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Abstract 8 

Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, 9 

which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high 10 

ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in 11 

ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. 12 

Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation 13 

characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-14 

stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square 15 

design, and the animals were exposed to HS conditions [Temperature-Humidity Index (THI), 82.79 ± 1.10]. 16 

For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations 17 

(TMR), National Research Council (NRC) recommended mineral supplementation group (NM) [TMR + 18 

(Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg dry matter)], and higher concentration of mineral 19 

supplementation group (HM) [basal TMR + (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm)/kg dry matter]. 20 

Higher concentrations of trace mineral supplementation had no influence on methane (CH4) emissions and 21 

rumen bacterial and methanogen communities regardless of breed (p>0.05). Holstein steers had higher 22 

ruminal pH and lower total volatile fatty acid (VFA concentrations than Jersey steers (P <0.05). Methane 23 

production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (P 24 

<0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly 25 

higher in Holstein steers than in Jersey steers (p<0.05). Overall, dietary organic trace minerals have no 26 

influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it 27 

through selective alteration of the rumen methanogen community.     28 

 29 

Keywords: dietary minerals, enteric methane, heat stress, Holstein and Jersey steers, rumen methanogens 30 
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Introduction 34 

Enteric CH4 is considered not only an indicator of gross energy losses, but also a potent greenhouse 35 

gas with a global warming potential that is 28 times higher than that of carbon dioxide (CO2) [1, 2]. Enteric 36 

CH4 is produced by methanogenic archaea through methanogenesis following one of three pathways: 37 

hydrogenotrophic, methylotrophic, or acetoclastic [3–5]. In light of this, several dietary mitigation 38 

strategies have been conducted to reduce enteric CH4 emissions from ruminants [5, 6]; however, little is 39 

known about the role of mineral supplementations in achieving this. Li et al. [7] reported decreased CH4 40 

emissions and methanogen populations in lactating cows following dietary mineral salt supplementation. 41 

They explained that dietary mineral salt reduced CH4 emission through the reduction of methanogen 42 

phenotypes and the A:P ratio, while increasing H+ ion utilization in propionate production. However, that 43 

study did not focus on the effects of minerals on heat-stressed dairy cattle or steers. 44 

Ruminant production is greatly hampered by adverse environmental conditions, especially heat 45 

stress (HS) [8–10]. HS reduces dry matter intake (DMI), which subsequently hampers energy and protein 46 

metabolism, leading to increased metabolic disorder, mineral imbalance, and several other health problems 47 

[11–14]. The sensitivity and response to HS varies among breeds [15, 16]. Holstein steers have been 48 

reported to exhibit a significant reduction in DMI under HS [16]. Additionally, studies have found that both 49 

Jersey steers and Jersey dairy cows are less sensitive to HS than Holstein steers [15, 16]. Therefore, both 50 

Holstein and Jersey steers were considered in this study. Furthermore, the influence of HS on rumen 51 

microbial alteration and enteric methane (CH4) emissions in Holstein and Jersey steers has already been 52 

reported [16]. During HS, cattle require more supplementation with trace minerals in their diet to prevent 53 

the adverse effects of HS [17]. Some trace minerals, such as zinc (Zn), copper (Cu), and selenium (Se), 54 

have been used in diets to minimize the adverse effects of HS in ruminants because of their antioxidant 55 

effects [14, 18–23]. However, organic trace minerals have a more beneficial effect than inorganic minerals 56 

on ruminants [18]. Therefore, organic trace minerals were considered in this study. Although the National 57 

Research Council (NRC) [24] has recommended the dose of these minerals under normal conditions, the 58 

optimal dose required to overcome the adverse effects of HS during summer has not yet been established. 59 
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Hence, during HS, we supplied minerals at a level of 70% based on the maximum tolerable concentration 60 

recommended by the NRC [24]. It has been previously reported that different trace minerals have toxic 61 

effects on methanogens. Hernandez-S ánchez  ́ et al. [25] reported that Cu decreases CH4 production 62 

because it is toxic to some rumen methanogens. Liu et al. [26] further reported that mineral supplementation 63 

reduces enteric methane emissions by altering the rumen microbiome. Dietary Se improves rumen 64 

fermentation by altering the rumen microbiome; however, it also has antimicrobial effects that may affect 65 

rumen methanogen diversity [27]. Therefore, this study evaluated the effects of supplementation with 66 

organic forms of Zn, Cu, and Se minerals on enteric CH4 emissions, rumen fermentation characteristics, 67 

rumen bacteria, and methanogens in heat-stressed Holstein and Jersey steers. 68 

 69 

Materials and Methods 70 

The study was conducted at the Sunchon National University (SCNU) animal farm and the ruminant 71 

nutrition and anaerobic laboratory in the Department of Animal Science and Technology, SCNU, Suncheon, 72 

