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Abstract 4 

Pig breeding management directly contributes to the profitability of pig farms, and pregnancy 5 

diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in 6 

sows is emphasized, and various studies have been conducted in this area. We propose a computer-7 

aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. 8 

Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which 9 

measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth 10 

technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part 11 

of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and 12 

EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. 13 

Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the 14 

ultrasonography, which is easily affected by noise from the surrounding environments. Both the original 15 

and noise added ultrasound images of sows were tested together to determine the suitability of the 16 

proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images 17 

achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance 18 

achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the 19 

intensity of noise was strong, proving its robustness against noise. 20 

 21 

Keywords: Classification algorithm, Deep learning, Pregnancy diagnosis, Sow, Ultrasound 22 

 23 

Introduction 24 

 25 

The management of pig reproduction is an important factor that is directly related to the success or 26 

failure of pig farms [1-3]. Therefore, methods for diagnosing pregnancy in sows have a significant 27 

impact on reproductive management and are essential in pig farming [4-6]. It can increase pig 28 

reproduction by shortening the non-pregnant condition of sows and increasing the number of births. 29 

Pregnancy diagnosis of sows can be confirmed through observations for return of estrus, vaginal biopsy, 30 

serum analysis, hormone measurement, and ultrasound detection methods [7-9]. However, if the sow 31 

shows no clear signs of pregnancy, the manager who is inexperienced or lacks the time and labor may 32 

not notice the pregnancy until the due date. In such cases, the pregnant sows cannot receive proper 33 

treatment for pregnancy and miscarriages can occur in stressful situations [10]. These issues increase 34 

the feed, management, and labor costs, which has a major adverse effect on profitability. Therefore, as 35 

mentioned before, the pregnancy diagnosis of sows has a great effect on reproduction and determines 36 

the success or failure of pig farms. As the necessity of diagnosing the pregnancy of sows is emphasized, 37 

many institutions and organizations have conducted research and a variety of methods are used to 38 

diagnose the pregnancy of sows [11]. Cameron [12] made a detailed description of the reproductive 39 

tract of the sow as felt by rectal examination. Haichao et al. [13] showed the expression of αV and β3 40 
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integrin subunits in the endometrium during implantation in pigs. Zhou et al. [14] hypothesized that 41 

circulating exosome-derived miRNAs might be used to differentiate the pregnancy status as early as 42 

several days after insemination in pigs and successfully identified circulating exosomal miRNA profiles 43 

in the serum of pigs in early pregnancy. Kauffold et al. [15] reviewed an update on the current status of 44 

B-mode ultrasonography in pig reproduction and how this technology can be of value when used in pig 45 

production medicine. Also, Kauffold et al. [16] provided an overview of the principles and clinical uses 46 

of ultrasonography (RTU) for application to address swine reproductive performance. Kousenidis et al. 47 

[17] studied the ultrasonic typification of sows to develop a methodology for pregnancy diagnosis and 48 

suggested that detailed real-time ultrasonic scanning, can help predict litter size and the precise 49 

management of pregnant sows. 50 

In this study, we developed a computer-aided diagnosis (CADx) method to diagnose the pregnancy of 51 

sows using ultrasound images, which has advantages over other methods mentioned above in terms of 52 

simplicity, low cost, and high accuracy.  CADx is expected to provide additional information to pig 53 

farmers by showing the diagnostic result of artificial intelligence to assist the farmer in making a 54 

diagnosis decision of the image. We compared the accuracy of three computerized classification 55 

approaches with two types of noise: Gaussian and speckle. Of the three computerized classification 56 

approaches selected, the Inception model is one of the most used convolution neural network (CNN) 57 

models, Xception is based on Inception with depthwise separable convolution, and EfficientNet is a 58 

model that achieved state-of-the-art (SOTA) performance on image classification tasks with much few 59 

parameters. We added the Gaussian and speckle noises because ultrasound images are usually corrupted 60 

by them. Although the issues that we could explore in one study are only a small fraction of those 61 

involved in the entire CADx process of sow pregnancy diagnosis, it is expected that this study will 62 

provide useful information for the design of a robust CADx system that uses ultrasound images.  63 

 64 

Materials and Methods 65 

 66 

Ultrasound images of pregnant and non-pregnant sows were collected by experts and used as the 67 

dataset for training and performance evaluation of pregnancy diagnosis using deep learning algorithms. 68 

