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Abstract
In livestock nutrition, natural feed additives are gaining increased attention as alternatives 
to antibiotic growth promoters to improve animal performance. This study investigated the 
effects of dietary turmeric supplementation on the growth performance and gut health of 
weaned piglets. A total of 48 weaned piglets (Duroc × [Landrace × Yorkshire]) were used in 
a 6-week feeding trial. All piglets were allotted to two dietary treatments: corn-soybean meal 
basal diet without turmeric (control) and with 1% weight per weight (w/w) turmeric powder 
(turmeric). The results showed that dietary inclusion of turmeric with the basal diet improved 
final body weight and total average daily gain (p < 0.05). The concentrations of short-chain 
fatty acids in the fecal samples, including acetic, butyric, and propionic acids, were higher in 
the turmeric group (p < 0.05). The villus height-to-crypt depth ratio was higher in the ileum of 
turmeric-fed piglets (p = 0.04). The 16S rRNA gene sequencing of fecal microbiota indicated 
that, at the phylum level, Firmicutes and Bacteroidetes were the most predominant taxa in all 
fecal samples. Bacteroidetes were significantly decreased in the turmeric group compared to 
the control group (p = 0.021). At the genus level, turmeric showed a decreased abundance 
of Prevotella (p = 0.021) and an increasing trend of Lactobacillus (p = 0.083). Among the to-
tal detected species, nine bacterial species showed significant differences between the two 
groups. The results of this study indicated that turmeric altered the gut microbiota and short-
chain fatty acid production. This suggests that turmeric could be used as a potential alterna-
tive growth promoter for piglets.
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INTRODUCTION
Antibiotics have been widely used as growth promoters in livestock to improve animal performance 
and profitability by improving feed efficiency and animal growth, as well as reducing the incidence 
of diseases [1]. In particular, nursery pigs are supplemented with antibiotics for disease prevention 
or to reduce morbidity and mortality [2]. On the other hand, extensive use of antibiotics promotes 
antibiotic resistance, which could have a negative impact on both animal and human health. 
Antibiotics used for animal growth are closely related to the class of antibiotics used in human 
medicine to treat foodborne infections, including penicillin, aminoglycosides, and tetracyclines [3]. 
The use of antimicrobials in food-producing animals leads to multidrug resistance in both animals 
and humans [3,4]. Therefore, several countries have banned or placed restrictions on antibiotic use 
in animal feed [4–7]. Thus, it is necessary to adopt alternative approaches for antibiotic use. During 
post-weaning, various changes take place in the swine due to stress, new diet, and other factors, 
which cause increased invasion and colonization of pathogenic bacteria, resulting in infection and 
diarrhea [8,9]. The immune system is not mature enough in piglets to fight invading pathogens; 
hence, the post-weaning period is a critical time for maintaining animal health and performance. 
The gut microbiome plays a major role in immune system development, maintaining nutrient 
metabolism, performance, disease defense, and health status of the host [10]. Intestinal microbiota 
might be a potential novel strategy to modulate the general immune system and gut health [11,12]. 
To modulate the gut microbiota to exert beneficial effects on the host, most researchers have 
employed prebiotics, probiotics, essential oils [13–15], dietary enzymes, natural herbs, and medicinal 
plants [16] or phytobiotics [17–19].

Turmeric, also known as the golden spice, is a popular medicinal herb derived from Curcuma 
longa Linnaeus rhizomes. Turmeric plays a vital role in traditional medicinal purposesas an 
antimicrobial and anti-carcinogenic agent [20,21]. It contains approximately 69.4% carbohydrates, 
5.1% fat, 6.3% protein, 3.5% minerals, and 13.1% moisture [22,23]. The turmeric rhizome contains 
a major fraction of starch (47%–56% w/w) on a dry basis [24,25]. Isolated turmeric starch contains 
48%–50% (w/w) amylose [25]. Indigestible carbohydrates, such as resistant starch and other 
carbohydrates, are fermented by microbes in the large intestine and produce short-chain fatty acids 
(SCFAs) and other products. The main bioactive compounds in turmeric are curcuminoids, which 
constitute 1%–6% of the dry weight of turmeric [26]. The three major curcuminoids are curcumin 
(80%), desmethoxycurcumin (18%), and bisdemethoxycurcumin (2%) [27,28]. The bioactive 
compounds of turmeric consist of volatile and non-volatile phytochemicals that are less toxic and 
have beneficial effects, including antioxidant, antibacterial, anti-inflammatory, antiviral, antifungal, 
anticarcinogenic, and hypo-cholesteric activities [29–31]. 

