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Abstract
Weaning induces physiological changes in intestinal development that affect pigs’ growth 
performance and susceptibility to disease. As a posttranscriptional regulator, microRNAs 
(miRNAs) regulate cellular homeostasis during intestinal development. We performed small 
RNA expression profiling in the small intestine of piglets before weaning (BW), 1 week after 
weaning (1W), and 2 weeks after weaning (2W) to identify weaning-associated differentially 
expressed miRNAs. We identified 38 differentially expressed miRNAs with varying expres-
sion levels among BW, 1W, and 2W. Then, we classified expression patterns of the identified 
miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent pattern 1, which had an 
increased expression at 1W and a decreased expression at 2W. ssc-miR-499-5p represents 
pattern 2, which had an increased expression at 1W and a stable expression at 2W. ssc-miR-
7135-3p and ssc-miR-144 represent pattern 3, which had a stable expression at 1W and a 
decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, 
ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, 
ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, which had a decreased expres-
sion at 1W and a stable expression at 2W. Moreover, we identified 133 candidate targets 
for miR-196a using a target prediction database. Gene ontology and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses revealed that the target genes were associ-
ated with 19 biological processes, 4 cellular components, 8 molecular functions, and 7 KEGG 
pathways, including anterior/posterior pattern specification as well as the cancer, PI3K–Akt, 
MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that miRNAs 
regulate the development of the small intestine during the weaning process in piglets by an-
terior/posterior pattern specification as well as the cancer, PI3K–Akt, MAPK, GnRH, and neu-
rotrophin signaling pathways.
Keywords: miRNA, Small RNA sequencing, Weaning pigs

INTRODUCTION
The suckling-to-weaning transition is an extremely stressful event in mammals, including pigs. During 
this transitional period, a pig is subjected to a number of environmental changes, including removal 
from the sow and littermates, the fighting and establishment of social hierarchy, transportation stress, 
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abrupt transitions in diet, and a change of temperature and water [1]. These environmental stresses 
during weaning lead to immune dysfunctions in pigs, causing reduced feed intake and growth as 
well as decreased health [1,2]. Moreover, reduced feed intake and growth as well as decreased health 
during the suckling-to-weaning transition are influenced by acute physiological changes, including 
the secretion of digestive enzymes and structural disruption in the gastrointestinal tract [3]. Thus, it 
is important to address the dysfunction of the gastrointestinal tract in pigs as quickly as possible to 
maximize productivities, including growth.

The small intestine has three major functions: 1) the absorption of nutrients, including amino 
acids, fatty acids, and monosaccharides, from digested proteins, lipids, and carbohydrates [4]; 2) 
intestinal barrier function to prevent the passage of harmful bacteria and toxins [5]; and 3) the 
maintenance of lumen viscosity via the secretion or absorption of water and electrolytes [6]. Thus, 
intestinal dysfunction directly induces growth retardation and increased susceptibility to infections. 
Among the causes of intestinal dysfunction, the suckling-to-weaning transition directly affects the 
structural disruption of the intestine, inducing diarrhea [7]. Thus, it is essential to maintain proper 
intestinal function for growth and health during the suckling-to-weaning transition of pigs.

MicroRNAs (miRNAs) are small noncoding RNAs with a length of 18–26 nucleotides; they 
regulate gene expression by binding to the 3′untranslated region (3′UTR) of target mRNAs [8]. It 
is well-accepted that miRNAs play critical roles in nearly all biological processes, including cellular 
proliferation, differentiation, apoptosis, disease, and development [9]. Moreover, studies have 
reported that miRNAs regulate cellular homeostasis, including proliferation, differentiation, and 
apoptosis, during intestinal development [10,11]. 

Thus, to identify miRNAs that play critical roles on intestinal dysfunction during the suckling-
to-weaning transition in pigs, we evaluated miRNA expression profiles during the suckling-to-
weaning transition in pigs. In addition, we identified candidate targets for differentially expressed 
miRNAs and analyzed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways for the functional categorization of target genes.

