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Abstract 8 

Species are facing strong selection pressures to adapt to inhospitable high-altitude environments. Yaks are 9 

a valuable species and an iconic symbol of the Qinghai-Tibet Plateau. Extensive studies of high-altitude 10 

adaptation have been conducted, but few have focused on metabolism. In the present study, we 11 

determined the differences in the serum metabolomics between yaks and the closely related species of 12 

low-altitude yellow cattle and dairy cows. We generated high-quality metabolite profiling data for 36 13 

samples derived from the three species, and a clear separation trend was obtained between yaks and the 14 

other animals from principal component analysis. In addition, we identified a total of 63 differentially 15 

expressed metabolites among the three species. Functional analysis revealed that differentially expressed 16 

metabolites were related to the innate immune activation, oxidative stress-related metabolism, and energy 17 

metabolism in yaks, which indicates the important roles of metabolites in high-altitude adaptation in yaks. 18 

The results provide new insights into the mechanism of adaptation or acclimatization to high-altitude 19 

environments in yaks and hypoxia-related diseases in humans. 20 

Keywords:  21 

Yak, High-altitude adaptation, Metabolomics, Cattle, Dairy cow 22 

 23 

Introduction 24 

The Qinghai-Tibetan Plateau (QTP), characterized by low temperature and hypobaric hypoxia, is the 25 

highest plateau in the world, with an average altitude >4000 m above sea level. Species are facing strong 26 

selection pressure to adapt to inhospitable high-altitude environments [1]. The yak (Bos grunniens) is an 27 

important domesticated ruminant. It is the only large mammal inhabiting the QTP and is an iconic symbol 28 

of the QTP [2]. Yaks living at high altitudes more than 7,000 years, and must adapt to the stress of 29 

decreased oxygen availability [3]. Yaks have numerous special morphological and physiological 30 

mechanisms for life at high altitudes, e.g., blunted hypoxic pulmonary vasoconstriction [4], increased 31 

foraging ability [5], enhanced glucose uptake and aerobic respiration [6], and improved bioenergy 32 

metabolism than mammals living in the plains [7]. Genome analysis identified an expansion in yak of 33 
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gene families related to sensory perception and energy metabolism comparied with cattle [8], and 34 

differentially expressed miRNAs have also been found to be enriched in hypoxia-related pathways [9]. In 35 

addition, to reduce the risk of infection and disease, the activation of innate immunity was higher in yaks 36 

than in other cattle [10]. These findings partially reveal the adaptive mechanisms of yaks due to natural 37 

selection in a high-altitude and hypoxic environment, but few investigations have focused on the role of 38 

metabolites. 39 

High-altitude hypoxia continuously affects the physical performance of people and animals [11]. 40 

Survival in high-altitude hypoxia requires a profound adaptive shift in metabolic processes [12]. In 41 

addition, hypoxia is related to homeostasis and the metabolic rate in adult tissues [13]. Organic 42 

metabolites are the reactants, intermediates or products of enzymatic reactions and represent the final 43 

products of cellular processes. The trend of contemporary scientific development is to follow systems 44 

biology. Investigation into the metabolome in response to genetic modification or physiological stimulus 45 

is a part of systems biology [14]. Identifying metabolic pathways has the potential to improve the 46 

understanding of physiological mechanisms [15]. The metabolome can reveal total metabolic profile 47 

changes in biological phenotypes and silent phenotypes [16]. In this study, the serum metabolites of yaks 48 

(B. grunniens), yellow cattle (Bos taurus) and China Holstein dairy cows (Bos taurus) were analyzed 49 

using a nontargeted metabolomics approach based on ultra-performance liquid chromatography-50 

quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Comparing yaks, yellow cattle and 51 

China Holstein dairy cows may contribute to understanding evolutionary adaptation and provide 52 

meaningful data for survival at high altitudes. 53 

 54 

Materials and Methods 55 

Sample collection 56 

Blood samples were collected between 9:00 and 10:00 am by jugular venous puncture using vacuum 57 

tubes from 12 white yaks (Qilian Township, 37°41'6"N, 102°26'24"E, altitude: 3,600 m), 12 local yellow 58 

cattle (Tanshanling Town, 37°4'38"N, 102°24'14"E, altitude: 2,200 m), and 12 China Holstein dairy cows 59 
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(Anyuan Town, 37°8'24"N, 102°37'48"E, altitude: 1,700 m) in Tianzhu County on the edge of QTP, 60 