In consideration of use in various environments in pig farms, ultrasound images containing noise were 69 

generated and were used together with the other images in the performance evaluation. To find the 70 

optimal method for diagnosing sow pregnancy, we compared the performance of several classification 71 

algorithms. 72 

 73 

 74 

Dataset  75 

A data set was collected from the files of sows that had undergone ultrasound imaging in the hog barn 76 

of the National Institute of Animal Science (NIAS) located in Cheonan, with the approval of the 77 
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Institutional Animal Care and Use Committee (IACUC) of Rural Development Administration 78 

(approval No. NIAS-2021-538). All ultrasound images were acquired by trained experts using a 79 

MyLab™OmegaVET (Esaote) ultrasonic device and a convex array ultrasound transducer AC2541 80 

(Esaote) with 1.0 - 8.0 MHz frequency range. We acquired ultrasound images of 5,292 pregnant and 81 

5,367 non-pregnant from 44 sows. Among them, 29 sows were at least 23 days pregnant and 15 sows 82 

were not pregnant. The images of pregnant sows were confirmed by the experts. The ultrasound images 83 

were collected in GEN-M format in 4.0 – 6.0 MHz frequency range with general resolution and middle 84 

penetration. The collected ultrasound images were extracted as 860 × 808 resolution Bitmap Image 85 

format with lossless and uncompressed characteristics to minimize feature loss.  86 

The 5,292 ultrasound images of pregnant sows were divided into 4,241 images (88 with invisible 87 

embryonic sacs)  for training and 1,051 images (14 with invisible embryonic sacs) for performance 88 

evaluation. It is difficult for even experts to accurately identify pregnancy in images with invisible 89 

embryonic sacs. Of the 5,367 ultrasound images of non-pregnant sows, 4,231 images we used for 90 

training and 1,136 images were used for performance evaluation. Overall, the training set consisted of 91 

4,241 images of pregnant and 4,231 images of non-pregnant sows, and the test set (Dataset-A) consisted 92 

of 1,051 images of pregnant and 1,136 images of non-pregnant sows. And part of the test set (Dataset-93 

A) in which the embryonic sac was not visible was composed as the other test set (Dataset-B). The 94 

specifications of the images are shown in Figure 1. 95 

 96 

Generating ultrasound images with speckle and Gaussian noises  97 

 Noise is an unwanted phenomenon that is ubiquitous in digital ultrasound images. It can appear in 98 

different forms and distributions such as speckle and Gaussian. Diagnosis of pregnancy in sows using 99 

an ultrasound device can be performed in various situations depending on the surrounding environments 100 

[18].  Speckle noise is a type of noise that is multiplicative and independent. It is the result of 101 

interference between returning light from rough surfaces and the aperture creating a granular shape 102 

pattern in the camera sensor. This type of noise affects both the resolution and contrast in ultrasound 103 

images. Gaussian noise is another type of noise that is also additive and independent. It can be the 104 

product of sources such as amplifiers, shot noise and film grain noise, among others [19]. The 105 

configuration of ultrasonic devices and probes used in all pig farms is the same as that of this study. In 106 

addition, the frequency used to diagnose pregnancy depends on the physical characteristics of the sow; 107 

the ultrasound image can contain Gaussian noise and speckle noise depending on the surrounding 108 

environment. Therefore, we added these two noises to the ultrasound images to make them similar to 109 

the noise that occurs in typical farm situations [20,21]. Speckle noise 0.7 (variance) and Gaussian noise 110 

0.02 (zero mean and variance 0.02) were added to 1,051 ultrasound images of pregnant sows and 1,136 111 

non-pregnant sows used for the test, and speckle noise 0.4 and Gaussian noise 0.01 were applied in the 112 

same way. The number of test images with noises is the same as original and noise images were not 113 

used in the training stage.  The ultrasound images with noise for the test are shown in Figure 2. 114 
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Ultrasound images with noises were used together with the original images for performance evaluation 115 

so that the deep learning-based classification algorithm can show robustness in various environments. 116 

 117 

Classification algorithms using deep learning 118 

 To develop a method to diagnose pregnancy in sows that can be used in real-time in various 119 

environments with high processing speed and low computational cost,  we decided to use a deep 120 

learning-based classification algorithm [22]. It has high accuracy based on neural network structure and 121 

a high processing speed with no position calculation, so it is considered ideal for diagnosing pregnancy 122 

in real-time. To select an optimal classification algorithm for sow ultrasound image pregnancy detection, 123 

various deep learning-based classification algorithms known for high performance were used. 124 

