JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Prediction of Male Fertility Using Ras-related Proteins
Running Title (within 10 words)	Use of Ras-related Proteins to predict male fertility
Author	Jeong-Won Bae, Ju-Mi Hwang, Woo-Sung Kwon
Affiliation	Department of Animal Science and Biotechnology, Kyungpook
	National University, Sangju, Gyeongsangbuk-do 37224, Republic of
	Korea
ORCID (for more information, please visit	Jeong-Won Bae (https://orcid.org/0000-0002-7030-7767)
https://orcid.org)	Ju-Mi Hwang (https://orcid.org/0000-0003-1776-9759)
	Woo-Sung Kwon (https://orcid.org/0000-0002-0848-7189)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	This study was conducted with the support of the Gyeongsangbuk-
State funding sources (grants, funding sources,	do agricultural and fishery R&D activation project
equipment, and supplies). Include name and number of	
grant if available.	
Acknowledgements	Not applicable
Acknowledgements	
Availability of data and material	Upon reasonable request, the datasets of this study can be available
	from the corresponding author.
Authors' contributions	Conceptualization: Bae JW, Kwon WS.
Please specify the authors' role using this form.	Data curation: Bae JW, Hwang JM, Kwon WS.
	Formal analysis: Bae JW, Hwang JM, Kwon WS.
	Methodology: Bae JW, Hwang JM, Kwon WS.
	Software: Bae JW, Hwang JM, Kwon WS.
	Validation: Bae JW, Kwon WS.
	Investigation: Bae JW, Hwang JM, Kwon WS.
	Writing - original draft: Bae JW, Hwang JM, Kwon WS.
	Writing - review & editing: Bae JW, Hwang JM, Kwon WS.
Ethics approval and consent to participate	All processes were performed in accordance with the guidelines and
	approved by Institutional Animal Care and Use Committee of
	Kyungpook National University (KNU 2021-207).

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Woo-Sung Kwon
Email address – this is where your proofs will be sent	wskwon@knu.ac.kr
Secondary Email address	kws9851@gmail.com
Address	Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
Cell phone number	+82.10.8399.9851
Office phone number	+82.54.530.1942
Fax number	+82.504.242.9851

6 Abstract

Identifying effective biomarkers for the diagnosis of male fertility is crucial for improving animal production and treating male infertility in humans. Ras-related proteins (Rab) are associated with morphological and motion kinematic functions in spermatozoa. Moreover, Rab2A, a Rab protein, is a possible male fertility-related biomarker. The present study was designed to identify additional fertility-related biomarkers among the various Rab proteins. First, the expression of Rab proteins (Rab3A, 4, 5, 8A, 9, 14, 25, 27A, and 34A) from 31 duroc boar spermatozoa was measured before and after capacitation; correlation between Rab protein expression and litter size was evaluated by statistical analysis. The results showed that the expression of Rab3A, 4, 5, 8A, 9, and 25 before capacitation and Rab3A, 4, 5, 8A, 9, and 14 after capacitation were negatively correlated with litter size. Moreover, depending on the cut-off values calculated by receiver operating curves, an increase in litter size was observed when evaluating the ability of the Rab proteins to forecast litter size. Therefore, we suggest that Rab proteins may be potential fertility-related biomarkers that could help select superior sires in the livestock industry. Keywords: Ras-related Proteins, Biomarkers, Prediction, Male Fertility, Pig

Introduction

32 To date, various efforts have been made to identify biomarkers linked to fertility 33 mechanisms as well as to predict and diagnose male infertility at the molecular level [1-3]. 34 However, the efficiency of the biomarkers varies, and they are not validated enough to be 35 applied in the animal industry and to humans. Most biomarkers have not been fully studied, to 36 enable directly determining cell functions and identifying the underlying mechanisms. 37 Recently, Ras-related proteins (Rab), which are members of the Ras superfamily of monomeric 38 G proteins, were identified as validated biomarkers that could predict male fertility. In 2015, 39 Kwon et al. reported the use of Rab2A for evaluation of boar fertility [1, 2]. Rab proteins are 40 known to be involved in acrosomal biogenesis and exocytosis. Rab proteins play a role in 41 preserving and establishing the Golgi structure, and the Golgi apparatus is derived from the 42 acrosome during spermatogenesis [4-6]. In addition, Rab proteins are not only linked to 43 acrosome formation and reaction but also to sperm motility capacitation conditions [5]. Thus, 44 the importance of the Rab proteins for male reproduction has been emphasized by several 45 studies to identify the function of Rab proteins in spermatozoa of humans and animals [5-8]. 46 Moreover, recently, the mechanism of Rab protein signaling has been identified in spermatozoa 47 [6].