Gansu Province, China (Fig. 1). After the blood was left to stand for 30 min, it was centrifuged at 2,500 61 

rpm for 5 min at 4 °C. Then, the serum was extracted, immediately frozen in liquid nitrogen and stored 62 

until analysis was carried out. All animals are female, and about three years old. Yaks and yellow cattle 63 

graze the natural grassland throughout the year without supplementary feed and housing. Holstein dairy 64 

cows (milk production: 27.1 ± 0.85 kg/day, parity: 2, days in milk [DIM]: 91.6 ± 7.5 days) were fed the 65 

Total Mixed Rations (TMR) diets ad libitum, the basal diet was formulated based on the Feeding 66 

Standards of Dairy Cattle in China. The three species had similar physical characteristics, and the 67 

characteristics enrolled yak, cattle, and Holstein dairy cows are shown in Supplementary Table 1.  The 68 

three pasture sites are traditionally used by local herders for grazing, with similar environment and 69 

climatic conditions (temperature: 19.2 ± 1.1 °C, relative humidity: 65.0 ± 2.2%), except altitude. In order 70 

to minimize the controlling variables of feeding and environmental factors among the three species, the 71 

blood was collected in August, 2021. The animal experiment was approved, and the animals received 72 

humane care according to the Ethical Committee rules of Lanzhou University (RIB21110301). 73 

Metabolite extraction 74 

The collected samples were thawed at 4 °C, and 100 μL of sample was mixed with 400 μL of precooled 75 

methanol/acetonitrile (1:1, v/v). It was incubated at room temperature for 10 min and then centrifuged. 76 

The supernatants were collected, dried, and then resuspended in 30 μL water/acetonitrile (98:2, v/v) for 77 

MS analysis. 78 

Liquid chromatography conditions 79 

First, a UPLC system (SCIEX, UK) was used for chromatographic separations. Reversed-phase 80 

separation was performed using an ACQUITY UPLC T3 column. Solvent A (ultrapure water, 0.1% 81 

formic acid) and solvent B (acetonitrile, 0.1% formic acid) comprised the mobile phase. 82 

Q-TOF mass spectrometry conditions 83 

The metabolites were detected using a tandem mass spectrometer (TripleTOF5600plus, SCIEX, UK). The 84 

details of the Q-TOF mass spectrometry conditions were based on our previous publication [17]. 85 
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Processing of metabolomics data 86 

LC−MS raw data files were processed by the CAMERA and XCMS packages of R software. Retention 87 

time (RT) and m/z data were used to identify each ion. The metabolites were annotated using the HMDB 88 

database and KEGG analysis. MetaX was used to further preprocess the intensity of the peak data. The 89 

‘‘50% rule’’ was applied to remove the systematic bias or technical variation by normalizing the data 90 

according to our previous publication [17], and the results showed a normal distribution after 91 

normalization processing. Outlier detection and batch effects were evaluated by PCA. FDR and 92 

supervised PLS-DA were conducted to adjust the P value. The important features were selected based on 93 

a VIP cutoff value of 1.0. 94 

Determination of inflammatory cytokines and antioxidant enzymes 95 

The levels of interleukin-2 (IL-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum 96 

were determined using ELISA kits. The levels of malondialdehyde (MDA), total antioxidant capacity (T-97 

AOC), and glutathione peroxidase (GSH-Px) in serum were measured by chemical colorimetry. All kits 98 

were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The detailed 99 

principles and methods for the detection of MDA, T-AOC and GSH-Px have been described in our 100 

previous publication [18]. 101 

Statistical analysis 102 

GraphPad Prism 9 was employed to perform statistical analyses by single factor analysis of variance (one-103 

way ANOVA). P values less than 0.05 indicated a significant difference. 104 

 105 

Results 106 

Serum metabolite analysis 107 

Box plots were used to analyze the identified serum metabolites in yaks, yellow cattle and dairy cows. All 108 

samples showed a similar range of metabolite levels (Fig. 2a). Serum metabolomic analysis was used to 109 

determine whether the metabolic profiles of yaks are separable from those of dairy cows and yellow cattle, 110 

we used PCA for visualization. Based on the serum metabolic profiles, the score plots of the PCA model 111 
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discriminating yaks, dairy cows and yellow cattle are presented in Fig. 2b and 2c. PCA showed that the 112 

positive mode of the total variance data was 41.23%, represented by the first two principal components 113 