Korea. All animals used in this study and all experimental protocols were reviewed and approved by the 73 

Institutional Animal Care and Use Committee ( approval number: SCNU-IACUC-2020-06).   74 

 75 

Animals, Experimental Design, and Diet  76 

Three non-cannulated Holstein steers (710.33 ± 43.02 kg; approximately 30 months old) and three 77 

Jersey steers (559.67 ± 32.72 kg; approximately 30 months old), were kept in two separate areas with a 3×3 78 

Latin square design. For both experiments, the diets included a Control group (Con) fed the basal total 79 

mixed rations (TMR) without mineral supplementation, an NRC recommended concentration of mineral 80 

supplementation group (NM) fed TMR with (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM, and a higher 81 

concentration of mineral supplementation group (HM) fed the basal TMR with (Se 3.5 ppm + Zn 350 ppm 82 

+ Cu 28 ppm)/kg DM. Organic form of Se (Yeast-Selenium; X-SEL 3000TM, Algebra Bio, New South 83 

Wales 2041, Australia), Zn-glycinate (BASF SE, Ludwigshafen 67056, Germany), and Cu-glycinate 84 

(BASF SE, Ludwigshafen 67056, Germany) were used to supplement Se, Zn, and Cu, respectively.  85 
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The duration of the feeding experiment for each period was 20 d. This comprised diet adaptation and 86 

reaming for the first 14 days and CH4 measurement and rumen fluid sampling for the following 6 days. A 87 

7 d washing period was maintained between each Latin square. The ingredients and chemical composition 88 

of the basal TMR are presented in Table 1. Individual stalls with feeding and water facilities were available 89 

for the experimental steers. The Con group was fed only basal TMR once a day at 09:00 h with a refusal 90 

rate of 5–10%, whereas the respective concentrations of minerals were mixed well with the basal TMR and 91 

fed to the NM and HM groups. The DMI was measured as the difference between the feed offered and feed 92 

refused. Basal TMR was collected twice (on days 7 and 14) during the experiment. Dry matter content was 93 

estimated using a hot-air oven at 65°C for 72 h [28]. Proximate analysis of TMR was performed using 94 

standard methods [29]. The protocols of Van Soest et al. [30] and Van Soest [31] were used to determine 95 

the neutral detergent fiber (NDF) and acid detergent fiber (ADF) content, respectively. This study was 96 

conducted under the condition of heat stress with an average temperature-humidity index (THI) of 82.79 ± 97 

1.10, which was calculated as THI = (0.8 × ambient temperature) + [% relative humidity/100 × (ambient 98 

temperature − 14.4)] + 46.4 [32]. 99 

 100 

Measurement of Enteric CH4 Emission  101 

Enteric CH4 emissions were measured using an automated head chamber system (AHCS) or GreenFeed 102 

(GF) unit (C-Lock Inc., Rapid City, SD, USA), as described by Hristov et al. [33] with slight modifications. 103 

Briefly, all steers were trained to familiarize themselves with the GF unit before the experiment started to 104 

avoid any sort of psychological stress. To measure CH4 emissions, each steer visited the GF at eight 105 

different time points within three consecutive days in each measurement period. The 0 h or before feeding 106 

at 9 am, 9 h after feeding (6pm), and 18 h after feeding (3am) time points were considered for CH4 107 

measurement on day 1, while 3 h after feeding (12pm), 12 h after feeding (9pm), and 21 h after feeding 108 

(6am) were considered on day 2, and 6 h after feeding (3pm) and 15 h after feeding (12am) were considered 109 

on day 3. The GF unit was installed in one corner of a large pen, and at each measurement time point, all 110 

steers were successively moved to this pen from their individual stalls. To attract the animals to the GF unit 111 

and ensure a proper head-down position within the hood at the time of measurement, molasses-coated 112 
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concentrated pellets (250–300 g/visit) were used. The number of pellets ingested per steer per day was 113 

excluded from DMI calculation. All relevant data of animal entry and exit times to the GF unit, standard 114 

gas calibration information, CO2 recovery time point, and amount of gas release data were sent to C-Lock 115 