Turmeric has gained attention in recent years as a potential alternative to antibiotic growth 
promoters in livestock feed. The beneficial effects of dietary inclusion of turmeric on growth 
performance and digestibility have been reported [32,33]. However, limited studies are available on 
the influence of turmeric on the gut microbiota of pigs. Furthermore, to the best of our knowledge, 
there is no metagenomic study on the effects of turmeric supplemented diets on gut microbiota 
in pigs. Therefore, the objective of this study was to investigate the effect of dietary turmeric 
supplementation on growth performance, blood parameters, fecal score, fecal SCFAs, branched-
chain fatty acids (BCFAs), gut microbiota, and histomorphology of the ileum in weaned piglets.
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MATERIALS AND METHODS
Experimental design, animal, diet, and housing
A total of 48 newly weaned piglets (Duroc × [Landrace × Yorkshire]) with an initial average 
bodyweight (BW) of 7.35 ± 0.3 kg were used in 6-week feeding trail. All piglets were obtained 
from one farm and weaned at 28 days of age. Animal experiments were performed at the Animal 
Research Center at Chungnam National University, Daejeon, Korea. Animal care procedures and 
experimental protocols were approved by the Animal Care and Use Committee of Chungnam 
National University (Approval# CNU-00611). All piglets were randomly assigned to two dietary 
treatments: the group fed with basal diet only (control) and the basal diet supplemented with 1% 
(w/w) turmeric powder (turmeric). Turmeric powder was purchased from a local supermarket in 
Seoul, Korea. Each dietary treatment had four replicates per treatment, with six piglets per pen. 
In total, 48 male piglets, 24 piglets in the control group, and 24 piglets in the turmeric group were 
allotted. Diets in mash form were formulated to meet the requirements suggested by the NRC 
2012 [34]. Nutrient composition of the diet and chemical composition of turmeric are shown in 
Tables 1 and 2, respectively. A general maintenance program was used for sows and piglets during 
lactation. The diets did not include any antibiotics to avoid antibacterial activity during the lactation 

Table 1. Nutrient composition of basal diet fed to experimental piglets
Ingredient (%) Phase 11) Phase 22)

Corn 31.57 51.56

Soybean meal (44% CP) 18.00 26.56

Soy protein concentrate 16.96 8.00

Dried whey 24.00 10.00

Lactose 4.00 -

Soybean oil 3.00 1.35

Limestone 1.00 1.00

Monocalcium phosphate 0.90 0.90

Vitamin pre-mix3) 0.20 0.20

Mineral pre-mix4) 0.20 0.20

L-Lysine-HCl 0.08 0.17

DL-Methionine 0.09 0.07

Total 100 100

Calculated energy and nutrient content

ME (Mcal/kg) 3.53 3.42

CP (%) 24.49 22.51

Calcium (%) 0.81 0.73

Phosphorus (%) 0.69 0.63

Lysine (%) 1.54 1.41
1)Week 1 to 3 (21 days).
2)Week 4 to 6 (21 days).
3)�Provided per kilogram of diet: vitamin A, 12,000 IU; vitamin D3, 2,500 IU; vitamin E, 30 IU; vitamin K3, 3 mg; D-pantothenic acid, 
15 mg; nicotinic acid, 40 mg; choline, 400 mg; and vitamin B12, 12 μg. 

4)�Fe, 90 mg from iron sulfate; Cu, 8.8 mg from copper sulfate; Zn, 100 mg from zinc oxide; Mn, 54 mg from manganese oxide; I, 
0.35 mg from potassium iodide; Se, 0.30 mg from sodium selenite. 

The calculation for the energy and nutrient contents was performed using the below formula: 
Calculated enery or each nutrient content = sum of (energy or each nutrient value of each ingredient used in a diet × % concen-
tration of each ingredient used in a diet / 100).
ME, metabolizable energy; CP, crude protein.
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and experimental periods. All experimental piglets were housed in an environmentally controlled, 
slatted-floor facility with a mechanical ventilation system. Each pen was equipped with a self-feeder 
and nipple water to allow ad libitum access to feed and water throughout the experimental period. 
The piglets were individually weighed at the start and at weeks 3 and 6 of the experimental period, 
and feed intake was recorded throughout the experiment to calculate average daily gain (ADG), 
average daily feed intake (ADFI), and the gain-to-feed ratio (G:F) was calculated using ADG and 
ADFI.