MATERIAL AND METHODS
Animals and sample preparation
Crossbred ([Yorkshire × Landrace] × Duroc) pigs were housed in an environmentally controlled 
room with a slatted plastic floor. Nine piglets (n = 3, each group) were sedated using xylazine and 
ketamine and then euthanized with an overdose of pentobarbital administered via an ear vein before 
weaning (BW), 1 week after weaning (1W), and 2 weeks after weaning (2W). The abdominal 
cavity of each piglet was opened, and small intestine samples were collected. All intestine samples 
were frozen in liquid nitrogen and stored at −80℃. Total RNA was isolated using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA). RNA quality was assessed using Agilent 2100 Bioanalyzer with 
RNA 6000 Pico chip (Agilent Technologies, Santa Clara, CA, USA). RNA was quantified using 
NanoDrop 2000 spectrophotometer system (Thermo Fisher Scientific, Waltham, MA, USA).

Library preparation and sequencing
Library was constructed using NEBNext Multiplex Small RNA Library Prep kit (New England 
BioLabs, Ipswich, MA, USA) as per the manufacturer’s instructions for the control and test 
RNAs. In brief, for library construction, 1 µg of total RNA from each sample was used to ligate 
the adaptors, and cDNA was then synthesized using reverse transcriptase with adaptor-specific 
primers. Polymerase chain reaction (PCR) was performed for library amplification, and a clean-up 
of the libraries was performed using QIAquick PCR Purification kit (Qiagen, Hilden, German) 
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and AMPure XP beads (Beckmancoulter, Brea, CA, USA). The yield and size distribution of the 
small RNA libraries were assessed using Agilent 2100 Bioanalyzer instrument for a high-sensitivity 
DNA assay (Agilent Technologies). High-throughput sequences were produced using NextSeq500 
system by way of single-end 75 bp sequencing (Illumina, San Diego, CA, USA).

Data analysis
Sequence reads were mapped using bowtie2 software tool to obtain .bam files (an alignment file 
format). A mature miRNA sequence was used as a reference for mapping. Read counts mapped on 
the mature miRNA sequence were extracted from the alignment file using bedtools (v2.25.0) and 
Bioconductor with R statistical programming language (version 3.2.2). The read counts were then 
used to determine the expression level of miRNAs. The quantile normalization method was utilized 
for comparison between samples.

Target prediction and target gene annotation
The target genes of the selected miRNAs were predicted using miRDB database (http://www.
mirdb.org/). The functional annotation tool DAVID (http://david.ncifcrf.gov/) was used for GO 
and KEGG pathway analysis of the predicted target genes. The data was retrieved, and a p-value of 
< 0.05 was considered a statistically significant difference.

RESULTS
Identification of differentially expressed miRNAs
We performed a high-throughput sequencing of small RNA isolated from the small intestine 
tissue of piglets at BW, 1W, and 2W (Fig. 1) to identify differentially expressed miRNAs at 
different time-points. We found 19 differentially expressed miRNAs with varied expression levels 
between BW and 1W, of which 6 were upregulated and 13 were downregulated at 1W (Table 1). 
Likewise, 28 differentially expressed miRNAs were identified between 2W and BW, of which 9 
were upregulated and 19 were downregulated (Table 2). Moreover, there were seven differentially 
expressed miRNAs between 2W and 1W, all of which were downregulated (Table 3). Finally, a 
total of 38 differentially expressed miRNAs with different expression levels were found among BW, 
1W, and 2W; of these, 12 were upregulated and 26 were downregulated across the 3 time-points 

Fig. 1. Scatter plot of small RNA sequencing. The scatter plot is useful for assessing variation among samples. The axes of the scatter plot are the samples’ 
fold-change (the ratio scale).
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(Fig. 2A). Among the 12 upregulated miRNAs, 3 miRNAs (ssc-miR-96-5p, ssc-miR-183, and ssc-
miR-182) were upregulated at 1W compared with BW (Fig. 2B) and 8 miRNAs (ssc-miR-29b, 
ssc-miR-34c, ssc-miR-29c, ssc-miR-29a, ssc-miR-122, ssc-miR-22-3p, ssc-miR-221-5p, and ssc-
miR-423-5p) were upregulated at 2W compared with BW. No changed miRNAs were identified 
at 2W compared with 1W. In addition, among the 26 downregulated miRNAs, 2 miRNAs (ssc-
miR-493-3p and ssc-miR-184) were downregulated at 1W compared with BW (Fig. 2B), 6 
miRNAs (ssc-miR-450b-5p, ssc-miR-455-5p, ssc-miR-10a-3p, ssc-miR-450c-5p, ssc-miR-450a, 
and ssc-miR-135) were downregulated at 2W compared with BW, and 3 miRNAs (ssc-miR-1277, 
ssc-miR-212, and ssc-miR-224) were downregulated at 2W compared with 1W. From these 
results, it is clear that the suckling-to-weaning transition significantly affects miRNA expression 
levels in the small intestine.