Inception-v4, Xception, and EfficientNetV2 classification algorithms were all used to train the 125 

ultrasound images and generate trained weights. Performance evaluation and comparison for the 126 

original ultrasound images and the noise ultrasound images were performed to select the optimal 127 

algorithm. 128 

 The inception model is one of the most used CNN models since the release of TensorFlow [23]. The 129 

core of the inception model is in the Conv layer called the inception module. Conventional Conv layers 130 

usually use data composed of width, height, and channels. Width and height decrease through max-131 

pooling according to the progress of the network model, and the channel progresses in the direction of 132 

increasing. The inception model uses the form of 1x1 Conv to make the filter 1x1, and it is performed 133 

in the direction of decreasing channels. Through this, a fully connected computation of the channel 134 

called network-in-network is performed, and a compression effect of reducing the dimension can be 135 

achieved. Therefore, 1x1 Conv structure of Inception was able to increase the accuracy and reduce the 136 

amount of computation. Inception-v2 has a change on the existing inception module. To reduce the 137 

amount of computation, module A with factorizing was applied by changing 5x5 Conv to two 3x3 Conv, 138 

and module B with asymmetric factorization was made. To reduce the grid size of the feature map, 139 

module C was created by combining pooling to Conv structure and Conv to pooling structure in parallel, 140 

and these replaced the existing inception module. Inception-v3 has the same structure as Inception-v2, 141 

and various techniques such as RMSProp, Label Smoothing, Factorized 7-7, and BN-auxiliary are 142 

applied to increase performance. In the Inception-v4 used in our proposed study, the modules that 143 

change the grid are distinguished from the structure of Inception-v3. Along with the inception module 144 

A-B-C, the reduction module A-B, which reduces the size of the grid, has been added and improves 145 

accuracy. The structure of Inception-v4 is shown in Figure 3. 146 

 Xception is based on Inception, but it is a model to which the concept of modified depthwise 147 

separable convolution is applied [24]. Xception went further from the existing inception module and 148 

aimed to completely separate cross-channel correlations and spatial correlations. Therefore, as shown 149 

in Figure 4 correlation between channels was mapped through 1x1 Conv in the existing inception 150 

module, and then spatial correlation was mapped for all output channels. Through this, Xception was 151 
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able to show high classification accuracy when compared to Inception-v3, which has a similar scale and 152 

is used as a pretrain for various encoders due to its simple concept and structure and high performance. 153 

 EfficientNetV1 is a model that achieved SOTA performance in 2019 with good performance with 154 

much fewer parameters than other image classification tasks [25]. The performance of CNN tends to be 155 

proportional to the scale of the model, and many studies have been conducted to improve the 156 

performance by increasing the model. There are three methods of scaling up: deepening the network 157 

depth, increasing the channel width, and increasing the resolution of the input image. EfficientNetV1 158 

found the optimal combination of these three through automated machine learning [26], and suggested 159 

a compound scaling method to achieve high performance even with a small model. EfficientNetV2 is a 160 

model that succeeded in increasing the learning speed while maintaining accuracy through progressive 161 

learning, which gradually increases the input image size while using the existing structure and the non-162 

uniform scaling technique that compensates for progressive learning [27]. The basic structure of 163 

EfficientNetV2 is shown in Figure 5.  164 

Inception-v4, which reduces the complexity of calculations through the inception module, achieving 165 

fast processing and high accuracy; Xception, which uses the concept of depthwise separable on 166 

ultrasound image because it is basically one-channel grayscale; and EfficientNetV2, which performs 167 

classification through optimal combination using automated machine learning because frequency bands 168 

exist but cannot define accurate image resolution, were selected as the ultrasound pregnancy diagnosis 169 

algorithms. 170 

Inception-v4, Xception and EfficientNetV2 training was done for pregnancy diagnosis in sows. The 171 

5,292 ultrasound images of pregnant sows were divided into 4,241 for training and 1,051 for testing.  172 

The 5,367 ultrasound images of non-pregnant sows were divided into 4,231 for training and 1,136 for 173 

testing. The training images were further divided into training and validation at a ratio of 8:2. The 174 

training the network models was continued until the validation loss converged. All training and 175 

performance evaluations were performed using Windows 10 x64, CUDA 10.1 with cuDNN, and Python 176 

3.7.4 with the following specifications: Intel(R) Xeon(R) W-2133, NVIDIA TITAN Xp, and 128 GB 177 

RAM. 178 

 179 

 180 

Results and Discussion 181 

 182 

 The performance of the pregnancy diagnosis in sows was evaluated by weights trained through 183 

Inception-v4, Xception, and EfficientNetV2. The overall structure of the study is shown in Figure 6. 184 