Sample collection
On the final day of the experiment, freshly voided fecal samples from one randomly selected 
piglet in each pen were collected by rectal stimulation for 16S sequencing and SCFA analysis. The 
number of samples was determined based on our previous pilot study (data not shown). All samples 
were stored at −80℃ until analysis. Blood samples were collected aseptically through an external 
jugular vein puncture.

Serum hematological and biochemical indices
All blood samples were centrifuged at 1,200×g for 10 min at 4℃, and plasma and serum samples 
were sent to Neodin Vet Lab (Seoul, Korea) on the same day of sample collection for analysis of 
concentrations of total proteins, creatine, urea, glucose, total cholesterol, triglycerides, and gamma-
glutamyl transferase. Plasma samples were analyzed for red blood cell (RBS), white blood cell 
(WBC), and platelet counts.

Volatile fatty acids analysis
Volatile fatty acids (VFA) analysis was performed according to Cho et al. [35] with modifications 
using gas chromatography (GC) (6890 N, Agilent, Santa Clara, CA, USA), equipped with an 
HP-INNOWAX column and a flame ionization detector. Fresh fecal samples (1 g) were acidified 
with 1 mL of 25% phosphoric acid solution, 3 mL of distilled water, and 50 μL saturated mercury 
solution (Sigma-Aldrich, St. Louis, MO, USA). After 30 min, the samples were centrifuged at 
3,000×g for 20 min, and 3 mL of the supernatant was collected. Then, the 3 mL of the supernatant 

Table 2. Chemical composition of turmeric powder
Constituents Quantity (%)

Moisture 10.86

Crude protein 37.39

Crude fat 2.78

Crude fiber 3.11

Crude ash 6.26

Carbohydrates 42.71

Starch 35.91

Neutral detergent fiber (NDF) 12.11

Acid detergent fiber (ADF) 9.68

Soluble dietary fiber (SDF) 2.24

Insoluble dietary fiber (ISDF) 17.37

Cellulose 8.77

β-Glucans 13.04

Lignin 0.91

Hemicellulose 2.43
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was centrifuged at 13,800×g for 10 min and filtered through a 0.2 μm filter (Whatman, Uppsala, 
Sweden). The filtrates were mixed with an equal amount of methanol and then placed in 2.0 mL 
GC vials (Agilent) to measure the concentration of volatile fatty acids. The sample injection volume 
was 2 μL, with a split ratio of 10:1. 

Histometric analysis of piglet ileum 
On the final day of the experimental period, a total of 8 piglets (4 piglets per group) were 
slaughtered, and the intestinal tract was removed. The distal ileum segments were collected and 
fixed with 4% paraformaldehyde in 0.01 M phosphate buffered saline. The ileum sections were 
stained with hematoxylin and eosin for microscopic examination to determine villus height (VH), 
crypt depth (CD), VH:CD, villus width, villus area, and number of goblet cells.

Occurrence of diarrhea 
The diarrhea score of each piglet was recorded at weeks 1 to 6 of the trial. Diarrhea was assessed 
visually based on consistency of the feces, and fecal scores were determined using the following 
fecal scoring system: 1 hard, dry pellet; 2 firm, formed stool; 3 soft, moist stool that retains shape; 4 
soft, unformed stool that assumes shape of container; 5 watery liquid that can be poured. The fecal 
score was assessed in a treatment-blinded manner by two trained individuals. Scores were recorded 
on a pen-basis observation of individual piglets and signs of stool consistency in the pen [36]. 

DNA extraction and sequencing 
Total DNA was extracted from fecal samples using the PowerSoil® DNA Isolation Kit according 
to the manufacturer’s protocol. The quantification of DNA and DNA quality was measured using 
PicoGreen and Nanodrop (Thermo Scientific, Waltham, MA, USA). The primers used for 16S V3-
V4 rRNA gene amplification are listed in Table 3.

Input gDNA (12.5 ng) was amplified with 16S V3-V4 primers, and a subsequent limited‐
cycle amplification step was performed to add multiplexing indices and Illumina sequencing 
adapters. Amplicons from PCR were pooled using PicoGreen and used as input for Illumina 
library preparation. The size of the libraries was verified using the LabChip GX HT DNA High 
Sensitivity Kit (PerkinElmer, Waltham, MA, USA). Samples were sequenced using an Illumina 
MiSeq (Macrogen, Seoul, Korea).