Expression patterns of differentially expressed miRNAs
We identified 4 types of expression patterns from the 16 differentially expressed miRNAs that 
were commonly expressed during the weaning process (Fig. 3). Pattern 1 is represented by ssc-
miR-196a and ssc-miR-451, which showed a pattern of increased expression at 1W and decreased 
expression at 2W. Pattern 2 is represented by ssc-miR-499-5p, with an increased expression at 1W 
and a stable expression at 2W. Pattern 3 is represented by ssc-miR-7135-3p and ssc-miR-144, with 
a stable expression at 1W and a decreased expression at 2W. Eleven miRNAs (ssc-miR-542-3p, 
ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1, ssc-miR-1285, ssc-miR-10a-5p, ssc-
miR-4332, ssc-miR-503, ssc-miR-6782-3p, and ssc-miR-424-5p) represent pattern 4, showing a 
decreased expression at 1W and a stable expression at 2W. We focused on ssc-miR-196a (pattern 
1) for further analysis.

Table 1. Differentially expressed miRNAs in small intestine at before weaning and after 1 week of weaning

No. Gene symbol Fold change p-value
Average of normalized read count (log2)

Before weaning After 1W
1 ssc-miR-96-5p 2.67 0.04 8.15 9.57

2 ssc-miR-183 2.52 0.01 10.33 11.67

3 ssc-miR-196a 2.45 0.02 2.52 3.82

4 ssc-miR-451 2.44 0.01 10.07 11.36

5 ssc-miR-182 2.43 0.04 11.06 12.34

6 ssc-miR-499-5p 2.07 0.02 7.76 8.81

7 ssc-miR-542-3p 0.48 0.03 8.51 7.45

8 ssc-miR-10a-5p 0.47 0.02 11.66 10.58

9 ssc-miR-503 0.43 0.04 6.13 4.92

10 ssc-miR-424-5p 0.41 0.00 6.66 5.38

11 ssc-miR-758 0.38 0.01 4.68 3.28

12 ssc-miR-493-3p 0.37 0.01 3.61 2.18

13 ssc-miR-214 0.36 0.00 8.37 6.91

14 ssc-miR-105-1 0.33 0.03 4.94 3.35

15 ssc-miR-1285 0.31 0.02 8.60 6.89

16 ssc-miR-184 0.30 0.03 4.14 2.40

17 ssc-miR-4332 0.14 0.01 7.13 4.28

18 ssc-miR-6782-3p 0.10 0.01 5.83 2.52

19 ssc-miR-4331 0.05 0.01 9.29 5.08
1W, 1 week after weaning.
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Table 2. Differentially expressed miRNAs in small intestine at before weaning and after 2 week of weaning

No. Gene symbol Fold change p-value
Average of normalized read count (log2)
Before weaning After 2W