Previous studies have shown that Rab proteins are associated with morphological and motion kinematic functions in spermatozoa [5, 6]. Further, Rab2A is a validated biomarker that aids in the prognosis and diagnosis of boar fertility [1, 2]. Therefore, this study was designed to prove the application of other Rab proteins in predicting boar fertility. In the present study, the expression of Rab proteins (Rab3A, 4, 5, 8A, 9, 14, 25, 27A, and 34A) in 31 boar spermatozoa was evaluated before and after capacitation. Statistical analysis was performed to assess the correlation between Rab protein expression and in vivo fertility. In addition, the

56												
	accuracy of the Rab proteins were analyzed based on receiver operating curves (ROCs). Finally,											
57	artificial insemination was performed after predicting litter size based on the expression of Rab											
58	proteins, and the average litter size was evaluated.											
59												
60	Materials and methods											
61	All processes were performed in accordance with the guidelines and were approved by											
62	the Institutional Animal Care and Use Committee of Kyungpook National University.											
63												
64	Artificial insemination											
65	To produce F1 pigs, artificial insemination was performed at a commercial pig farm											
66	(Gyeongsan Swine Gene, Gyeongsan, Korea). Breeding environments (light, ventilation, and											
67	temperature) were controlled to exclude seasonal effects. Duroc semen were gathered by the											
68	gloved hand technique once per week [9], then diluted with Beltsville Thawing Solution for AI											
69	$(20 \times 10^9 \text{ sperm cells}/100 \text{ mL})$. In vivo fertility data of 123 Duroc sows (mean age: 29.5 ± 0.53;											
70	range: 20–39 months; farrowing rate = 91.37 ± 1.35) were provided by Gyeongsan Swine Gene											
71	(Gyeongsan, Korea). Since the litter size of first and older parities sows is generally lower than											
72	that of other parities [10], 2–5 parity Duroc sows were randomly selected and inseminated with											
73	semen collected from a boar. Trained technicians artificially inseminated sperm cells (20×10^9											
74	sperm cells) twice per estrus in the cervix											

76 **Preparation and treatment of spermatozoa**

77 Semen samples were collected three times per Duroc boar in different periods from 78 randomly selected 31 Duroc boars (average litter size = 13.76 ± 0.38). The semen samples were 79 centrifuged at $500 \times \text{g}$ for 20 min with a Percoll [70% and 35% (v/v), Sigma, St Louis, USA] 80 [5, 11, 12]. Samples were incubated in medium 199 [containing sodium bicarbonate (2.2 g/L), 81 D-glucose (3.05 mM), calcium lactate (2.92 mM), sodium pyruvate (0.91 mM), fetal bovine 82 serum (10%), and heparin (10 µg/mL); Sigma] for 60 min at 37 °C under 5% CO₂ in air, to 83 induce capacitation [5].

- 84
- 85

Enzyme-linked immunosorbent assay

The expression of Rab proteins in Duroc spermatozoa was determined by enzyme-86 linked immunosorbent assay (ELISA) [5, 11, 13]. Total proteins were extracted with 87 88 rehydration buffer [urea (7 M), thiourea (2 M), 3-[(3-cholamidopropyl) dimethylammonio]-1propane sulfonate (4%), octyl b-D-glucopyranoside (1%), PMSF (24 mM), dithiothreitol (1%), 89 90 Triton X-100 (0.05 %), and bromophenol blue (0.002 %); Sigma] at 4 °C for 1 h as previously 91 described [2, 5, 14]. The final concentration of total proteins was calculated using the Bradford 92 protein-binding protocol [15]. Extracted protein (50 µg/well) was loaded into plates and incubated overnight at 4 °C. The plates were washed with 0.05% Tween-20 (PBST) and 93 94 blocked with a blocking solution (1% BSA in PBST) for 90 min at 37 °C. The plates were 95 incubated with anti-Rab3A, 4, 5, 8A, 9, 11, 14, 25, 27A, and 34 antibodies (1:5,000; Abcam, 96 Cambridge, UK) for 90 min at 37 °C. Then, the plates were incubated with goat anti-rabbit IgG 97 H&L (HRP) antibody (1:5,000; Abcam, Cambridge, UK) for 90 min at 37 °C. Finally, 98 tetramethylbenzidine solution (Sigma) was used to activate peroxidase for 15 min at RT. Then, 99 the activation was terminated with sulfuric acid (1 N). Rab protein signals (450 nm) were