Sequence read processing and data analysis
 Sequencing reads obtained from Illumina MiSeq were filtered and trimmed using CD-HIT-
OUT software and rDNA Tools [37]. To perform taxonomic assignment, operative taxonomic 
units (OTUs) were selected based on a 97% threshold of sequence similarity using the QIIME-
UCLUST program. The filtered reads were clustered and OTUs were generated using CD-HIT-
DUP. The sequences that passed from the quality filters were analyzed using the QIIME pipeline, 
which included features to calculate diversity indices and phylogenetic diversity (PD) rarefaction 
curves. Alpha-diversity indices including OTUs, Shannon, Chao1, and Simpson index were 
measured for each sample, and beta-diversity of the two groups were illustrated using principal 

Table 3. Primers used for 16S V3-V4 rRNA gene amplification
Direction Primer

Forward 5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG

Reverse 5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC
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component analysis (PCA) and principal coordinate analysis (PCoA) based on weighted UniFrac 
distances. The Ribosomal Database Project (RDP) classifier was used for taxonomic assignment of 
the fecal microbiome of the two groups.

Statistical analysis
Data of hematological and biochemical analyses, VFA concentrations, histometric analysis, and 
microbial diversity indices were analyzed by Student’s t-test using the SPSS Statistics Version 23 
software package (IBM, Armonk, NY, USA). Growth performance data were statistically analyzed 
using the GLM procedure of the Statistical Analysis System (SAS Institute, Cary, NC, USA). The 
Mann-Whitney U test was used to determine the statistical significance of the relative abundance 
of microbial communities in two groups at the phylum, class, genus, and species levels (SPSS 
version 23, IBM). Statistical significance was reported at p < 0.05, and trends were noted when 0.05 
< p < 0.10.

RESULTS
Effects of turmeric on growth performance and fecal score analysis
In the current study, piglets supplemented with turmeric diet had increased final BW compared 
to piglets fed the control diet (Table 4). Furthermore, dietary supplementation with turmeric 
had significant effects on ADFI and tendency effects on G:F at week 3 without affecting ADG. 
At week 6, increased ADG (p = 0.026) and tendency effects on G:F (p = 0.09) did not affect 
ADFI. Overall, turmeric supplementation had increased (p < 0.04) ADG and tendency toward 
G:F (p = 0.078) without affecting total ADFI (p = 0.349). The diarrhea incidence scores are 
presented in Table 5. During the experimental period, none of the piglets suffered from diarrhea. 
Supplementation of turmeric with the basal diet improved the fecal score during week 6 (p = 
0.009).

Table 4. Growth performance of weaned piglets fed control and turmeric supplemented diets
Items Control Turmeric SEM p-value

BW (kg)

Initial 7.33 7.36 0.038 0.392

Wk 3 16.64 17.40 0.275 0.115

Wk 6 24.96 26.08 0.29 0.029

Phase 1 (wk 1–3)

ADG (g) 443 478 12.87 0.14

ADFI (g) 357 336 5.247 0.042

G:F 1.241 1.424 0.046 0.06

Phase 2 (wk 4–6)

ADG (g) 394 414 6.945 0.026

ADFI (g) 822 780 17.087 0.158

G:F 0.480 0.532 0.071 0.09

Total

ADG (g) 419 446 6.943 0.042

ADFI (g) 693 674 15.827 0.349

G:F 0.605 0.664 0.016 0.078
Control, basal diet; Turmeric, basal diet with 1% (w/w%) of turmeric powder; BW, body weight; ADG, average daily gain; ADFI, 
average daily feed intake; G:F, gain-to-feed ratio.
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Effect of dietary turmeric on hematological and biochemical indices 
The hematological parameters for the turmeric and control groups are shown in Table 6. Dietary 
turmeric supplementation did not influence leukocyte, erythrocyte, and thrombocyte counts, 
mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular 
hemoglobin concentration (MCHC). There were no significant differences between the two 
groups (p > 0.05). The effects of dietary turmeric on the biochemical variables are summarized in 
Table 7. Turmeric supplementation did not significantly affect the levels of total, LDL, and HDL 
cholesterol. Numerically, HDL-cholesterol was higher in the turmeric group, but not significantly 
(p = 0.776).