Inc. The calculated CH4 production (g/d) data were obtained using a web-based data management system, 116 

and the CH4 yield (g/kg DMI) was calculated. 117 

 118 

Sample collection and the processing and recording of rectal temperature 119 

In each period, rumen fluid was collected from each steer on the last day of the feeding trial, before the 120 

morning meal, using a stomach tube. The first 300 mL of rumen fluid was discarded to avoid contamination 121 

of rumen fluid by saliva. Ruminal pH was measured immediately after collection using a pH meter 122 

(SevenCompactTM pH/Ion meter S220, Mettler Toledo, Switzerland). Along the sides, three aliquots were 123 

prepared separately from each rumen fluid and transported to the laboratory in the presence of dry ice. 124 

These samples were stored at -80°C for further analysis of ammonia nitrogen (NH3-N), volatile fatty acids 125 

(VFA), and rumen microbiota. The rectal temperature (RT) of the steers was also recorded at approximately 126 

12 pm on the same day of sampling using a digital thermometer (WPT-1; CAS, South Korea). 127 

 128 

Analyses of ruminal NH3-N and VFA concentrations  129 

NH3-N concentration was measured using a Libra S22 spectrophotometer (CB40FJ; Biochrom Ltd., 130 

Cambourne, UK) according to the protocol described by Chaney and Marbach [34]. VFA concentration 131 

was measured using high-performance liquid chromatography (HPLC; Agilent Technologies 1200 series, 132 

Waldbronn, Germany) according to the protocol described by Han et al. [35]. To perform HPLC, a UV 133 

detector (set at 210 nm and 220 nm), METACARB87H column (Varian, Palo Alto, CA, USA), and buffered 134 

solvent (0.0085 N H2SO4; at a flow rate of 0.6 mL/min) were used. 135 

 136 

DNA Extraction and Metataxonomic Analysis 137 

For DNA extraction and subsequent metataxonomic analysis of rumen microbiota, all rumen fluid 138 

samples were sent to Macrogen Inc. (Seoul, Korea). Briefly, DNA from rumen fluid was extracted using a 139 
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DNeasy PowerSoil Kit (Qiagen, Hilden, Germany), according to the manufacturer’s protocol [36]. The 140 

quality and quantity of DNA were assessed using PicoGreen and NanoDrop, respectively. To prepare 141 

amplicon libraries of each sample for both bacteria and archaea, two separate sequence runs were performed 142 

with two different primer sets. In order to prepare the amplicon library of each sample for bacteria, the 143 

Illumina 16S Metagenomic Sequencing Library protocols were used which was performed using two-step 144 

PCR amplification of the 16S rRNA genes with the primers Bakt_341F (5′-145 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and 146 

Bakt_805R (5′- 147 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) of the 148 

V3–V4 region at an annealing temperature of 55°C [37]. For archaea, 787-F (5′- 149 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTAGATACCCSBGTAGTCC-3′) and 1059-R 150 

(5′- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCATGCACCWCCTCT -3′) primer sets 151 

of–V5-V6 were used, with an annealing temperature of 63°C. AMPure beads (Agencourt Bioscience, 152 

Beverly, MA, USA) were used to purify the products of the first and second PCR. The individual amplicon 153 

libraries were normalized after quantification using PicoGreen. They were then size verified using a 154 

TapeStation DNA ScreenTape D1000 (Agilent Technologies), pooled at an equimolar ratio, and sequenced 155 

on a MiSeq system (Illumina, San Diego, CA, USA) using a 2 × 300 bp kit. After sequencing, Illumina 156 

MiSeq raw data were classified by sample using an index sequence, and a paired-end FASTQ file was 157 

generated for each sample. The sequencing adapter sequence and F/R primer sequence of the target gene 158 

region were removed using Cutadapt (v3.2) [38]. 159 

For error correction of the amplicon sequencing process, the DADA2 (v1.18.0) [39] package of the R 160 