100	detected by a microplate reader (Gemini Em; Molecular Devices Corporation, Sunnyvale,
101	USA). We then excluded the background signal (0.038) from the detected all data.

103 **Quality assessment**

104 Sensitivity, specificity, negative predictive value, and positive predictive value, have 105 been used in screening tests to evaluate quality assessment [1, 2, 11, 13]. Sensitivity was the 106 percentage that was correctly identified as having litter size when predicted litter size ≥ 14 107 based on the expression level of Rab proteins. The specificity was the percentage that was 108 correctly identified as having litter size when predicted litter size < 14 based on the expression 109 level of Rab proteins. The negative predictive value was the percentage when more than the 110 specific expression level of Rab proteins, litter size was actually predicted < 14 among results predicted litter size ≥ 14 or < 14. The positive predictive value was the percentage when equal 111 to or less than the specific expression level of Rab proteins, litter size was actually predicted \geq 112 14 among results predicted litter size \geq 14 or < 14. 113

114

115 Statistical analysis

116 Statistical analyses were performed using SPSS (version 25.0; Chicago, IL, USA). 117 correlation between expression of Rab proteins and litter size were analyzed using Pearson 118 correlation coefficients. The expression of Rab proteins as a function of litter size \geq 14 or < 14 119 was evaluated using ROCs. The cut-off value calculated by ROCs was relation to maximized 120 sensitivity and specificity [1, 2, 11, 12]. Finally, Student's two-tailed *t*-test was applied to 121 compare litter size predicted by cut-off value. Differences were considered significant at P <122 0.05. All data are expressed as the mean \pm SEM.

125

Results and Discussion

126 Rab proteins that are concerned in Golgi trafficking play important roles in preserving 127 and establishing the Golgi structure in eukaryotic cells. [4-6, 16]. In particular, Rab proteins 128 induce acrosome biogenesis from the Golgi apparatus during spermatogenesis [17-19], and 129 they are involved in acrosome exocytosis after capacitation [7, 20, 21]. Recently, it was 130 confirmed that Rab proteins are present in the sperm tail and head [6]. In addition, it has been 131 reported that Rab protein mechanism in spermatozoa is independent of that in general 132 eukaryotic cells [6]. Moreover, Rab proteins are directly correlated with motion parameters 133 and capacitation status before and after capacitation [5]. Rab proteins play a critical role in 134 male fertility by being involved in capacitation status and sperm motility. However, further 135 validation is needed to evaluate the association between fertility and Rab proteins. Therefore, 136 the present study aimed to discover biomarkers for the prediction and diagnosis of male fertility 137 by an analysis of the correlation between the expression of Rab proteins and litter size 138 following capacitation.

139

140 Correlation between expression of Rab proteins and litter size before capacitation 141 The expression of Rab3A (r = -0.697, P < 0.01), Rab4 (r = -0.418, P < 0.05), Rab5 (r = -0.614, 142 P < 0.01), Rab8A (r = -0.419, P < 0.05), Rab9 (r = -0.423, P < 0.05), and Rab25 (r = -0.523, 143 P < 0.01) was negatively correlated with litter size (Table 1 and Fig. 1). According to the ROCs, 144 the cut-off values of Rab proteins for the 14 litter sizes were as follows: Rab3A = 0.0956, Rab4145 = 0.0945, Rab5 = 0.1083; Rab8A = 0.1069, Rab9 = 0.1026; and Rab25, 0.0945 (Table 3 and 146 Fig. 3 and 4). The average litter size with Rab3A > 0.0956 was 12.80 and \leq 0.0956 was 15.09 147 (P < 0.05, Fig. 4A). The average litter size with Rab4 > 0.0945 was 13.21 and ≤ 0.0945 was