1 ssc-miR-29b 3.10 0.01 7.48 9.11

2 ssc-miR-34c 2.69 0.01 7.94 9.37

3 ssc-miR-29c 2.68 0.01 7.07 8.49

4 ssc-miR-29a 2.62 0.01 13.02 14.41

5 ssc-miR-122 2.41 0.01 8.46 9.74

6 ssc-miR-499-5p 2.31 0.01 7.76 8.97

7 ssc-miR-22-3p 2.16 0.01 10.59 11.71

8 ssc-miR-221-5p 2.10 0.01 8.61 9.68

9 ssc-miR-423-5p 2.08 0.01 10.80 11.86

10 ssc-miR-424-5p 0.49 0.01 6.66 5.62

11 ssc-miR-214 0.48 0.01 8.37 7.30

12 ssc-miR-450b-5p 0.45 0.01 9.43 8.27

13 ssc-miR-542-3p 0.44 0.02 8.51 7.33

14 ssc-miR-503 0.44 0.04 6.13 4.95

15 ssc-miR-455-5p 0.44 0.01 9.32 8.12

16 ssc-miR-758 0.43 0.01 4.68 3.46

17 ssc-miR-10a-5p 0.42 0.01 11.66 10.40

18 ssc-miR-10a-3p 0.39 0.01 5.78 4.42

19 ssc-miR-7135-3p 0.33 0.01 4.83 3.21

20 ssc-miR-144 0.31 0.01 4.20 2.50

21 ssc-miR-450c-5p 0.30 0.01 8.51 6.78

22 ssc-miR-105-1 0.30 0.03 4.94 3.20

23 ssc-miR-450a 0.29 0.01 8.54 6.74

24 ssc-miR-135 0.28 0.01 6.63 4.80

25 ssc-miR-1285 0.27 0.01 8.60 6.70

26 ssc-miR-4332 0.10 0.01 7.13 3.78

27 ssc-miR-6782-3p 0.08 0.01 5.83 2.11

28 ssc-miR-4331 0.05 0.01 9.29 5.04
2W, 2 weeks after weaning.

Table 3. Differentially expressed miRNAs in small intestine at after 1 week of weaning vs after 2 week of weaning

No. Gene symbol Fold change p-value
Average of normalized read count (log2)

After 1W After 2W
1 ssc-miR-1277 0.49 0.04 5.02 3.99

2 ssc-miR-212 0.48 0.01 4.85 3.80

3 ssc-miR-224 0.45 0.01 3.17 2.01

4 ssc-miR-7135-3p 0.41 0.05 4.51 3.21

5 ssc-miR-196a 0.33 0.01 3.82 2.23

6 ssc-miR-451 0.27 0.01 11.36 9.50

7 ssc-miR-144 0.16 0.01 5.16 2.50
1W, 1 week after weaning; 2W, 2 weeks after weaning.
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Fig. 2. Differentially expressed miRNAs among the three groups (before weaning, after 1 week of 
weaning, and after 2 weeks of weaning [n = 3]). (A) Hierarchical clustering of differentially expressed miRNAs. 
Red indicates high relative expression and green denotes low relative expression. miRNA with expression fold-
change > 2.0 was considered statistically significant. (B) Venn diagram of differentially expressed miRNAs that 
were up- or downregulated at least two-fold among the three samples.

Fig. 3. Four unique expression patterns of differentially expressed miRNAs before weaning, after 1 week of weaning, and after 2 weeks of weaning. 
The displayed miRNA expression change is at least two-fold.
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Candidate target prediction and target gene annotation
The predicted target genes of miR-196a-5p were identified using the miRDB database. Because a 
target prediction database for pig is unavailable, we analyzed the prediction targets of human and 
mouse miR-196a-5p that represent the same miRNA sequence as that of pig miR-196a (Table 
4). We found 370 and 296 candidate targets for hsa-miR-196a-5p and mmu-miR-196a-5p, 
respectively (Fig. 4A and Supplementary Tables S1 and S2). A total of 133 candidate genes were 
common between these candidate targets of hsa-miR-196a-5p and mmu-miR-196a-5p.

GO enrichment analysis using the DAVID database showed that the 133 common 
targets comprised 19 biological processes, 4 cellular components, and 8 molecular functions 
(Supplementary Table S3). The GO targets were associated with the negative regulation of 
transcription of the RNA polymerase II promoter, anterior/posterior pattern specification, the 
transforming growth factor beta receptor signaling pathway, zinc ion binding, and chromatin 
binding. KEGG pathway analysis revealed that the differentially expressed genes were significantly 
enriched in miRNAs for cancer pathway, the PI3K–Akt signaling pathway, the MAPK signaling 
pathway, choline metabolism in cancer, the GnRH signaling pathway, Epstein–Barr virus infection, 
and the neurotrophin signaling pathway (Fig. 4B).

DISCUSSION
Mammals, including pigs, experience the most physiologically, environmentally, and socially 
stressful changes during the weaning process, and these stresses can affect susceptibility to disease 
as well as productivity types, including growth rate, feed intake, and feed efficiency [1,12]. From a 
physiological viewpoint, the most extreme changes occur in the intestine [6]. The transition from 
liquid to solid feed leads to structural changes in the intestinal villi because of the lack of digestive 
enzyme secretion, excluding those for lactose, during the weaning process at 3 or 4 weeks after birth 
[12,13]. The dramatic change in intestinal villi structures can cause diarrhea during the weaning 

Table 4. Sequence similarity of miR-196a between human, mouse and pig
Species miRNA name miRNA sequences