(v4.0.3) program was used. For paired-end reads of bacterial sequences, the forward sequence (Read1) and 161 

reverse sequence (Read2) were cut to 250 bp and 200 bp, respectively, and sequences with expected errors 162 

of two or more were excluded. However, 200 bp and 150 bp were considered for the same archaeal 163 

sequences. An error model for each batch was then established to remove noise from each sample. After 164 

assembling the paired-end sequence corrected for sequencing error into one sequence, the chimera sequence 165 

was removed using the DADA2 consensus method to form amplicon sequence variants (ASVs). In addition, 166 
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for the comparative analysis of the microbial community, the QIIME (v1.9) [40] program was used for 167 

normalization by applying subsampling based on the number of reads of the sample with the minimum 168 

number of reads among all samples. 169 

For each ASVs sequence, BLAST+ (v2.9.0) [41] was performed in the Reference DB (NCBI 16S Microbial 170 

DB for bacteria and NCBI NT DB for archaea), and taxonomic information for the organism of the subject 171 

with the highest similarity was assigned. At this time, if the query coverage of the best-hit matching the DB 172 

is less than 85% or the identity of the matched area is less than 85%, the taxonomy information is not 173 

allocated. A comparative analysis of various microbial communities was performed using QIIME with the 174 

above ASVs abundance and taxonomic information. The Shannon index and inverse Simpson index were 175 

obtained to check the species diversity and uniformity of the microbial community in the sample, and the 176 

alpha diversity information was confirmed using the rarefaction curve and Chao1 value. Based on the 177 

weighted and unweighted UniFrac distances, beta diversity between samples (information on microbial 178 

community diversity among samples in the comparison group) was obtained, and the relationship between 179 

samples was visualized using PCoA [40]. 180 

 181 

Statistical Analysis 182 

All data for DMI, CH4 emissions, rumen fermentation, and rumen microbiome were analyzed using the 183 

mixed procedure of SAS. Here, we considered breed and trace minerals as factors. Then, we tested whether 184 

there were any breed differences using a general linear model along with Duncan’s multiple range test. All 185 

analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) [42]. Statistical 186 

significance was set at p<0.05. 187 

 188 

 189 

Results 190 

 191 

DMI, enteric CH4 emission, and rumen fermentation characteristics 192 
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The DMI and enteric CH4 emissions of Holstein and Jersey steers with varying mineral 193 

supplementation levels are presented in Table 2. In both breeds, DMI (kg/d) did not differ significantly 194 

among the treatment groups (p>0.05). CH4 production (g/d) and CH4 yield (g/kg DMI) were significantly 195 

higher in Jersey steers than in Holstein steers (p<0.05); however, a numerical decrease in CH4 production 196 

and yield was observed with increasing concentrations of mineral supplementation in both breeds (p>0.05). 197 

The highest RT was recorded in the Con group, followed by the NM and HM groups in both breeds; 198 

however, the differences were not statistically significant (p>0.05). The rumen fermentation characteristics 199 

of Holstein and Jersey steers supplemented with different levels of minerals are presented in Table 3. 200 

Ruminal pH was significantly higher in Holstein steers than that in Jersey steers (p<0.05); however, a 201 

similar pH was observed among treatment groups (p>0.05). The NH3-N concentration (mg/dL) was similar 202 

between breeds (p>0.05); however, it was influenced by trace minerals and the interaction between breeds 203 

and trace minerals (p<0.05). In Holstein steers, the Con group had the lowest NH3-N concentration, whereas 204 

the HM group had the highest NH3-N concentration when compared with Jersey steer groups (p<0.05). The 205 

total VFA concentration (mmol/L) was higher in Holstein steers than in Jersey steers (p<0.05); however, 206 

no differences were observed in the concentrations of total VFA or molar proportions of propionate and 207 

butyrate among different mineral supplemented groups in both breeds (p>0.05). Although trace mineral 208 

supplementation had a significant influence on the molar proportion of acetate, regardless of breed (p<0.05), 209 

no significant differences were observed between groups in each breed (p>0.05).   210 

 211 

Species richness, diversity, and composition of rumen microbiota 212 

A total of 531,527 bacterial and 1,326,280 archaeal quality-filtered sequence reads were obtained 213 

from sequencing 18 rumen fluid samples. The average sequences obtained from each sample for bacteria 214 

and archaea were greater than 29,500 and 73,600, respectively. Good’s coverage was greater than 99% for 215 

each sample. The Holstein steers showed tentatively higher amplicon sequence variants (ASV) and Chao1 216 

richness estimates (p=0.051 and 0,052, respectively) and significantly higher Shannon and inverse Simpson 217 

diversity indices compared to Jersey steers, regardless of trace mineral supplementation (p<0.05) (Table 4). 218 