The dataset used for the performance evaluation was divided into Dataset-A and Dataset-B. Dataset-A 185 

consisted of 1,051 ultrasound images of pregnant sows with all situations and visible embryonic sacs 186 

and 1,136 ultrasound images of non-pregnant sows. Dataset-B which is a subset of the Dataset-A 187 

consisted of 14 ultrasound images of pregnant sows with invisible embryonic sacs and 14 ultrasound 188 



ACCEPTED

7 

 

images of non-pregnant sows. Each of Dataset-A and Dataset-B was divided once more into original, 189 

NoiseT1 with added speckle noise of variance 0.4  and Gaussian noise of zero mean and variance 0.01 190 

into original images and NoiseT2 with added speckle noise of variance 0.7 and Gaussian noise of zero 191 

mean and variance 0.02 into original images depending on the application of noise. Therefore, a total 192 

of 6 test datasets were used for performance evaluation: Original Dataset-A, Original Dataset-B, 193 

NoiseT1 Dataset-A, NoiseT1 Dataset-B, NoiseT2 Dataset-A, and NoiseT2 Dataset-B.  194 

The ultrasound images used in the study were organized as shown in Table 1. Ultrasound images in 195 

Dataset-A and Dataset-B were classified for pregnancy through weights trained using Inception-v4, 196 

Xception, and EfficientNetV2. A confusion matrix consisting of true positive (TP), true negative (TN), 197 

false positive (FP), and false negative (FN) was used for evaluation. TP is the case in which pregnant 198 

is predicted as pregnant, and TN is the case in that the non-pregnant is predicted as non-pregnant. FP is 199 

the case that non-pregnant is incorrectly predicted as pregnant, and FN is the case that pregnant is 200 

incorrectly predicted as non-pregnant. We also employed the performance metrics of specificity, 201 

sensitivity, and accuracy to evaluate the pregnancy diagnosis performance. Sensitivity is calculated as 202 

TP / (TP+FN) and is the ratio determined as pregnant in all pregnant, and specificity is calculated as 203 

TN / (TP+FP) and is the ratio determined as non-pregnant in all non-pregnant. Accuracy includes all 204 

elements of sensitivity and specificity and can confirm the overall pregnancy diagnosis performance. 205 

The results of ultrasound pregnancy diagnosis performance evaluation for Dataset-A are shown in 206 

Table 2. Xception achieved the highest overall performance. In the original ultrasound images result, 207 

Xception, EfficientNetV2, and Inception-v4 achieved 0.98, 0.99, and 0.98 accuracy, respectively. 208 

However, when the noise was added, the performance of EfficientNetV2 and Inception-v4 significantly 209 

decreased. The performance of Xception was reduced by 0.02, a minor difference from the original. 210 

Results for Dataset-B are shown in Table 3: again, Xception achieved the highest performance. In the 211 

original ultrasound images result, Xception, EfficientNetV2, and Inception-v4 achieved 0.89, 0.82, and 212 

0.93 accuracy, respectively. Dataset-B was difficult to distinguish even for experts because the 213 

embryonic sacs are not visible. However, the proposed method achieved high overall performance. 214 

When the ultrasound images contain noise, the performance of EfficientNetV2 and Inception-v4 215 

significantly decreased. Although the performance of the Xception was also reduced from the original 216 

performance, the difference was only 0.04. Dataset-B shows a lower sensitivity compared to Dataset-217 

A. This is thought to be because the number of images with invisible embryonic sacs is not sufficient 218 

for training; they are only 88 out of the 4,241 training images. On the other hand, specificity was 1.00 219 

for all models in Dataset-B. This is the opposite of the previous case. Non-pregnant was trained using 220 

many images, but the results were confirmed only using 14 images. Although there was a data 221 

imbalance problem in Dataset-B, we were able to confirm the unbiased performance through the 222 

comparison of three classification algorithms. 223 

The classification algorithms used in this study have high performance. When tested with the original 224 

ultrasound images, they achieved high performance in both Dataset-A and Dataset-B. However, when 225 

noise was included or the intensity of noise was increased, the performance decrease drastically, except 226 

https://en.dict.naver.com/#/entry/enko/018cf3def80746cdaea7a02450c3a725
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for Xception. Xception maps the correlation between channels and then maps spatial correlation. It 227 

means that the relationship between the channels and spatial are separated due to the depthwise 228 

separable. Two noises were added to the ultrasound images according to the characteristics of the 229 

ultrasonography. Xception, which is based on CNN structure is robust against noise when extracting 230 

spatial features. Furthermore, against speckle noise, which has 3-channels unlike 1-channel of 231 

ultrasonography, it is presumed that a robust classification was achieved by separately extracting the 232 