VFA analysis
As shown in Table 8, dietary turmeric supplementation increased SCFA production (p < 0.05). 
Acetic, propionic, and butyric acids were predominant. The highest acetic acid levels were observed 
in the turmeric group, followed by propionic and butyric acids. The levels of isobutyric and isovaleric 
acids were not significantly different between the two groups; however, the concentrations showed 

Table 5. Effects of turmeric supplementation on fecal score of piglets
Items Control Turmeric SEM p-value

Fecal score1)

Week 1 3.29 3.50 0.10 0.22

Week 2 3.43 3.24 0.06 0.08

Week 3 3.29 3.21 0.06 0.22

Week 4 3.40 3.50 0.05 0.03

Week 5 3.41 3.24 0.04 0.08

Week 6 3.51 3.36 0.05 0.009
1)Fecal scores were determined using the following fecal scoring system: 1 hard, dry pellet; 2 firm, formed stool; 3 soft, moist 
stool that retains shape; 4 soft, unformed stool that assumes shape of container; 5 watery liquid that can be poured.

Table 6. Effect of turmeric supplementation on hematological parameters in piglets
Items Control Turmeric SEM p-value

Leukocytes

White blood cell (K/μL) 19.27 14.69 1.62 0.18

Neutrophil (%) 43.8 31.03 4.51 0.23

Lymphocyte (%) 49.03 61.27 3.98 0.2

Monocyte (%) 4.7 4.77 0.77 0.97

Eosinophil (%) 4.1 2.97 0.66 0.45

Erythrocytes

Red blood cell (M/mm3) 6 5.8 0.14 0.54

Hemoglobin (g/dL) 10.8 10.33 0.29 0.48

Thrombocytes

Platelet (K/μL) 392.67 450.67 101.92 0.81

MCV (fl) 63.6 62.17 0.77 0.41

MCH (pg) 18.03 17.83 0.41 0.84

MCHC (%) 28.43 28.63 0.82 0.92
MCV, mean corpuscular volume; MCH, mean corpuscular heamoglobin concentration; MCHC, mean corpuscular heamoglobin 
concentration.
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an increasing tendency in tumeric group (p = 0.057).

Effects of dietary treatments on ileum morphology of weaned piglets
Turmeric supplementation had no effect (p > 0.05) on VH and CD (Table 9). However, the 
VH:CD ratios were higher in the turmeric group than in the control group (p = 0.04). There was 
no difference in the surface area and width of villi in the turmeric group compared to the control 
group.

DNA sequence data and bacterial diversity
A total of 437,000 read bases were obtained from the sequencing of fecal samples from the control 
and turmeric groups. After filtering and removing low-quality sequences, an average of 39,289 and 
41,318 reads were obtained for control and turmeric group samples, respectively. A total of 870 
OTUs belonging to bacteria and archaea were identified at the 97% threshold level.

Alpha-diversity analyses, including Shannon, Simpson, and Chao1 indices were analyzed 
to explore the effect of dietary turmeric on the richness and evenness of gut microbiota. The 

Table 7. Effect of turmeric supplementation on biochemical parameters in piglets
Items Control Turmeric SEM p-value

TP (g/dL) 7.15 5.875 0.67 0.38

ALB (g/dL) 3.7 3.575 0.07 0.418

T.Bil (mg/dL) 0.3 0.2 0.04 0.272

Glucose (mg/dL) 100.25 81 9.0 0.321

BUN (mg/dL) 5.475 4.85 0.39 0.463

Creatinine (mg/dL) 0.735 0.8925 0.05 0.164

γ-GTP (U/L) 45.75 39.5 4.82 0.554

LDH (U/L) 1033.75 793.75 203.81 0.596

Chol (mg/dL) 93.75 97.75 4.03 0.668

TG (mg/dL) 52.25 53.5 2.06 0.787

HDL (mg/dL) 29.675 31.525 2.9 0.776

LDL (mg/dL) 41.9 52.7 4.37 0.244

AST (U/L) 113 108 24.73 0.928

ALT (U/L) 79.75 76.75 3.19 0.678
TP, total protein; ALB, albumin; T.Bil, total bilirubin; BUN, blood urea nitrogen; GTP, glutamyl transpeptidase; LDH, lactic acid 
dehydrogenase; Chol, cholesterol; TG, triglyceride; HDL, high density lipoprotein; LDL, low density lipoprotein; AST, aspartate 
amino transferase; ALT, alanine aminotransferase.