Rarefaction measures for rumen bacteria are presented in Supplementary Figure 1. The beta diversity data 219 
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were not significant between breeds or among the trace mineral supplementation groups (Supplementary 220 

Figure 2). However, the above-mentioned parameters were not influenced by trace mineral supplementation 221 

regardless of breed or the interaction between breeds and trace mineral supplementation (p>0.05) (Table 222 

4). The relative abundance of most bacterial phyla was not influenced by breed, trace mineral 223 

supplementation, or the interaction between them (p>0.05). Jersey steers had a higher relative abundance 224 

of the phylum Candidatus Melainabacteria than Holstein steers (p<0.05); however, no differences were 225 

observed among the different trace mineral supplementation groups in either breed (p>0.05). In Holstein 226 

steers, at the phylum level, Bacteroidetes (accounting for 58.82% to 74.78%) and Firmicutes (19.07% to 227 

36.79%) were the two major bacterial taxa among all treatment groups (Figure 1; Supplementary Table 1). 228 

Likewise, Bacteroidetes (which ranged from 66.21% to 69.63%) and Firmicutes (23.83% to 26.62%) were 229 

the top two bacterial phyla among the treated Jersey steers (Figure 1). At the genus level, most of the more 230 

abundant bacterial genera were not influenced by breed, trace mineral supplementation, or the interaction 231 

between them (p>0.05); however, the genus Capnocytophaga was more abundant in Jersey steers than in 232 

Holstein steers, regardless of trace mineral supplementation (p<0.05) (Figure 2; Supplementary Table 2). 233 

Methanobrevibacter (ranging from 57.30% to 72.99% in Holstein steers and from 58.17% to 82.04% 234 

in Jersey steers) was the most abundant methanogen among all treatment groups for both breeds (Figure 3a; 235 

Supplementary Table 3). The relative abundance of Methanobrevibacter was not influenced by breed and 236 

trace mineral supplementation (p>0.05) but was tentatively influenced by the interaction between breed and 237 

trace mineral supplementation (p=0.065). Methanomassiliicoccus ( 15.74% to 34.57% in Holstein and 238 

14.20% to 37.75% in Jersey steers) was the second most abundant methanogen among all treatment groups 239 

for both breeds. The relative abundance of Methanomassiliicoccus was not influenced by breed (p>0.05); 240 

however, it was tentatively influenced by trace mineral supplementation (p=0.061) and the interaction 241 

between breed and trace mineral supplementation (p=0.072). Jersey steers showed a tendency toward 242 

decreasing Methanobrevibacter abundance and increasing Methanomassiliicoccus abundance with higher 243 

concentrations of trace mineral supplements (p=0.072 and 0.086, respectively). However, in Holstein steers, 244 

only the lowest abundance of Methanobrevibacter and highest abundance of Methanomassiliicoccus were 245 

recorded in the HM group (p>0.05). Among the remaining genera,  Methanosarcina and Methanobacterium 246 
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were more abundant, while Methanomicrobium was less abundant in the Holstein steers than in Jersey 247 

steers, regardless of the trace mineral supplementation (p<0.05); the relative abundance of these 248 

methanogens was not influenced by trace mineral supplementation or the interaction between breed and 249 

trace mineral supplementation (p>0.05). At the species level, the methanogens Methanobrevibacter thaueri, 250 

Mbr. olleyae, Mbr. millerae, and Methanomassiliicoccus luminyensis were the top four methanogen species 251 

among all the treatment groups in both breeds (Figure 3b; Supplementary Table 4). Among them, Mbr. 252 

olleyae were more abundant in Holstein steers than in Jersey steers, regardless of trace mineral 253 

supplementation (p<0.05). Relative abundance of Mma. luminyensis was tentatively influenced by trace 254 

mineral supplementation and the interaction between breed and trace mineral supplementation (p=0.061 255 

and 0.072, respectively). A tendency toward an increasing pattern of Mma. luminyensis abundance was 256 

observed in Jersey steers with increasing mineral concentration (p=0.086). Among the remaining 257 

methanogens, the Methanosarcina mazei, Mbr. oralis, and Methanobacterium aggregans were more 258 

abundant in Holstein steers, whereas the relative abundances of Mbr. boviskoreani, and Methanomicrobium 259 

mobile were greater in Jersey steers, regardless of trace mineral supplementation (p<0.05). 260 

