gene sequence data.

MATERIALS AND METHODS
Horse descriptions and fecal sampling
All animal protocols were approved by the Institutional Animal Care and Use Committee of the 
Korea Racing Authority (KRA IACUC-2009-AEC-2007). Horse fecal samples were collected 
from Jeju and Busan-Gyeongnam racecourse in Korea. Forty-nine fecal samples were collected 
from individual horses: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses 
(LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds 
(LT, n = 10). Table 1 provides detailed descriptions of the horses used in this study. The Korea 
Racing Authority (KRA), the regulatory authority for horse racing in South Korea, has their own 
rating system for racehorses, in which the ability of racehorses is evaluated based on their past 
racing records. The rating system typically ranges from 0 to 140 with the higher numbers indicating 
greater racing ability. These scores are calculated based on their past records in races, and these 
scores are used in the racing industry to determine handicap levels as well as race programs for each 
horse. With the rating system, horses were classified into 5 different levels. In this study, we used 
the scores calculated based on scores as of January 2021 and considered classes 1 and 2 as high-
performance horses, while classes 4 and 5 as low-performance horses. All horses were selected 
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carefully to minimize the variations in age, body weight (Table 1), diet, training, body condition 
scoring (BCS), soundness, vaccination, deworming, and medication after undergoing a medical 
examination (Supplementary Table S1) and checking their medical history and treatment records. 
Horses were previously acclimated to their racecourses, and no changes in diet, housing, or training 
conditions were noted for the three months before the study. All horses received roughage, such as 
alfalfa and timothy, and concentrated feed totally 2.5% to 3% per body weight every day. Jeju horses 
and Thoroughbreds diets, however, had slightly different diets as shown in Table 2. All horses had 
access to water ad libitum throughout the study. The fecal samples were collected directly from the 
rectum to minimize environmental contamination using clean rectal gloves and sterile lubrication 
(Kruuse, Langeskov, Denmark), as described previously [18]. Each sample was placed in a sealed 
collection bag and stored at -80℃ until DNA extraction.

Microbial community analysis
The fecal DNA was extracted using a PowerFecal DNA extraction kit (Qiagen, Hilden, Germany). 
The V3 and V4 regions of the partial 16S rRNA gene were amplified by a polymerase chain 
reaction (PCR) using the 341F and 806R primer sets [19]. Two-step PCR was performed to 
construct the MiSeq library. Sequencing was performed at Macrogen (Seoul, Korea) according to 
the manufacturer′s instruction. The sequence data were processed using MOTHUR version 1.45.0 
according to the standard operational protocol described online (https://mothur.org/wiki/miseq_
sop/) with a minor modification of singleton removal after the pre.cluster subroutine [20]. Silva.
nr_v138 was used for alignment, and RDP version 18 was used for the taxonomic classification 
[21]. The operational taxonomic units (OTUs) were assigned using the opti.clust algorithm with 
a sequence distance at 0.03 [22]. The PICRUSt2 and MetaCyc database was used to predict 
the metabolic activities based on the 16S rRNA gene sequences [22]. All sequenced genes were 

Table 1. Characteristics of animals used in this study
Animals HJ LJ HT LT

n (male/female/gelded) 13 (2/9/2) 17 (5/5/7) 9 (4/3/2) 10 (4/6/0)

Age (year) 5.3 ± 1.4 3.7 ± 1.2 4.9 ± 1.5 4.2 ± 0.6

Body weight (kg) 312.6 ± 9.6 303.7 ± 12.3 450.9 ± 8.5 446.2 ± 10.7
HJ, high-performance Jeju horses; LJ, low-performance Jeju horses; HT, high-performance Thoroughbreds; LT, low-performance Thoroughbreds.

Table 2. Nutrition of concentrated feeds for Jeju horses and Thoroughbreds
Nutrients Jeju Horses (Jeogtoma) Thoroughbreds (Victory)

Crude protein More than 14.5% 15%

Crude fat More than 2.5% 10.5%

Max crude fiber Less than 12.0% 12%

Crude ash Less than 10.0% -

Added salt - 1.5%

Calcium More than 1.00% 1%

Phosphorus Less than 1.00% 0.6%

Lysine - 10 g

Selenium - 0.8 mg

Vitamin E - 750 IU
Jeogtoma (Nonghyup, Seoul, Korea), Victory (Hygain, Victoria, Australia).
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deposited in the NCBI SRA database (accession number; PRJNA817386).