Pig ssc-miR-196a UAGGUAGUUUCAUGUUGUUGGG

Human hsa-miR-196a-5p UAGGUAGUUUCAUGUUGUUGGG

Mouse mmu-miR-196a-5p UAGGUAGUUUCAUGUUGUUGGG

Fig. 4. Target gene prediction of miRNA196a. (A) Venn diagram of common target genes of hsa-miR-196A-5p and mmu-miR-196A-5p. (B) Kyoto 
Encyclopedia of Genes and Genomes pathway analysis of common target genes.
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process that directly affects intestinal barrier functionality, immunity, and wound healing processes 
[4,14,15]. Moreover, several studies have demonstrated that dramatic physiological changes induced 
by the weaning process affect gene expression profiles in intestinal tissues [16–19]. In the present 
study, we revealed that the weaning process affects miRNA expression profiles: 38 differentially 
expressed miRNAs had different expression levels across the 3 time-points studied (BW, 1W, and 
2W). A previous report identified 136 differentially expressed miRNAs in weaning piglets at 1, 
4, and 7 days after weaning from jejunal small RNA libraries [20], which is consistent with the 
findings of this study. Based on these findings, we suggest that the weaning process directly affects 
the expression profiles at the transcriptional and posttranscriptional levels.

The present study showed that intestinal development during the weaning process can affect 
miRNA expression profiles. miRNA, as a posttranscriptional regulator, modulates gene expression 
by binding to the 3′UTR of target mRNA in almost all cells, thereby affecting biological 
processes, development stages, and molecular functions. Moreover, studies have demonstrated 
that the development and biological functions of the intestine, including renewal, homeostasis, 
and inflammation, are regulated by miRNAs, as is the case with other tissues [21–24]. miR-34a 
and miR-320a strengthens intestinal barrier function by regulating tight-junction proteins in 
inflammatory bowel disease [25,26]. As was previously reported, miR-126 directly inhibits the 
expression of S1PR2, resulting in the impairment of the intestinal barrier function via the PI3K–
AKT signaling pathway [27]. The present study revealed that miR-196a expression was altered 
during the suckling-to-weaning transition and that miR-196a directly regulates target genes 
related to anterior/posterior pattern specification as well as the cancer, transforming growth factor 
beta receptor signaling, PI3K–Akt signaling, and MAPK signaling pathways in the development 
of small intestines during the weaning process. Based on these results, we suggest that miR-196a 
regulates the morphology and proliferative activity in the development of small intestines in piglets 
during the suckling-to-weaning transition. However, target validation assays for miR-196a are 
required for the accurate verification of targets and functions.

In the present study, we collected small intestine samples at different time-points (BW, 1W, and 
2W) based on the functional changes of villous atrophy and crypt elongation after weaning [3]. 
Weaning induces the shortening of villi and increased crypt depth for approximately 1W [28,29]. 
Thus, the present study classified differentially expressed miRNAs at three time-points into four 
categories based on expression patterns. Of these four categories, we focused on pattern 1 as a 
critical time-point because of its increasing expression at 1W and weakening expression at 2W. 
We showed that ssc-miR-196a and ssc-miR-451 represent pattern 1 in the present study among 
the 38 differentially expressed miRNAs. It is known that miR-451, which is a tumor marker 
for gastric and pancreatic cancer, promotes cell proliferation and metastasis [30,31]. Moreover, 
previous reports demonstrated that miR-196a promotes tumor growth and migration via signaling 
pathways, including the PTEN/Akt/FOXO1 pathway [32]. The present study revealed that miR-
196a regulates various signaling pathways, including those of PI3K–Akt, MAPK, and GnRH. 
Functional studies, including those on the knockdown or overexpression of miR-196a, are required 
in the future.

In conclusion, the present study identified 38 differentially expressed miRNAs using the high-
throughput sequencing of small RNA isolated from the small intestine tissue of piglets during the 
weaning process. We showed that ssc-miR-196a and ssc-miR-451 show increasing expression at 
1W and weakening expression at 2W, which are critical time-points in piglet development. We 
expected that miR-196a regulates target genes associated with various signaling pathways, including 
those of PI3K–Akt, MAPK, and GnRH. T﻿hus, the present study findings indicate that miRNAs 
regulate the development of small intestines during the weaning process of piglets.



miRNAs during pig weaning

862  |  https://www.ejast.org https://doi.org/10.5187/jast.2021.e69

SUPPLEMENTARY MATERIALS
Supplementary materials are only available online from: https://doi.org/10.5187/jast.2021.e69.