 261 

Discussion 262 

Dietary supplementation, particularly mineral supplementation, is one of the most important 263 

strategies used to reduce the adverse effects of HS in ruminants. However, determining the minerals to use, 264 

as well as their most effective concentrations, is a major challenge. Therefore, this study focused on using 265 

higher than the recommended concentrations of dietary mineral supplements (Zn, Cu, and Se) during HS. 266 

Rectal temperature is considered a physiological parameter of HS. Although the RT did not vary 267 

significantly among different treatment groups in both breeds, the value confirmed that the animals were in 268 

HS, which was also observed in a study by Joo et al. [43]. HS reduces DMI, which affects ruminant 269 

performance [11, 13]. However, similar DMI was observed among the different treatment groups in both 270 

breeds, indicating that, in this study, dietary trace minerals had no influence on DMI. These non-significant 271 

findings among the different treatment groups were expected because the present study was conducted 272 
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under HS conditions, with high THI (82.79 ± 1.10); consequently, these findings cannot be compared with 273 

the findings expected under normal conditions. 274 

VFA production is negatively correlated with ruminal pH [44]. In this study, the ruminal pH and 275 

total VFA were not influenced by trace mineral supplementation; however, lower ruminal pH was recorded 276 

in Jersey steers than in Holstein steers, which is in agreement with the findings of Islam et al. [45]. This 277 

might be due to the higher total VFA production by Jersey steers compared to that by Holstein steers in this 278 

study. Rumen NH3-N concentration depends on the status of dietary protein breakdown in the rumen, rumen 279 

microbial utilization, and ruminal epithelial absorption [45, 46]. In this study, breed had no influence on 280 

the NH3-N concentration. Although the mineral-supplemented groups had higher NH3-N concentrations 281 

than the Con group in both breeds, the concentrations were within normal ranges.  282 

The rumen microbiome helps break down the feed substrate in the rumen and improve animal 283 

performance. Bacteroidetes and Firmicutes are the major bacterial phyla in different breeds, including 284 

Holstein and Jersey breeds [16, 27, 47–51]. Likewise, in the present study, Bacteroidetes, followed by 285 

Firmicutes, were the two most abundant bacterial phyla among all the treatment groups in both breeds. 286 

Furthermore, a previous study reported that HS alters the rumen microbiota in Holstein and Jersey steers 287 

[16]. However, the similar relative abundance of major bacterial phyla and genera among the treatment 288 

groups for both breeds suggests that higher concentrations of mineral supplementation did not alter rumen 289 

bacterial community composition in the present study. The higher relative abundance of Capnocytophaga 290 

in Jersey steers suggests their preferential growth in Jersey steers compared with Holstein steers, which was 291 

supported by the findings of Islam et al. [45]. 292 

Methanogenesis is the process of CH4 production by methanogens in the rumen via two different 293 

pathways: hydrogenotrophic and methylotrophic [6]. Methanobrevibacter is the major archaeal genus 294 

involved in the hydrogenotrophic pathway, whereas Methanomassiliicoccus is involved in the 295 

methylotrophic pathway [3]. In this study, while the differences were not significant, Methanobrevibacter 296 

was the most abundant archaeal genus among all treatment groups in Holstein (collectively around 90%) 297 

and Jersey steers (collectively > 95%), followed by Methanomassiliicoccus. Methanosarcina is another 298 

identical methanogen that can produce CH4 via three different pathways, namely the hydrogenotrophic, 299 
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methylotrophic, and acetoclastic pathways [3]. In this study, a significantly higher relative abundance of 300 

Methanosarcina was observed in Holstein steers than in Jersey steers, suggesting their preferential growth 301 

in the rumen of Holstein steers. The higher relative abundance of the methanogen species Mbr. olleyae was 302 

reported in Holstein steers than in Jersey steers. Similarly, King et al. [53] reported a higher relative 303 

abundance of Mbr. olleyae in Holstein cows which produced lower CH4 emissions than Jersey cows. They 304 

further reported that CH4 production was negatively correlated with the RO group containing Mbr. 305 

ruminantium and Mbr. olleyae and was positively correlated with the SGMT group (consisting of Mbr. 306 

smithi, Mbr. gottschalkii, Mbr. millerae, and Mbr. thaurei). The significantly lower CH4 production and 307 