(Fig. 2a), and the negative mode was 52.17% (Fig. 2b). The plot revealed that the serum metabolic 114 

profiles of yellow cattle were closely related to those of dairy cows and were not obviously changed. 115 

However, the profiles of yaks showed a clear separation trend from those of and yellow cattle and dairy 116 

cows. 117 

Identification of differentially expressed serum metabolites among yaks, yellow cattle and dairy 118 

cows 119 

From the 1,815 detected metabolites, we investigated 63 differentially expressed metabolites (Table 1), 120 

including L-glutamine, L-glutamic acid, α-linolenic acid, tauroursodeoxycholic acid, and LysoPC 121 

(ratio≥5.0 or ≤0.2, P<0.01 and VIP≥1). The relative concentrations of 23 metabolites were significantly 122 

higher, while 30 were significantly lower in yaks than in yellow cattle (Table 1). The relative 123 

concentrations of 11 metabolites were significantly higher and 15 were significantly lower in yaks than in 124 

dairy cows. The relative concentrations of 11 metabolites were significantly lower in yellow cattle than in 125 

dairy cows. These metabolites were carbohydrates, amino acids, lipids and their metabolites, suggesting 126 

that these metabolic pathways were different among yaks, yellow cattle, and dairy cows. Furthermore, 127 

metabolic pathways were significantly different between yaks and yellow cattle and between yaks and 128 

dairy cows, but there were similarities between yellow cattle and dairy cows based on the very few 129 

differential metabolic profiles (Table 1). 130 

Metabolic KEGG pathway analysis 131 

KEGG analysis was used to predict metabolic pathways for all differential metabolites. Figure 3 shows 132 

the functional enrichment of the top 5 different pathways. The most enriched functional pathways among 133 

yak, yellow cattle and dairy cow belonged to metabolic pathways: amino acid metabolism (e.g., 134 

phenylalanine, arginine, proline, glycine, valine, leucine, isoleucine and glutamine), phospholipid 135 

metabolism (lysophosphatidylcholines [LysoPCs]), and fatty acid metabolism (arachidonic acid 136 

metabolism, α-linolenic acid and linolenic acid metabolism). 137 
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Inflammatory cytokines and antioxidant levels 138 

The levels of the inflammatory cytokines IL-2, IL-6, and TNF-α in yak serum were significantly higher 139 

than those in yellow cattle and dairy cows (P<0.05 or P<0.01) (Fig. 4a-4c). Oxidative stress is an 140 

imbalance of reactive oxygen species (ROS) generation and elimination. High altitude-associated 141 

hypobaric hypoxia stress induces ROS production [19]. To determine if the elevated peripheral 142 

inflammatory cytokines were accompanied by reactive oxygen production or oxidative damage [20], 143 

serum levels of MDA, T-AOC and GSH-Px were measured by chemical colorimetry. The results showed 144 

that there was no significant differences in  MDA, T-AOC and GSH-Px levels among yaks, yellow cattle 145 

and dairy cows (P>0.05) (Fig. 4d-4f). 146 

Discussion 147 

Yaks are an iconic symbol of QTP and can be used as a model to elucidate the mechanisms of hypoxia 148 

adaptation. The three specises of yak, yellow cattle and Holstein dairy cow belong to subtribe Bovina [21]. 149 

Holstein and yellow cattle should be probably separated from yak about 4.4 to 5.3 million years ago 150 

[10,22]. Systems biology is the trend of contemporary scientific development [23]. Comparative 151 

transcriptome sequencing revealed that the innate immunity were more activated in yak lung than low-152 

altitude cattle (Sanjiang and Holstein cattle) [10,24]. Proteomics of skeletal muscle mitochondria showed 153 

that the significantly affected pathway in yaks and cattle was oxidative phosphorylation [7]. Identification 154 

of metabolic pathways using metabolomics comparisons between closely related species has the potential 155 

to provide insights into the basis of mammalian divergence and adaptation. To understand differences in 156 

the global metabolic profiles and relevant metabolic pathways of yaks, yellow cattle and dairy cows 157 

during acclimatization to high altitude, we utilized UPLC-Q-TOF-MS to determine the serum metabolite 158 

profiles of the three breeds. 159 

We detected a clear separation trend between yaks and yellow cattle and dairy cows. A total of 63 160 