Table 8. Effects of turmeric diet on fecal volatile fatty acids (SCFAs and BCFAs) concentration.
Concentration (µg/g) Control Turmeric SEM p-value

Acetic acid 5.56 9.8 0.97 0.011

Propionic acid 2.5 4.51 0.4 0.001

Butyric acid 1.88 3.87 0.41 0.001

Valeric acid 0.61 0.96 0.08 0.022

Iso butyric acid 0.55 0.74 0.05 0.057

Iso valeric acid 0.83 1.22 0.11 0.057

Total SCFA 10.57 19.15 1.78 0.002

Total BCFA 1.38 1.96 0.16 0.056
SCFA, short-chain fatty acids; BCFA, branched-chain fatty acids.
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α-diversity metrics are shown in Figs. 1A, B, and C. According to the data, all diversity indices 
were not significantly different (p > 0.05) between groups, while turmeric administration showed a 
decreasing tendency in the Shannon index (p = 0.055).
α-Diversity rarefaction curves based on observed OTUs, PD whole tree, and sequence for 

samples between the two groups indicated sufficient sequencing depth (Figs. 2A and B). PCoA 
based on weighted Unifrac distance showed two clusters containing each sample of both control 

Table 9. Effects of turmeric supplementation on ileum morphology
Item Control Turmeric SEM p-value

Villus height (μm) 396.77 409.70 16.65 0.596

Crypt depth (μm) 281.47 245.33 13.74 0.096

VH:CD 1.42 1.68 0.08 0.040

Villus width (μm) 143.62 169.88 11.65 0.145

Villus area (μm2) 30,919 36,862 3,571 0.270

Number of goblet cells 15.67 13.83 1.17 0.246
VH:CD, villus height-to-crypt depth ratio.

Fig. 2. α-Diversity rarefaction curves. (A) Rarefaction curves represent the number of sequences per sample against the number of observed OTUs in control 
and turmeric groups. (B) Rarefaction curves of PD whole tree in control and turmeric groups. OTUs, operative taxonomic units; PD, phylogenetic diversity.

A B

Fig. 1. Microbial diversity indices for control and turmeric fed piglets. (A) The Chao value of control and turmeric groups. (B) The Shannon index of 
control and turmeric groups. (C) The Simpson index of control and turmeric groups.

A B C
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and turmeric groups, except for one sample in each group (Fig. 3).

Taxonomic analysis
The effects of turmeric supplementation on fecal microbial composition were observed at different 
taxonomic levels. At the phylum level, 10 phyla were observed in each sample. Bacteroidetes and 
Firmicutes were the predominant phyla, accounting for 90% of the total relative abundance. The 
Firmicutes abundance ratio was similar in the control (51.8%) and turmeric (52.46%) groups (Fig. 
4). Bacteroides abundance decreased in turmeric (27.62%) fed piglets than in control (39.61%) fed 
piglets (p = 0.021).

As shown in Fig. 5, Bacteroidia and Clostridia were the predominant classes in both the control 
and treatment groups. Twelve classes were identified. The relative abundance of Bacteroidia was 

Fig. 4. Bacterial composition and abundance ratio of the fecal microbiota of piglets at phylum level.

Fig. 3. PcoA analysis of control and turmeric groups. Three dimentional plot based on weighted UniFrac 
distances. PCoA, principal coordinate analysis.
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significantly decreased in turmeric-fed piglets (p = 0.021). However, the remaining bacterial 
abundance was not affected by the turmeric diet.

At the genus level, approximately 105 genera were found in fecal samples from both dietary 
groups. The 15 most abundant genera in the two groups are shown in Fig. 6. Among the abundant 
genera, eight belonged to Firmicutes, 6 from Bacteroidetes, and 1 from Spirochaetes. The unclassified 
bacteria at the genus level were higher in the turmeric group than in the control group (p = 0.043). 
The relative abundance of Prevotella genera was significantly lower in the turmeric group than in 
the control group (p = 0.021). The Lactobacillus genus showed an increasing trend in the turmeric 
group (p = 0.083). The remaining genera did not differ significantly between the two groups. At the 

Fig. 6. Bacterial composition and abundance ratio of the fecal microbiota of piglets at genus level. C, 
control group; T, turmeric group.