yield observed in Holstein steers compared with that in Jersey steers in the present study further 308 

corroborates these findings. Dietary mineral salt supplementation has been reported to decrease CH4 309 

emissions and methanogen population in lactating cows [7]. However, trace mineral supplementation had 310 

no influence on CH4 production, yield, and methanogen abundance regardless of breed, which may be due 311 

to the short-term supplementation of dietary trace minerals in this study.  312 

 313 

Conclusion 314 

Supplementation with high concentrations of dietary organic trace minerals (selenium, zinc, and 315 

copper) did not alter enteric CH4 emissions or the methanogenic community. However, Holstein steers 316 

emitted low enteric CH4, with a higher relative abundance of Mbr. olleyae than Jersey steers. 317 

 318 

  319 
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Tables 461 

Table 1. Chemical composition of total mixed ration (TMR) 462 

Ingredients Compositions (% of DM) 

Corn gluten feed 8.40 

Soybean 6.24 

Beet pulp 4.20 

Wheat bran 3.15 

Corn flakes 2.21 

Molasses 1.04 

Rice wine residue 5.25 

Brewer's grain residue 21.01 

Annual ryegrass straw 27.29 

Orchard grass straw 21.01 

Limestone  0.10 

Sodium bicarbonate 0.01 

Salt 0.09 

Total 100.00 

Chemical composition (DM basis) % or ppm 

DM (fresh basis) 58.98% 

CP 13.55% 

Crude Fiber 21.92% 

Crude fat 3.02% 

Ash 9.21% 

Calcium 1.22% 

Phosphorus 0.47% 

NDF 48.00% 

ADF 25.36% 

Zinc 77.35ppm 

Copper 17.31ppm 

Selenium 0.05ppm 

DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber 463 

 464 
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Table 2. DMI and enteric methane emission of Holstein and Jersey steers with different levels of mineral 466 

supplementation 467 

Parameters 
Holstein Jersey 

SEM 
Mixed p-value 

Con NM HM Con NM HM B T B × T 

DMI (kg/d) 12.74 13.32 12.90 11.02 11.29 11.37 1.172 0.125 0.947 0.982 

CH4 production (g/d) 170.53 157.22 147.75 219.08 184.79 189.63 18.238 0.032 0.379 0.867 

CH4 yield (g/kg DMI) 13.58 12.66 11.79 20.23 16.37 17.25 2.399 0.023 0.557 0.840 

RT (℃) 39.33 39.30 39.10 39.13 39.10 39.03 0.115 0.185 0.452 0.853 

 468 

Con: only TMR (without mineral supplementation); NM: TMR + NRC recommended concentration of mineral 469 

supplementation (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM; HM: TMR + higher than recommended 470 

concentration of mineral supplementation (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm)/kg DM; CH4, methane; DMI, dry 471 

matter intake; RT, rectal temperature; SEM, Standard error of the means.  472 

B, breed effect; T, trace mineral supplementation effect; B × T, interaction effect between breed and trace mineral 473 

supplementation. 474 

a-c Means with different superscripts in a row differ significantly among different treatment groups in Holstein steers 475 

while x-z Means with different superscripts in a row differ significantly among different treatment groups in Jersey 476 

steers (p < 0.05). 477 

478 
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Table 3. Rumen fermentation characteristics of Holstein and Jersey steers with different levels of mineral 479 

supplementation 480 

Parameters 
Holstein Jersey 

SEM 
Mixed p-value 

Con NM HM Con NM HM Breed Treat B × T 

pH 6.98 7.18 7.11 6.85 6.94 6.93 0.091 0.044 0.340 0.865 

NH3-N (mg/dL) 4.18c 5.01a 4.82b 4.25y 4.42y 5.48x 0.035 0.228 <.0001 <.0001 

Total VFA (mmol/L) 66.95 68.78 67.09 86.89 89.32 89.34 2.516 <.0001 0.781 0.924 

Acetate (%) 57.52 61.37 56.20 56.94 57.81 55.18 0.928 0.135 0.049 0.466 

Propionate (%) 26.23 22.79 24.06 25.85 23.53 23.89 1.359 0.967 0.315 0.945 

Butyrate (%) 16.25 15.84 19.74 17.21 18.66 20.93 1.471 0.305 0.178 0.857 

A:P 2.23 2.69 2.34 2.21 2.46 2.34 0.129 0.584 0.213 0.765 

 481 

Con: only TMR (without mineral supplementation); NM: TMR + NRC recommended concentration of mineral 482 

supplementation (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM; HM: TMR + higher than recommended 483 

concentration of mineral supplementation (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm)/kg DM; A:P, acetate: propionate; 484 