different metabolites were obtained in serum. An integrative view plot of the metabolic changes among 161 

white yaks, yellow cattle and dairy cows was prepared (Fig. 3). The major perturbed metabolic patterns 162 
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and plausible pathways are involved in amino acid metabolism, phospholipid metabolism, and fatty acid 163 

metabolism, which are associated with hypobaric hypoxia.  164 

Amino acid metabolism 165 

Glutamine is a key metabolite in the alanine, aspartate and glutamate metabolism pathways [25]. A 166 

previous study reported that high-altitude exposure leads to lower glutamate levels due to decreased 167 

activity of glutamine synthetase [26]. In contrast, we found significantly elevated levels of glutamic acid 168 

and glucogenic amino acids that produce pyruvic acid, α-ketoglutaric acid, and oxaloacetic acid in the 169 

serum of yaks in comparison with yellow cattle and dairy cows [27] (Table 1). The results of this study 170 

indicate that yaks have the highest levels of protein catabolism and amino acid mobilization. Therefore, 171 

the mobilization of yak muscle protein may be a metabolic adaptation to hypobaric hypoxia. Pathway 172 

analysis also showed improved energy metabolism and promoted acclimatization to high altitude by 173 

increasing the metabolism of phenylalanine, arginine, proline and glutamine to meet the energy 174 

requirements in yaks (Fig. 3). This result is consistent with the previous finding that hypobaric hypoxia 175 

exposure can enhance glucose and amino acid metabolism [28]. 176 

Phospholipid metabolism 177 

Phospholipids play a role as a cellular bilayer with membrane proteins, and they are involved in the 178 

maintenance of hepatic lipid metabolism [29]. Our results show that almost all LysoPCs, including 179 

LysoPC (18:0), LysoPC (16:0), LysoPC (18:1), LysoPC (22:6) and LysoPC (22:4), were markedly 180 

increased in yaks compared with yellow cattle and dairy cows (Table 1). LysoPCs participate in the 181 

inflammatory response by mediating cell signaling pathways in monocytes and macrophages [30,31]. To 182 

verify the increased LysoPCs, the serum levels of cytokines IL-2, IL-6, and TNF-α were detected. The 183 

results showed that the levels of IL-2, IL-6, and TNF-α were significantly higher in yaks than in cattle and 184 

dairy cows (Fig. 4a-4c), which is consistent with the increased LysoPCs. Environmental factors such as 185 

hypobaric hypoxia, cold and UV exposure at high altitude can suppress the immune system [32]. Tumor 186 

necrosis factors and interleukins can mediate innate immunity signaling. Xin et al. reported that the 187 

immune system was more activated and the genes related to immune were up-regulated in yak compared 188 
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with Sanjiang and Holstein cattle [10]. A significant elevation of LysoPCs and cytokines (IL-2, IL-6, and 189 

TNF-α) might be responsible for yaks being more tolerant to hypoxia at high altitudes than yellow cattle 190 

and dairy cows by activating innate immunity system. 191 

Fatty acids metabolism 192 

Hypoxia is associated with an increase in the generation of reactive oxygen species (ROS), and an 193 

excessive load of ROS generated may result in cell injury and dysfunction [33]. Excessive ROS can lead 194 

to lipid peroxidation, MDA can reflect the level of lipid peroxidation. ROS are balanced by natural 195 

antioxidant compounds such as GSH-Px, superoxide dismutase (SOD) and catalase (CAT) [34]. We 196 

found that serum MDA levels, T-AOC and GSH-Px activity were not significantly changed in yak in 197 

comparison with yellow cattle and Holstein dairy cows (Fig. 4d-4f), based on they had similar physical 198 

characteristics (Table S1). The results demonstrate that yaks adapt to hypoxia-induced oxidative stress at 199 

high altitudes do not by increasing antioxidant enzyme levels. 200 

Free fatty acids (FFAs) are risk factors for cardiovascular diseases and are closely related to metabolic 201 

syndromes [35]. FFAs are significant sources of ROS [36], mainly through the activation of NADPH 202 

oxidase [37]. There was a dose-dependent increase in ROS in monocytes exposed to FFAs [38]. 203 

Polyunsaturated fatty acids (PUFAs) are a favorable target for ROS [39]. Oxidative breakdown of PUFAs 204 

may affect lipid metabolism and the expression of genes and proteins related to cell differentiation [40]. 205 