Fig. 5. Bacterial composition and abundance ratio of the fecal microbiota of piglets at class level. C, 
control group; T, turmeric group.
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species level, a total of nine species abundance ratios were statistically significant between the two 
groups, including Lactobacillus spp. (Table 10).

DISCUSSION
Turmeric root powder is commonly used for medicinal purposes and as a spice in traditional 
cooking. A couple of studies have investigated the effects of turmeric supplementation on the 
growth performance of piglets [32,33]. However, more studies are needed to explore the effects 
of turmeric on intestinal morphology and gut microbial communities. Gut microbiota provides 
not only fuel to colonocytes, but also helps in immune system development and maintenance of 
intestinal homeostasis [10]. In this study, we describe the impact of dietary turmeric on growth 
performance, gut morphology, and microbiota in a porcine model. Turmeric inclusion in piglet 
diets improved ADG and showed higher average final BW and lower feed intake than the control 
group. Similarly, a previous study indicated that diets containing turmeric powder at 2%, 4%, and 
6% improved final live weight and feed conversion ratio compared with basal diet fed pigs [38]. 
Maneewan et al. [32] reported that the effects of low levels of dietary turmeric supplementation 
on nursery pigs at doses of 0.05%, 0.10%, and 0.20% did not influence ADFI, ADG, and feed 
efficiency. The beneficial effects of turmeric on growth performance might be due to the enhanced 
secretion of amylase, trypsin, chymotrypsin, and lipase enzymes [38]. Similarly, Singh et al. [39] 
reported that 1% dietary turmeric resulted in increased BW gain in broiler chickens, however, 
turmeric did not influence the feed efficiency in this study. Tubcharoen et al. [40] reported similar 
results in growing-finishing pigs. Furthermore, in this study, fecal scores were much higher 
in the control group. The incidence of diarrhea among piglets was reduced when the diet was 
supplemented with turmeric.

Hematological and biochemical variables were determined to determine the health and stress 
status of the animals. There were no significant differences in the values of RBC, WBC, MCV, 
MCHC, MCH, and platelets. However, all hematological parameters were within the normal range 
for swine [41]. This indicates that turmeric causes no variations in the hematology of piglets and 
that none of the animals experienced stress during the experimental period. The serum biochemical 
variables were not affected by turmeric. The main active compound, curcumin, in turmeric exhibits 
hypocholesterolemic activity. Curcumin showed beneficial effects in high-fat fed animals [42]. 

Table 10. Effects of turmeric supplementation on fecal microbiota at species level

Phylum Genus Species
Abundance ratio (%)

p-value
Control Turmeric

Bacteroidetes Bacteroides Bacteroides stercoris 1.28 0.32 0.021

Bacteroidetes Prevotella Prevotella shahii 4.33 0.51 0.043

Bacteroidetes Prevotella Prevotella timonensis 1.89 0.1 0.021

Bacteroidetes Prevotella Prevotella oris 2.01 1.21 0.021

Bacteroidetes Muribaculum Muribaculum intestinale 13 6.71 0.083

Firmicutes Lactobacillus Lactobacillus reuteri 0.43 3.38 0.021

Firmicutes Falcatimonas Falcatimonas natans 0.24 0.59 0.021

Firmicutes Clostridium Clostridium bornimense 0.06 0.26 0.021

Firmicutes Peptococcus Peptococcus simiae 0 0.2 0.018

Firmicutes Negativebacillus Negativibacillus massiliensis 0.05 0.15 0.021

Spirochaetes Treponema Treponema berlinense 0.65 2.38 0.059



https://doi.org/10.5187/jast.2021.e55 https://www.ejast.org |  587

Recharla et al.

In the present study, turmeric did not influence cholesterol levels in piglets. These results contrast 
with those of a previous study that showed that curcumin supplementation decreased serum LDL 
cholesterol levels in weaned piglets [2]. The lipid-lowering effects of turmeric and curcuminoids 
are associated with the dose and solubility of curcumin. Considering the poor solubility and 
bioavailability of curcumin, Porn-anek et al. [43] developed a carrier-based turmeric oleoresin using 
a solid dispersion technique to enhance curcumin solubility. Pigs fed with the newly developed 
turmeric oleoresin had increased HDL cholesterol and lowered LDL cholesterol, total cholesterol, 
and triglycerides. 