channels and spatial features. As a result, it was found that it is best to use the Xception classification 233 

algorithm for pregnancy diagnosis using ultrasound images. 234 

 235 

Conclusion 236 

 237 

In this study, ultrasonography-based deep-learning algorithms to diagnose pregnancy in sows were 238 

proposed. Inception-v4, Xception, and EfficientNetV2 were used for deep learning-based classification 239 

algorithms. Gaussian and speckle noise with parameters of each 0.01, 0.02, and 0.4, 0.7, respectively, 240 

were added to ultrasound images as these are easily affected by noise from the surrounding 241 

environments.  242 

The pregnancy diagnosis algorithms achieved good overall performance. The algorithms performed 243 

highly on ultrasound images with visible embryonic sacs. Even on ultrasound images with invisible 244 

embryonic sacs, which are difficult for experts to distinguish,  the algorithms achieved accuracies of up 245 

to 0.93 . When the embryonic sac was visible in the ultrasound image containing noise, the accuracy 246 

reached  0.98. For ultrasound images with noise and invisible embryonic sacs, accuracy was reduced to 247 

0.89. The Xception algorithm showed robustness against noise and achieved overall high performance. 248 

For future study, we plan to collect more images with invisible embryonic sacs; the current study had 249 

only a few of these. Also, this study considered pregnancy of at least 23 days; therefore, we plan to 250 

include pregnancy between 10 and 23 days. 251 

 252 
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Tables and Figures 329 

 330 

Table 1. Number of ultrasound images of sows used for training and performance evaluation 331 

 332 

 Original 
NoiseT1  

(Gaussian 0.01, Speckle 0.4) 

NoiseT2 

(Gaussian 0.02, Speckle 0.7) 

 Pregnant 
Non-

pregnant 
Pregnant 

Non-

pregnant 
Pregnant 

Non-

pregnant 

Training 4,241 4,231 - - - - 

Dataset-A 1,051 1,136 1,051 1,136 1,051 1,136 

Dataset-B 14 14 14 14 14 14 
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 335 

 336 
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 338 

 339 

 340 

 341 

 342 

 343 
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 347 

 348 

 349 

 350 

 351 

 352 
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Table 2. Performance evaluation of Dataset-A 355 

 356 

Dataset-A Original 

 Inception-v4 Xception EfficientNetV2 

Sensitivity 0.9943 0.9859 0.9876 

Specificity 0.9622 0.9798 0.9982 

Accuracy 0.9776 0.9827 0.9931 

 357 

Dataset-A NoiseT1 (Gaussian 0.01 / Speckle 0.4) 

 Inception-v4 Xception EfficientNetV2 

Sensitivity 0.6613 0.9914 0.8554 

Specificity 1.0000 0.9736 1.0000 

Accuracy 0.8372 0.9822 0.9305 

 358 

Dataset-A NoiseT2 (Gaussian 0.02 / Speckle 0.7) 

 Inception-v4 Xception EfficientNetV2 

Sensitivity 0.3949 0.9924 0.5956 

Specificity 0.9991 0.9393 1.0000 

Accuracy 0.7087 0.9648 0.8057 

 359 

 360 

 361 

 362 

 363 

 364 

 365 
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Table 3. Performance evaluation of Dataset-B (embryonic sac is not visible) 368 

 369 

Dataset-B Original 

 Inception-v4 Xception EfficientNetV2 

Sensitivity 0.8571 0.7857 0.6429 

Specificity 1.0000 1.0000 1.0000 

Accuracy 0.9286 0.8929 0.8214 

 370 

Dataset-B NoiseT1 (Gaussian 0.01 / Speckle 0.4) 

 Inception-v4 Xception EfficientNetV2 

Sensitivity 0.1249 0.7857 0.2857 

Specificity 1.0000 1.0000 1.0000 

Accuracy 0.5714 0.8929 0.6429 

 371 

Dataset-B NoiseT2 (Gaussian 0.02 / Speckle 0.7) 

 Inception-v4 Xception EfficientNetV2 

Sensitivity 0.0000 0.7143 0.1427 

Specificity 1.0000 1.0000 1.0000 

Accuracy 0.5000 0.8571 0.5714 

 372 
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Figure 1. Ultrasound images of sows 381 
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Figure 2. Ultrasound images with gaussian and speckle noise 397 
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Figure 3. Network structure of Inception-v4 420 
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Figure 4. Network structure of Xception 437 
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Figure 5. Network structure of EfficientNetV2 455 
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Figure 6. Proposed ultrasonography-based pregnancy diagnosis in sows 469 
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