Statistics
MOTHUR was used to calculate the ecological indices, Chao I and Shannon, for the species 
richness and diversity, respectively. Non-metric multidimensional scaling (NMDS) was performed 
and plotted with ellipses at the 95% confidence level using the vegan R package. MOTHUR was 
used to analyze the molecular variances (AMOVA) to determine the significant differences in 
the fecal microbiota in the study. Differential abundance analysis was performed using the linear 
discriminant analysis effect size (LEfSe) [23]. The ALDEx2 R package was used for the OTUs 
and predicted metabolic activities [24]. A Wilcoxon rank-sum test was applied to compare the 
ecological indices. The differences were considered significant at p < 0.05.

RESULTS
α-Diversity analysis
All samples showed a Good’s coverage greater than 98%, suggesting that sequence depth was 
sufficient to cover most of the species in the samples (Supplementary Fig. S1). The difference in 
alpha-diversities between the high- and low-performance horse groups was analyzed using the 
Chao I and Shannon indices for species richness and diversity estimation, respectively (Fig. 1). The 
species richness of HJ was significantly higher than that of LJ (p < 0.05) (Fig. 1A). HT also had a 
higher species richness than LT, but the difference was not statistically significant (p = 0.091) (Fig. 
1C). The diversity, however, was significantly higher in the high-performance horses for both Jeju 
horses and Thoroughbreds (p < 0.05) (Figs. 1B and 1D).

Fig. 1. Comparison of the fecal microbiota ecological indices for species richness and diversity using 
Chao I and Shannon indices, respectively. (A) Species richness for Jeju horses, (B) species diversity for Jeju 
horses, (C) species richness for Thoroughbreds, and (D) species diversity for Thoroughbreds. HJ, LJ, HT, and 
LT indicate high-performance Jeju horses, low-performance Jeju horses, high-performance Thoroughbreds, 
and low-performance Thoroughbreds, respectively. The significance test was performed using the Wilcoxon 
rank-sum test. LJ, low-performance Jeju horses; HJ, high-performance Jeju horses; LT, low-performance 
Thoroughbreds; HT, high-performance Thoroughbreds.
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β-Diversity analysis
Based on NMDS analysis, the beta-diversity showed that the fecal microbiota of the high-
performance horse groups was significantly different from each counterpart (p < 0.05) (Fig. 2), 
indicating that the gut microbiota affects the racing performance. Although the distance of gut 
microbiota between HT and LT groups was closer than that of HJ and LJ groups in NMDS 
analysis, the results from AMOVA suggested that HT is significantly different from LT microbiota 
(Supplementary Table S2) (p < 0.05). 

Taxonomic composition analysis
Comparisons of the fecal microbial communities were performed at the bacterial phylum, family, 
and genus levels (Fig. 3). Firmicutes and Bacteroidetes were the predominant phyla, followed by 
Proteobacteria and Verrucomicrobia. Among the Jeju horses, Firmicutes were more abundant in LJ, 
while Actinobacteria was more in HJ (Supplementary Fig. S2A). In contrast, Actinobacteria were 
more abundant in LT, and Spirochaetes were more abundant in HT (Supplementary Fig. S2B). At 
the family level, Ruminococcaceae was more abundant in both high-performance horses (p < 0.05) 
(Supplementary Figs. S2C and S2D). 

Differentially abundant genera
The differentially abundant genera in all groups were identified by LEfSe (Fig. 4). Significant 
differences were observed between the fecal microbiota of high- and low-performance horses in 
both breeds (p < 0.05). High performance horse groups showed a significantly higher abundance of 
fiber fermenting bacteria compared to low-performance horse groups (p < 0.05). Specifically, the HJ 
group exhibited a greater abundance of Lachnospiraceae_unclassified, Prevotella, and Ruminococcus, 
while the HT group had a higher abundance of Lachnospiraceae_unclassified, Ruminococcaceae_
unclassified, Oscillibacter, and Ruminococcus2 (p < 0.05). By contrast, pathogenic species were 
found to be more abundant in the low-performance group. Escherichia/Shigella, Enterococcus, and 
Streptococcus were more abundant in the LJ group, while Pseudomonas was more abundant in the LT 
group (p < 0.05). Treponema, some species of which are known as human pathogenic bacteria, was 
more abundant in HT [25].