Intestinal metabolites such as SCFAs play a major role in the regulation of gut homeostasis [42]. 
SCFAs are the end products produced by bacterial fermentation of non-digestible carbohydrates 
in the colon [13,44–46]. Primary SCFAs are acetic, propionic, and butyric acids, with butyric acid 
being the main energy substrate for colonic epithelial cells [44,47]. In this study, turmeric diet-
fed piglets produced higher levels of SCFAs. Acetic, propionic, and butyric acid concentrations 
were higher among all the SCFAs. Catabolism of turmeric polysaccharides provides energy for 
fermentative bacteria such as Lactobacillus spp. and Clostridium spp., which results in an increase 
in SCFA production [28]. Similarly, Han et al. [48] reported that in vitro fermentation of spent 
turmeric powder with pig fecal bacteria resulted in higher concentrations of acetate and propionate. 
Microbial abundance, particularly Lactobacillus abundance in the gut, is associated with gut SCFA 
production. The status of gut health can be determined by intestinal morphology, such as VH, 
CD, and the VH:CD ratio. Villi plays a major role in increasing nutrient absorption, especially in 
the small intestine [12,49]. In this study, turmeric-fed piglets showed a higher VH:CD ratio than 
the control group. Increased VH:CD ratios indicate improved nutrient absorption function [50]. 
This result is consistent with a previous study that piglets consuming dietary curcumin showed an 
improved VH:CD ratio [49]. 

Turmeric has been reported to be an antimicrobial and anti-inflammatory agent [21,22]. 
Avanço et al. [51] reported that α-turmerone, β-turmerone, and ar-turmerone components of 
turmeric showed antifungal, antimycotoxigenic, and antioxidant activities. Thus, turmeric could alter 
microbial communities in the intestine by inhibiting pathogenic bacteria. The taxonomic analysis in 
this study showed that Firmicutes and Bacteroidetes were the most abundant phyla in both groups of 
piglet gut microbiota, as reported in previous studies [52,53]. The abundance ratio of Bacteroidetes 
decreased in turmeric-fed piglets. However, Firmicutes phyla were not altered by turmeric. 
Bacteroidetes are gram-negative anaerobic bacteria normally present in the intestinal flora. Bacteroides 
are generally beneficial to the host through their metabolism of dietary polysaccharides; however, 
Bacteroidetes are involved in inflammatory pathology when the gut microbiota is in an imbalanced 
state [54,55]. Moreover, Zhao et al. [56] reported that fecal Bacteroides were negatively correlated 
with SCFAs and amino acids in mice. We also observed a decreased abundance of Bacteroidetes 
and increased concentrations of SCFAs in turmeric-fed piglets. Hence, low Bacteroides and higher 
SCFAs are predicted to promote the gut health of piglets in the post-weaning period. Turmeric had 
no impact on the overall microbial diversity and richness, except for the lower trend of the Shannon 
index. Similarly, Shen et al. [57] reported that oral administration of curcumin tended to decrease 
microbial diversity and richness with no significant differences. Despite no significant differences 
in microbial diversity, the abundance of specific bacteria, including Lactobacillus and Prevotella, were 
altered in turmeric fed piglets. At the genus level, Prevotella genera decreased in the turmeric group, 
similar to previous studies [57]. Little is known about the role of Prevotella in health promotion. 
Like other bacteria in normal microflora, Prevotella spp. act as opportunistic pathogens and have 
been associated with infections [58,59]. Turmeric increased the abundance of Lactobacillus spp. and 
Clostridium spp. and decreased the abundance of Prevotella spp. Similarly, Han et al. [48] reported 
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that spent turmeric fermented with swine microbiota showed increased Lactobacillus populations 
compared to other groups. Kosti et al. [60] also observed higher Lactobacillus counts and lower E. 
coli counts in turmeric-fed hens than in the basal diet group. Some studies have suggested that 
the phenolic compound curcumin in turmeric root powder possesses alterations in gut microbial 
composition [28]. Moreover, curcumin has been found to improve the barrier function of the 
intestine by modulating intracellular signaling pathways [61]. The results obtained from this study 
revealed that dietary turmeric influences gut microbial fermentation and improves gut health by 
enhancing beneficial bacteria, SCFAs, and gut morphology. However, in the current study, we used 
whole turmeric root powder as a dietary supplement. Further studies that use turmeric extract or 
curcumin alone are needed to clarify the microbial alteration effects in the intestine of pigs.
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