NH3-N, ammonia-nitrogen; VFA, volatile fatty acid; SEM, Standard error of means. 485 

B, breed effect; T, trace mineral supplementation effect; B × T, interaction effect between breed and trace mineral 486 

supplementation. 487 

a-c Means with different superscripts in a row differ significantly among different treatment groups in Holstein steers 488 

while x-z Means with different superscripts in a row differ significantly among different treatment groups in Jersey 489 

steers (p < 0.05). 490 

 491 
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Table 4. Species richness and diversity of rumen bacteria in Holstein and Jersey steers with different levels of mineral 493 

supplementation 494 

Parameters 
Holstein Jersey 

SEM 
Mixed p-value 

CON NM HM CON NM HM B T B × T 

 ASVs 1329.00 1385.33 1387.00 1279.33 1272.00 1189.00 56.581 0.051 0.836 0.564 

Chao1 1332.60 1392.55 1391.04 1284.44 1275.88 1190.71 57.306 0.052 0.823 0.562 

Shannon 8.91 9.05 9.17 8.74 8.86 8.67 0.105 0.019 0.605 0.395 

Inverse 

Simpson 
0.995 0.995 0.996 0.992 0.993 0.992 0.001 0.023 0.781 0.737 

Good's 

Coverage 
1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.846 0.533 0.741 

 495 

Con: only TMR (without mineral supplementation); NM: TMR + NRC recommended concentration of mineral 496 

supplementation (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM; HM: TMR + higher than recommended 497 

concentration of mineral supplementation (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm)/kg DM; ASV, amplicon sequence 498 

variant; SEM, Standard error of means. 499 

B, breed effect; T, trace mineral supplementation effect; B × T, interaction effect between breed and trace mineral 500 

supplementation. 501 

a-c Means with different superscripts in a row differ significantly among different treatment groups in Holstein steers 502 

while x-z Means with different superscripts in a row differ significantly among different treatment groups in Jersey 503 

steers (p < 0.05). 504 

 505 
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 507 

Figures 508 

 509 

 510 

Figure 1. Rumen bacterial abundance at the phylum level in Holstein and Jersey steers with different levels of mineral 511 

supplementation. Con: only TMR (without mineral supplementation), NM: TMR + NRC recommended concentration 512 

of mineral supplementation (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM, and HM: TMR + higher than 513 

recommended concentration of mineral supplementation (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm)/kg DM. B, T, and 514 

B × T indicate significant (p<0.05) difference in relative abundance between breeds, trace mineral supplementation, 515 

and the interaction between breed and trace mineral supplementation, respectively. 516 

 517 
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 541 

Figure 2. Rumen bacterial abundance at the genus level in Holstein and Jersey steers with different levels of mineral 542 

supplementation. Con: only TMR (without mineral supplementation), NM: TMR + NRC recommended concentration 543 

of mineral supplementation (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM, and HM: TMR + higher than 544 

recommended concentration of mineral supplementation (Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm)/kg DM. B, T, and 545 

B × T indicate significant (p<0.05) difference in relative abundance between breeds, trace mineral supplementation, 546 

and the interaction between breed and trace mineral supplementation, respectively. 547 
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 568 

Figure 3. Rumen methanogen abundance at the genus (a) and species (b) levels in Holstein and Jersey steers with 569 

different levels of mineral supplementation. Con: only TMR (without mineral supplementation), NM: TMR + NRC 570 

recommended concentration of mineral supplementation (Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm)/kg DM, and HM: 571 

TMR + higher than recommended concentration of mineral supplementation (Se 3.5 ppm + Zn 350 ppm + Cu 28 572 

ppm)/kg DM. B, T, and B × T indicate significant (p<0.05) difference in relative abundance between breeds, trace 573 

mineral supplementation, and the interaction between breed and trace mineral supplementation, respectively while b, 574 

t, and b × t indicate tentatively significant (0.05< p< 0.1) difference in relative abundance between breed, trace mineral 575 

supplementation and the interaction between breed and trace mineral supplementation, respectively. 576 
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