Fig. 2. Non-metric multidimensional scaling analysis for a beta-diversity comparison of the horse 
fecal microbiota in high- and low-performance horses. HJ, LJ, HT, and LT indicate high-performance Jeju 
horses, low-performance Jeju horses, high-performance Thoroughbreds, and low-performance Thoroughbreds, 
respectively. MDS, metric multidimensional scaling; HJ, high-performance Jeju horses; LJ, low-performance 
Jeju horses; HT, high-performance Thoroughbreds; LT, low-performance Thoroughbreds.



The fecal microbiota with racing performance

430  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e45

Comparison of the metabolic activities of the fecal microbiota between high- and 
low-performance horses 
Tables 3 and 4 list the significantly enriched metabolic activities of the fecal microbiota among the 
high-performance horse groups compared to those of low-performance horse groups (p < 0.05). 
Among the HJ group, metabolites related to polyamine syntheses, such as L-methionine salvage 
cycle III (PWY-7527) and norspermidine biosynthesis (PWY-6562), plant-derived fiber digestion 
(i.e., HYDROXYPHENYLACETATE-DEGRADATION-PWY), and methanol oxidation 
(PWY-7616) were enriched. The HT group, however, was enriched with the metabolic activities 

Fig. 3. Comparison of the fecal microbiota composition at the phylum (A), family (B), and genus levels 
(C) in high- and low-performance horses. HJ, LJ, HT, and LT indicate high-performance Jeju horses, low-
performance Jeju horses, high-performance Thoroughbreds, and low-performance Thoroughbreds, respectively. 
HJ, high-performance Jeju horses; LJ, low-performance Jeju horses; HT, high-performance Thoroughbreds; LT, 
low-performance Thoroughbreds.
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involved in plant-derived fiber digestion, such as rhamnose (PHAMCAT-PWY) and mannan 
(PWY-7456), and the production of SCFAs and vitamins (e.g., demethylmenaquinol-6 [PWY-
7373]).

On the other hand, there were five metabolic pathways (i.e., PWY-6629, PWY-6165, 
ORNDEG-PWY, ARGDEG-PWY, and ORNARGDEG-PWY) enriched among the low-
performance horse groups in both LJ and LT (Tables S3 and S4). The metabolites involved in 
these metabolic pathways included L-tryptophan, chorismate, 4-aminobutanoate (GABA), and 
succinate.

DISCUSSION
Considering that the intestinal microbiota is sensitive to many factors, including the environment, 
diet, and age, Physical exercise is also associated with the positive modulation of intestinal 
microbial diversity. The current study examined the association of the gut microbiota on the racing 

Fig. 4. Differentially abundant genera in fecal microbiota in high- and low- performance horses between 
HJ and LJ (A) and between HT and LT (B). HJ, LJ, HT, and LT indicate high-performance Jeju horses, low-
performance Jeju horses, high-performance Thoroughbreds, and low-performance Thoroughbreds, respectively. 
LDA, Linear Discriminant Analysis; HJ, high-performance Jeju horses; LJ, low-performance Jeju horses; HT, 
high-performance Thoroughbreds; LT, low-performance Thoroughbreds.

Table 3. Enriched metabolic pathways of the gut microbiota in HJ compared to LJ

Pathway code (MetaCyc) Pathway name ALDEx 
difference Metabolite

PWY-7527 L-methionine salvage cycle III 5.68 2-oxoglutarate

PWY-4361 S-methyl-5-thio-&alpha;-D-ribose 1-phosphate degradation 5.48 2-oxoglutarate,
L-methionine

PWY-7616 Methanol oxidation to carbon dioxide 5.46 CO2

PWY-6731 Starch degradation III 4.38 D-glucopyranose 6-phosphate

PWY-5183 Superpathway of aerobic toluene degradation 3.86 Acetyl-CoA, Succinyl-CoA

PWY-6562 Norspermidine biosynthesis 3.79 Norpermidine

PWY-7007 methyl ketone biosynthesis 3.39 A methyl ketone

PWY-5181 Toluene degradation III (aerobic) (via p-cresol) 3.35 Succinyl-CoA

KETOGLUCONMET-PWY Ketogluconate metabolism 3.32 D-gluconate 6-phosphate

3-HYDROXYPHENYLACETATE- 
DEGRADATION-PWY

4-hydroxyphenylacetate degradation 3.29 Succinate

HJ, high-performance Jeju horses; LJ, low-performance Jeju horses; ALDEx, ANOVA-like differential expression.