148 15.35 (P < 0.05, Fig. 4B). The average litter size with Rab5 > 0.1083 was 13.01 and ≤ 0.1083 149 was 15.90 (P < 0.05, Fig. 4C). The average litter size with Rab8A > 0.1069 was 12.77 and \leq 150 0.1069 was 15.56 (P < 0.05, Fig. 4D). The average litter size with Rab9 > 0.1026 was 13.05 151 was ≤ 0.1026 was 14.52 (P < 0.05, Fig. 4E). The average litter size with Rab25 > 0.0945 was 152 13.28 was \leq 0.0945 was 14.63 (P < 0.05, Fig. 4F). In addition, the overall accuracies of Rab3A, 153 4, 5, 8A, 9, and 25 before capacitation were 77.42, 67.74, 74.19, 83.87, 67.74, and 58.06 %, 154 respectively (Table 3). The acrosome is derived from the Golgi apparatus and a lysosome-like 155 structure is established during spermatogenesis [4, 16]. Because Rab proteins are involved in 156 the establishment of the acrosome by regulating Golgi trafficking, they are key proteins in 157 acrosome formation [4-6, 16]. Almost all Rab proteins are expressed in the sperm head and tail 158 [6, 7, 22]. Further, Rab4 is correlated with the integrity of the sperm head structure, and Rab5 159 is correlated with various motion parameters in spermatozoa [5]. Our results showed that several Rab proteins (Rab3A, 4, 5, 8A, 9, and 25) are correlated with litter size before 160 161 capacitation. Rab proteins play key roles in male fertility as they are involved in establishing 162 sperm cell structure and function, including the structural integrity and motility of sperms. 163 Moreover, five Rab proteins (Rab3A, 4, 5, 8A, 9, and 25) were validated based on their 164 expression to predict fertility in the present study. It was confirmed that the litter size increased 165 with the specific expression of Rab protein. Therefore, Rab3A, 4, 5, 8A, 9, and 25 may be used 166 as new biomarkers for the prediction and diagnosis of male fertility. Particularly, Rab5 resulted 167 in the highest increase in litter size and the third-highest overall accuracy. In addition, Rab8A 168 resulted in the highest overall accuracy and the second-highest increase in litter size. Therefore, 169 Rab5 and Rab8A are anticipated to be useful for developing efficient fertility-related 170 biomarkers.

173 After inducing capacitation, most Rab proteins, except Rab25, were negatively correlated with 174 litter size, similar to what was observed before capacitation. The expression of Rab3A (r = -175 0.575, P < 0.01), Rab4 (r = -0.619, P < 0.01), Rab5 (r = -0.605, P < 0.01), Rab8A (r = -0.431, P < 0.01), Rab8A (r = -0.431 176 P < 0.05), and Rab9 (r = -0.512, P < 0.01) was negatively correlated with litter size after 177 capacitation (Table 2 and Fig. 2). Rab14 expression was negatively correlated after capacitation 178 (r = -0.503, P < 0.01, Table 2 and Fig. 2). According to the ROCs, the cut-off values of Rab 179 proteins for the 14 litter sizes were as follows: Rab3A = 0.1008, Rab4 = 0.0953, Rab5 = 0.1012, 180 Rab8A = 0.1005, Rab9 = 0.0977, and Rab14, 0.0987 (Table 4 and Fig. 3 and 5). The average 181 litter size with Rab3A > 0.1008 was 13.15 and ≤ 0.1008 was 13.90 (P < 0.05, Fig. 5A). The average litter size with Rab4 > 0.0953 was 12.69 and < 0.0953 was 15.24 (P < 0.05, Fig. 5B). 182 The average litter size with Rab5 > 0.1012 was 13.08 and \leq 0.1012 was 14.70 (P < 0.05, Fig. 183 5C). The average litter size with Rab8A > 0.1005 was 13.38 and ≤ 0.1005 was 14.56 (P < 0.05, 184 Fig. 5D). The average litter size with Rab9 > 0.0977 was 12.12 and \leq 0.0977 was 14.33 (P <185 186 0.05, Fig. 5E). The average litter size with Rab14 > 0.0987 was 13.20 and \leq 0.0987 was 14.22 (P < 0.05, Fig. 5F). In addition, overall accuracies of Rab3A, 4, 5, 8A, 9, and 14 after 187 188 capacitation were 59.38, 83.87, 70.97, 75.76, 64.52, and 70.97 %, respectively (Table 4). 189 Similar to ejaculated spermatozoa, most Rab proteins also exist after capacitation [6]. In 190 particular, Rab3A is correlated with capacitation status after capacitation [5]. Rab3A is well 191 known for regulating acrosome exocytosis at end of capacitation [7, 22, 23]. In addition, Rab5 192 and 14 correlate with sperm motion parameters after capacitation [5]. Therefore, it may be 193 considered that the Rab proteins are also playing an important role in male fertility by 194 association with sperm motility and capacitation status. In the present study, the expression of 195 Rab3A, 4, 5, 8A, 9, and 14 correlated with litter size after capacitation. Therefore, these five Rab proteins may be used to predict and diagnose male fertility. The most efficient Rab protein was Rab4, which resulted in the highest increase in litter size and overall accuracy after capacitation. Therefore, our results suggest that Rab4 may be a strong fertility-related biomarker after capacitation to evaluate male fertility.