REFERENCES
1.	 Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci 

Biotechnol. 2013;4:19. https://doi.org/10.1186/2049-1891-4-19
2.	 Le Dividich J, Sève B. Effects of underfeeding during the weaning period on growth, metab-

olism, and hormonal adjustments in the piglet. Domest Anim Endocrinol. 2000;19:63-74. 
https://doi.org/10.1016/S0739-7240(00)00067-9

3.	 Pluske JR, Hampson DJ, Williams IH. Factors influencing the structure and function of 
the small intestine in the weaned pig: a review. Livest Prod Sci. 1997;51:215-36. https://doi.
org/10.1016/S0301-6226(97)00057-2

4.	 Drozdowski L, Thomson ABR. Intestinal mucosal adaptation. World J Gastroenterol. 
2006;12:4614-27. https://doi.org/10.3748/wjg.v12.i29.4614

5.	 Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease patho-
genesis. J Allergy Clin Immunol. 2009;124:3-20. https://doi.org/10.1016/j.jaci.2009.05.038

6.	 Wijtten PJA, van der Meulen J, Verstegen MWA. Intestinal barrier function and absorp-
tion in pigs after weaning: a review. Br J Nutr. 2011;105:967-81. https://doi.org/10.1017/
S0007114510005660

7.	 Meng Q, Sun S, Luo Z, Shi B, Shan A, Cheng B. Maternal dietary resveratrol alleviates 
weaning-associated diarrhea and intestinal inflammation in pig offspring by changing intes-
tinal gene expression and microbiota. Food Funct. 2019;10:5626-43. https://doi.org/10.1039/
C9FO00637K

8.	 Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development 
and disease. Dev Cell. 2006;11:441-50. https://doi.org/10.1016/j.devcel.2006.09.009

9.	 Osada H, Takahashi T. MicroRNAs in biological processes and carcinogenesis. Carcinogenesis. 
2007;28:2-12. https://doi.org/10.1093/carcin/bgl185

10.	 Runtsch MC, Round JL, O’Connell RM. MicroRNAs and the regulation of intestinal homeo-
stasis. Front Genet. 2014;5:347. https://doi.org/10.3389/fgene.2014.00347

11.	 Cui J, Zhou B, Ross SA, Zempleni J. Nutrition, microRNAs, and human health. Adv Nutr. 
2017;8:105-12. https://doi.org/10.3945/an.116.013839

12.	 Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim 
Nutr. 2018;4:187-96. https://doi.org/10.1016/j.aninu.2017.12.004

13.	 Lindemann MD, Cornelius SG, El Kandelgy SM, Moser RL, Pettigrew JE. Effect of age, 
weaning and diet on digestive enzyme levels in the piglet. J Anim Sci. 1986;62:1298-307. 
https://doi.org/10.2527/jas1986.6251298x

14.	 Cao ST, Wang CC, Wu H, Zhang QH, Jiao LF, Hu CH. Weaning disrupts intestinal antiox-
idant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in 
piglets. J Anim Sci. 2018;96:1073-83. https://doi.org/10.1093/jas/skx062

15.	 Bailey M, Haverson K, Inman C, Harris C, Jones P, Corfield G, et al. The development of the 
mucosal immune system pre- and post-weaning: balancing regulatory and effector function. 
Proc Nutr Soc. 2005;64:451-7. https://doi.org/10.1079/PNS2005452

16.	 Inoue R, Tsukahara T, Nakatani M, Okutani M, Nishibayashi R, Ogawa S, et al. Weaning 
markedly affects transcriptome profiles and Peyer’s patch development in piglet ileum. Front 
Immunol. 2015;6:630. https://doi.org/10.3389/fimmu.2015.00630



https://doi.org/10.5187/jast.2021.e69 https://www.ejast.org  |  863

Jang and Lee

17.	 Zhu LH, Xu JX, Zhu SW, Cai X, Yang SF, Chen XL, et al. Gene expression profiling analysis 
reveals weaning-induced cell cycle arrest and apoptosis in the small intestine of pigs. J Anim 
Sci. 2014;92:996-1006. https://doi.org/10.2527/jas.2013-7551