The fecal microbiota with racing performance

432  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e45

performance of horses.
A comparison of the alpha-diversity revealed a higher species diversity in high-performance 

horse groups than in low-performance horse groups. In addition, significantly different beta-
diversity was observed among the groups (p < 0.05). Exercise increases the diversity of human gut 
microbiota, and the mode and intensity of exercise affect the degree of changes in gut microbiota 
[26–28]. Moreover, Liu et al. reported that muscle phenotypes can be directly affected by altering 
the gut microbiota [29]. Together, based on previous studies [26–29], it can be inferred that the 
racing performance of Jeju horses and Thoroughbreds in Korea is likely affected by the composition 
of the intestinal microbiota. 

The normal horse gut microbiota comprises two major phyla, Firmicutes and Bacteroidetes, 
and to a lesser extent, Verrucomicrobia, Euryachaeota, and Spirochaetes [1,18]. In the present 
study, a higher abundance of Actinobacteria was observed in HJ than HT. Because Jeju horses 
and Thoroughbreds have different baseline gut microbiota [18], the effects of exercise on the gut 
microbiota may differ. High-intensity exercise that exceeds an individual’s ability may also adversely 
affect the gut microbiota [30]. 

The high-performance horse groups had significantly different compositions of fecal microbiota 
from their counterparts (p < 0.05). Physical exercise modified various phyla with an increase in 
Bacteroidetes and a decrease in Firmicutes regardless of diet [17]. Since animal and human studies 
have shown that the F/B ratio is a relevant marker of obesity, the ratio may also indicate variations 
in capacities of fat storage, energy collection from nutrients, and energy expenditure [31]. In this 
study, the F/B ratios did not show a significant difference, but higher Firmicutes (p < 0.05) were 
observed in the LJ group than in the HJ group. 

Fiber fermenting bacteria were found to be significantly more abundant in the high-performance 
horse groups than in the low-performance horse groups (p < 0.05). By contrast, pathogenic species 
were found to be more abundant in the low-performance group (p < 0.05). Several commensal 
fiber-digesting bacteria, such as Lachnospiraceae_unclassified, Ruminococcaceae_unclassified, 
Ruminococcus, Ruminococcus2, Prevotella, and Oscillibacter, were more abundant in the high-
performance horse groups than the low-performance horse groups [32–34]. Lachnospiraceae assists 
in the digestion of indigestible polysaccharides in humans and horses [32]. Many of the species 
belonging to the family Ruminococcaceae also breaks down the fiber effectively and produces 
butyrate, which is one of the major SCFAs found in the intestines of herbivores [33]. Prevotellaceae 

Table 4. Enriched metabolic pathways of the gut microbiota in HT compared to LT
Pathway Code (MetaCyc) Pathway Name ALDEx difference Metabolite

PWY-6588 Pyruvate fermentation to acetone 2.29 Acetone

PWY-7373 Superpathway of demethylmenaquinol 6 biosynthesis II 2.10 Demethylmenaquinol-6

PWY-7198 Pyrimidine deoxyribonucleotides de novo biosynthesis IV 2.02 dTTP

P163-PWY L-lysine fermentation to acetate and butanoate 1.92 Acetate

PWY-7210 Pyrimidine deoxyribonucleotides biosynthesis from CTP 1.91 dCTP,
dTTP

PWY-5177 Glutaryl-CoA degradation 1.86 Acetyl-CoA

PWY-7456 Mannan degradation 1.63 β-D-fructofuranose 6-phosphate

PWY-5823 Superpathway of CDP-glucose-derived O-antigen building 
blocks biosynthesis

1.45 CDP-α-D-tyvelose, CDP-ascarylose

RHAMCAT-PWY L-rhamnose degradation I 1.44 (S)-lactaldehyde,
Glycerone phosphate

PWY-7315 dTDP-N-acetylthomosamine biosynthesis 1.36 dTDP-4-acetamido-α-D-fucose
HT, high-performance Thoroughbreds; LT, low-performance Thoroughbreds; ALDEx, ANOVA-Like Differential Expression.
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is abundant in horses living on pasture and degrades the proteins and carbohydrates [34]. 
Lachnospiraceae, Ruminococcaceae, and Oscillibacter promote fermentation and produce SCFAs 
as energy sources in horses and other animals [32,33].  Faecalitalea, whose abundance was higher 
in HJ, may produce butyrate and polyphenols with antioxidant activities [35], thereby benefiting 
intestinal health and fatigue recovery [36]. 