- 200
- 201
- 202

Conclusion

203 Taken together, our results showed that the expression of six Rab proteins before 204 (Rab3A, 4, 5, 8A, 9, and 25) and after capacitation (Rab3A, 4, 5, 8A, 9, and 14) was correlated 205 with litter size. In addition, an increase in litter size was confirmed while evaluating the ability 206 of the individual Rab proteins to predict litter size based on the cut-off value calculated by 207 ROCs. The Rab8A protein had the highest overall accuracy before capacitation and Rab4 had 208 the highest overall accuracy after capacitation (both 83.87%). Our results suggest that Rab 209 proteins are correlated with litter size and may be applied as fertility-related biomarkers. We 210 anticipate that it may be possible to improve productivity in pigs, as well as other domestic 211 animals, using Rab proteins as biomarkers to analyze male fertility and select superior sires. 212 Moreover, it suggests that Rab proteins may be applied to humans for the prediction and 213 diagnosis of male fertility, as well as for identifying the cause of idiopathic male 214 infertility/subfertility in patients.

- 215
- 216
- 217
- 218
- 219

220		References
221 222	1.	Kwon WS, Rahman MS, Ryu DY, Park YJ, Pang MG. Increased male fertility using fertility-related biomarkers. Sci Rep. 2015;5:15654.
223 224	2.	Kwon WS, Rahman MS, Lee JS, Yoon SJ, Park YJ, Pang MG. Discovery of predictive biomarkers for litter size in boar spermatozoa. Mol Cell Proteomics. 2015;14(5):1230-40.
225 226 227	3.	Pang WK, Son JH, Ryu DY, Rahman MS, Park YJ, Pang MG. Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows. J Anim Sci Biotechnol. 2022;13(1):42.
228 229	4.	Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci. 2012;69(24):4093-106.
230 231 232	5.	Bae JW, Yi JK, Jeong EJ, Lee WJ, Hwang JM, Kim DH, et al. Ras-related proteins (Rab) play significant roles in sperm motility and capacitation status. Reprod Biol. 2022;22(2):100617.
233 234 235	6.	Bae JW, Kim SH, Kim DH, Ha JJ, Yi JK, Hwang S, et al. Ras-related proteins (Rab) are key proteins related to male fertility following a unique activation mechanism. Reprod Biol. 2019;19(4):356-62.
236 237 238	7.	Bustos MA, Lucchesi O, Ruete MC, Mayorga LS, Tomes CN. Rab27 and Rab3 sequentially regulate human sperm dense-core granule exocytosis. Proc Natl Acad Sci U S A. 2012;109(30):E2057-66.
239 240	8.	Mruk DD, Lau AS. RAB13 participates in ectoplasmic specialization dynamics in the rat testis. Biol Reprod. 2009;80(3):590-601.
241 242	9.	Almond G, Britt J, Flowers B, Glossop C, Levis D, Morrow M, et al. The Swine A.I. Book. Morgan Morrow Press, Raleigh, NC. Morgan Morrow Press, Raleigh, NC 1998.
243 244 245	10.	Tummaruk P, Lundeheim N, Einarsson S, Dalin AM. Effect of birth litter size, birth parity number, growth rate, backfat thickness and age at first mating of gilts on their reproductive performance as sows. Anim Reprod Sci. 2001;66(3-4):225-37.
246 247 248	11.	Kwon WS, Shin DH, Ryu DY, Khatun A, Rahman MS, Pang MG. Applications of capacitation status for litter size enhancement in various pig breeds. Asian-Australas J Anim Sci. 2018;31(6):842-50.
		11