18.	 Bauer E, Metzler-Zebeli BU, Verstegen MWA, Mosenthin R. Intestinal gene expression in 
pigs: effects of reduced feed intake during weaning and potential impact of dietary components. 
Nutr Res Rev. 2011;24:155-75. https://doi.org/10.1017/S0954422411000047

19.	 Wang J, Chen L, Li P, Li X, Zhou H, Wang F, et al. Gene expression is altered in piglet small 
intestine by weaning and dietary glutamine supplementation. J Nutr. 2008;138:1025-32. 
https://doi.org/10.1093/jn/138.6.1025

20.	 Tao X, Xu Z. MicroRNA transcriptome in swine small intestine during weaning stress. PLOS 
ONE. 2013;8:e79343. https://doi.org/10.1371/journal.pone.0079343

21.	 Zou L, Xiong X, Wang K, Yin Y. MicroRNAs in the intestine: role in renewal, homeostasis, 
and inflammation. Curr Mol Med. 2018;18:190-8. https://doi.org/10.2174/156652401866618
0907163638

22.	 Ouyang M, Su W, Xiao L, Rao JN, Jiang L, Li Y, et al. Modulation by miR-29b of in-
testinal epithelium homoeostasis through the repression of menin translation. Biochem J. 
2015;465:315-23. https://doi.org/10.1042/BJ20141028

23.	 Chiba M, Uehara H, Niiyama I, Kuwata H, Monzen S. Changes in miRNA expressions in 
the injured small intestine of mice following high-dose radiation exposure. Mol Med Rep. 
2020;21:2452-8. https://doi.org/10.3892/mmr.2020.11054

24.	 Yu J, Liu F, Yin P, Zhu X, Cheng G, Wang N, et al. Integrating miRNA and mRNA expres-
sion profiles in response to heat stress-induced injury in rat small intestine. Funct Integr Ge-
nomics. 2011;11:203-13. https://doi.org/10.1007/s10142-010-0198-8

25.	 Cordes F, Brückner M, Lenz P, Veltman K, Glauben R, Siegmund B, et al. MicroRNA-320a 
strengthens intestinal barrier function and follows the course of experimental colitis. Inflamm 
Bowel Dis. 2016;22:2341-55. https://doi.org/10.1097/MIB.0000000000000917

26.	 Chen T, Xue H, Lin R, Huang Z. MiR-34c and PlncRNA1 mediated the function of intesti-
nal epithelial barrier by regulating tight junction proteins in inflammatory bowel disease. Bio-
chem Biophys Res Commun. 2017;486:6-13. https://doi.org/10.1016/j.bbrc.2017.01.115

27.	 Chen T, Xue H, Lin R, Huang Z. MiR-126 impairs the intestinal barrier function via inhibit-
ing S1PR2 mediated activation of PI3K/AKT signaling pathway. Biochem Biophys Res Com-
mun. 2017;494:427-32. https://doi.org/10.1016/j.bbrc.2017.03.043

28.	 Hampson DJ. Alterations in piglet small intestinal structure at weaning. Res Vet Sci. 
1986;40:32-40. https://doi.org/10.1016/S0034-5288(18)30482-X

29.	 Montagne L, Boudry G, Favier C, Le Huërou-Luron I, Lallès JP, Sève B. Main intestinal 
markers associated with the changes in gut architecture and function in piglets after weaning. 
Br J Nutr. 2007;97:45-57. https://doi.org/10.1017/S000711450720580X

30.	 Shen Y, Gong JM, Zhou LL, Sheng JH. MiR-451 as a new tumor marker for gastric cancer. 
Oncotarget. 2017;8:56542-5. https://doi.org/10.18632/oncotarget.17239

31.	 Guo R, Gu J, Zhang Z, Wang Y, Gu C. MiR-451 promotes cell proliferation and metastasis in 
pancreatic cancer through targeting CAB39. BioMed Res Int. 2017;2017:2381482. https://doi.
org/10.1155/2017/2381482

32.	 Zhong LN, Zhang YZ, Li H, Fu HL, Lv CX, Jia XJ. Overexpressed miR-196a accelerates os-
teogenic differentiation in osteoporotic mice via GNAS-dependent hedgehog signaling path-
way. J Cell Biochem. 2019;120:19422-31. https://doi.org/10.1002/jcb.29166