α-Linolenic acid and linoleic acid are PUFAs. Linoleic acid contains unsaturated double bonds that are 206 

highly vulnerable to ROS [41], and has been linked to red blood cell damage by promoting redox 207 

reactions [42]. The ROS production was greater in bovine mammary epithelia cells treated with linoleic 208 

acid and α-linolenic acid [43]. Arachidonic acid has been demonstrated to promote inflammatory 209 

responses by activating the MAPK and JNK pathways by increasing TNF-α levels [44,45]. Arachidonic 210 

acid-derived metabolites also can propagate inflammation and oxidative stress [46]. Arachidonic acid 211 

suppressed the cell growth of hepatic cells by dose‐dependently inducing the production of ROS [47]. In 212 

the present work, FFAs (α-linolenic acid, linoleic acid and arachidonic acid) were significantly decreased 213 

in yaks compared with yellow cattle and Holstein dairy cows (Table 1). We speculate that yaks can 214 
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decrease the level of FFAs (α-linolenic acid, linoleic acid and arachidonic acid) in serum induced by 215 

hypoxia and that the decreased FFAs can attenuate cell injury and hypoxia dysfunction by inhibiting 216 

oxidative stress.  217 

 218 

Conclusions 219 

A clear separation trend between the serum metabolic profiles of yaks and yellow cattle and dairy cows 220 

was demonstrated by PCA. In addition, a total of 63 differentially expressed metabolites were identified 221 

among the three species. Functional analysis revealed that differentially expressed metabolites were 222 

related to the innate immune activation (elevation of LysoPCs and cytokines), oxidative stress-related 223 

metabolism (arachidonic acid metabolism, α-linolenic acid metabolism, and linoleic acid metabolism) and 224 

energy metabolism (fatty acid metabolism and amino acid metabolism) in yaks, which indicates the 225 

important roles of metabolites in high-altitude adaptation in yaks. 226 
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Tables and Figures 345 

 346 

Fig. 1. The geographic distribution of the sampling locations for white yak, yellow cattle and dairy cow on the edge 347 

of Qinghai-Tibetan Plateau, China. 348 
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 366 

 367 

 368 

  369 

Fig. 2. Comparison of distribution of serum metabolite levels among yak, dairy cow and yellow cattle. (a) Box plots 370 

represent the distribution of metabolite peak intensity measurements from serum samples across all subjects. PCA 371 

scores plots of serum metabolomic profiles derived from UPLC-Q-TOF-MS spectra showing separation between yak 372 

and yellow cattle and dairy cow in the positive mode (b) and negative mode (c). 373 
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Fig. 3. The top 5 different pathways for differential metabolites (up and down) among yak, yellow cattle, and dairy 389 

cow in positive (a) and negative (b) ion modes.  390 
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Fig. 4. The inflammatory cytokines of IL-2 (a), IL-6 (b), and TNF-α (c) were determined using ELISA kits, and 410 

MDA level (d), T-AOC (e) and GSH-Px activity (f) related to antioxidant defense system in serum were measured by 411 

chemical colorimetry. *P<0.05, **P<0.01.  412 
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Table 1. List of serum differential metabolites among yak, yellow cattle and dairy cow (n = 12) 421 