Coriobacteriaceae_unclassified was higher in HJ than LJ in the present study. Coriobacteriaceae 
family has been reported to increase in the human gut after physical exercise, such as long-
distance running [36]. This bacterial family is involved in converting polyphenols to bioactive 
derivatives and in the metabolism of bile salts and aldosterone. The metabolite of aldosterone holds 
important functions, such as fuel and energy storage and membrane stability [37]. Therefore, the 
Coriobacteriaceae family was also a potential biomarker linking exercise with health improvement 
[37]. Thus, having a more abundant Coriobacteriaceae family, Faecalitalea, that help generate energy 
is seemed to influence high-performance horse groups to achieve good race records.

Pseudomonas, Escherichia/Shigella, Enterococcus, and Streptococcus, were more abundant in the low-
performance horse groups. Some species of Pseudomonas causes glanders, which is a contagious 
zoonotic infectious disease in humans and horses [38]. Some species of Escherichia/Shigella and 
Enterococcus cause colitis [39]. Some species of Streptococcus causes strangles, meningitis, and 
colitis in horses [39]. The higher abundance of Treponema, a pathogenic bacterium, in horses that 
underwent training is consistent with previous studies [25]. In this study, statistic comparison did 
not show significant differences neither for age nor body weight (Table 1), thus our study indicated 
the race performance as a single feature associated with gut microbiota.

The high-performance Jeju horse group showed enriched metabolisms related to polyamine 
biosynthesis, while the HT showed enriched SCFA and vitamin production. Polyamines produced 
in the gut have a positive effect in regulating the intestinal permeability by controlling intestinal 
tight-junctions [40], while SCFA provides diverse beneficial health effects, including energy to 
epithelial cells and regulating immunity. Vitamin K produced in the gut prevents blood coagulation 
[41]. Together, these metabolisms improve intestinal health. Moreover, enriched metabolisms of 
methanol oxidation were observed in HJ, which were previously suggested as a marker of healthy 
horses [42].

On the other hand, metabolites involved in tryptophan and succinate syntheses were enriched 
among low-performance horses. Tryptophan is an ingredient used as calmatives for fearful or 
excitable horses [43]. Farris et al. reported that the horses given tryptophan showed a tendency to 
use less muscle glycogen during exercise [44]. In addition, tryptophan plays a role as a substrate 
for the synthesis of serotonin. The serotonin activity is associated with fatigue and increases during 
prolonged exercise [45]. To horses, the amount of serotonin was reported to be negatively correlated 
with dominance [46], suggesting that horses with a higher amount of serotonin may be less likely 
to win races [47,48]. Moreover, the amount of serotonin has been associated with fatigue in athletic 
horses [49]. Succinate, however, is an intermediate of the tricarboxylic acid cycle and is produced 
in large amounts during the bacterial fermentation of dietary fiber [50]. On the other hand, it 
was reported that elevated succinate levels in fecal microbiota were associated with microbial 
disturbances (dysbiosis) [50], which could be related to the abundance of potentially pathogenic 
bacteria. 

As in previous studies [26–29,51], despite the results revealing the significant relationship 
between gut microbiota metabolism and racing performance (p < 0.05), there were some limitations 
in analyzing the metabolic activities because PICRUSt may show less accuracy in predicting 
the metabolic activities in non-human fecal samples. Further investigation should include a 
metabolomics approach to understand the associations of gut bacteria-derived metabolites and 
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athletic performance in horses. 
In conclusion, this study examined the association between gut microbiota and racing 

performance in Jeju horses and Thoroughbreds. The high-performance horse groups have a 
more balanced gut microbiota composition than the low-performance horse groups. The high-
performance horse group showed higher diversity with beneficial bacteria and indicated some 
beneficial gut microbiota-derived metabolic activities, such as the production of polyamines and 
SCFAs. The low-performance horse groups, however, showed more bacteria, many species of which 
include pathogens, and non-beneficial metabolic activities for athletic horses.

SUPPLEMENTARY MATERIALS
Supplementary materials are only available online from: https://doi.org/10.5187/jast.2023.e45.
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