NO. Metabolites 
Yak vs cattle Yak vs dairy cow Cattle vs dairy cow 

Ratio P value VIP Ratio P value VIP Ratio P value VIP 

1 L-Acetopine 9.287 1.17E-03 2.237 5.183 4.55E-03 2.082    

2 LysoPC (18:0) 7.211 7.94E-06 2.558 7.621 3.30E-06 2.906    

3 7-Ketodeoxycholic acid 6.780 2.93E-03 2.358 0.161 5.11E-04 3.567    

4 LysoPC (16:0) 6.379 1.09E-04 2.311 0.131 6.89E-06 2.572    

5 LysoPC (18:1) 6.219 3.65E-05 2.401 5.979 3.69E-05 2.539    

6 Ganoderol A 6.042 1.81E-05 2.564 5.110 4.73E-05 2.264    

7 α-Linolenic acid 0.179 1.93E-05 2.342 0.181 1.73E-07 2.816    

8 Stearoylcarnitine 0.141 4.00E-13 2.782 0.103 7.26E-14 3.428    

9 Taurocholic acid 0.099 5.33E-06 3.151 0.186 7.83E-05 2.477    

10 TG (14:0) 0.098 4.37E-08 2.979 0.081 8.98E-10 1.936    

11 Heme O 0.089 3.83E-07 3.345 0.081 1.98E-07 3.623    

12 Tauroursodeoxycholic acid 0.084 3.71E-06 3.393 0.133 2.61E-05 3.119    

13 Ganodermic acid TQ 0.063 3.96E-07 3.500 0.147 2.16E-05 2.721    

14 L-Glutamine 41.331 2.93E-10 2.094 50.738 3.27E-09 2.243    

15 L-Glutamic acid 15.615 1.84E-07 1.764 16.328 3.30E-06 2.096    

16 Daucic acid 8.296 2.66E-05 1.410 6.906 5.44E-05 1.351    

17 L-Malic acid 5.635 2.69E-09 1.320 8.920 1.45E-08 1.798    

18 Pterosin N 0.095 1.69E-06 1.474 0.073 5.82E-17 1.882    

19 Linoleic acid 0.078 2.03E-06 1.744 0.060 2.18E-06 1.826    

20 Pyrocatechol sulfate 0.031 9.83E-11 2.130 0.106 1.62E-04 1.167    

21 Methyl levulinate 0.007 2.59E-17 2.578 0.019 3.04E-05 1.582    

22 LysoPC (22:6) 8.040 1.68E-09 3.084       

23 Lactapiperanol D 7.664 1.46E-08 3.178       

24 Octadecyl fumarate 6.929 1.33E-07 2.797       

25 27-Norcholestanehexol 6.225 1.89E-07 3.014       

26 Lysyl-Threonine 5.756 4.46E-07 2.940       

27 5-Hydroxy-tryptophol 5.682 1.08E-05 2.663       

28 LysoPC (22:4) 5.665 4.70E-08 2.611       

29 beta-Elemonic acid 5.555 1.21E-07 2.704       

30 L-Carnitine 5.539 7.49E-08 2.715       

31 Malonyl-Carnitin 5.461 1.78E-07 2.920       

32 Cortisol 5.210 2.99E-05 2.455       

33 Polyporusterone B 5.058 1.78E-05 2.896       

34 Acetaminophen glucuronide 0.199 5.80E-03 2.147       

35 Eicosatetraenoic acid 0.195 4.34E-06 2.348       
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36 12-Ketodeoxycholic acid 0.191 1.81E-04 2.932       

37 Pterosin O 0.149 4.72E-06 2.921       

38 Phenylalanyl-Tryptophan 0.144 9.62E-08 2.968       

39 N-Heptanoylglycine 0.137 1.79E-09 2.834       

40 Hexaethylene glycol 0.125 4.52E-04 2.333       

41 Glycyrrhizin 0.107 1.10E-06 3.200       

42 Campesteryl linoleate 0.103 1.07E-04 3.643       

43 Psychosine sulfate 0.091 1.75E-09 3.191       

44 D-Xylose 0.084 3.42E-03 2.262       

45 Cellulose triacetate 0.076 2.61E-06 3.463       

46 6a-Hydroxy-paclitaxel 0.070 6.90E-13 3.368       

47 TG (18:1) 0.063 7.34E-10 3.311       

48 Paradol 0.053 2.32E-15 3.789       

49 Torvonin A 5.959 1.10E-10 1.534       

50 Allantoin 0.168 2.66E-04 1.632       

51 Ethyl pyruvate 0.154 8.04E-05 1.661       

52 2-Hydroxybutyric acid 0.148 5.76E-07 1.539       

53 Galactitol 0.078 8.58E-04 1.423       

54 Cystathionine ketimine    9.393  2.68E-04 1.256     

55 L-Phenylalanine    5.220  1.86E-08 1.467     

56 PC (16:0)    7.816  8.68E-03 2.112     

57 LysoPC (20:3)    0.196  4.88E-05 2.219     

58 TG (15:0)    0.014  4.52E-18 4.611  0.139  9.69E-05 2.035  

59 Heliantriol A1       0.183  1.00E-03 1.682  

60 Corbisterol       0.183  4.19E-06 5.027  

61 Diacetoxypropyl stearate       0.176  9.65E-04 4.455  

62 Famprofazone       0.164  4.15E-07 5.073  

63 Leontogenin       0.147  2.01E-06 5.420  

Note: The ratio is >5.0 or <0.2. 422 
 423 