- 12. Kwon WS, Rahman MS, Lee JS, You YA, Pang MG. Improving litter size by boar
 spermatozoa: application of combined H33258/CTC staining in field trial with artificial
 insemination. Andrology. 2015;3(3):552-7.
- 13. Kwon WS, Rahman MS, Ryu DY, Khatun A, Pang MG. Comparison of markers
 predicting litter size in different pig breeds. Andrology. 2017;5(3):568-77.
- 14. Kwon WS, Rahman MS, Lee JS, Kim J, Yoon SJ, Park YJ, et al. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa.
 BMC Genomics. 2014;15:897.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities
 of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
- 259 16. Goud B, Liu S, Storrie B. Rab proteins as major determinants of the Golgi complex
 260 structure. Small GTPases. 2018;9(1-2):66-75.
- 17. Nakamura Y, Asano A, Hosaka Y, Takeuchi T, Iwanaga T, Yamano Y. Expression and intracellular localization of TBC1D9, a Rab GTPase-accelerating protein, in mouse testes. Exp Anim. 2015;64(4):415-24.
- Ramalho-Santos J, Moreno RD, Wessel GM, Chan EK, Schatten G. Membrane trafficking
 machinery components associated with the mammalian acrosome during spermiogenesis.
 Exp Cell Res. 2001;267(1):45-60.
- Smith CE, Hermo L, Fazel A, Lalli MF, Bergeron JJ. Ultrastructural distribution of
 NADPase within the Golgi apparatus and lysosomes of mammalian cells. Prog Histochem
 Cytochem. 1990;21(3):1-120.
- 270 20. Lopez CI, Belmonte SA, De Blas GA, Mayorga LS. Membrane-permeant Rab3A triggers
 271 acrosomal exocytosis in living human sperm. FASEB J. 2007;21(14):4121-30.
- 21. Ruete MC, Lucchesi O, Bustos MA, Tomes CN. Epac, Rap and Rab3 act in concert to
 mobilize calcium from sperm's acrosome during exocytosis. Cell Commun Signal.
 2014;12:43.
- 275 22. Yunes R, Tomes C, Michaut M, De Blas G, Rodriguez F, Regazzi R, et al. Rab3A and calmodulin regulate acrosomal exocytosis by mechanisms that do not require a direct interaction. FEBS Lett. 2002;525(1-3):126-30.

278
 23. Yunes R, Michaut M, Tomes C, Mayorga LS. Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol Reprod. 2000;62(4):1084-9.

Table 1. Correlation between littersize and expression of Rab proteins before capacitation.

282 **P* < 0.05, ***P* < 0.01.

	Litter size	Rab3A	Rab4	Rab5	Rab8A	Rab9	Rab11	Rab14	Rab25	Rab27A	Rab3484
Litter size	1	-0.697**	-0.418*	-0.614**	-0.419*	423*	-0.253	-0.202	-0.523**	-0.173	6.845
Rab3A			0.660^{**}	0.556^{**}	0.450^{*}	0.335	0.216	-0.030	0.510^{**}	0.438^{*}	286 9277
Rab4				0.369^{*}	0.221	0.316	0.000	-0.245	0.364^{*}	0.387^*	0.468
Rab5					0.567^{**}	0.340	0.316	0.101	0.668^{**}	0.302	6.990
Rab8A						-0.095	0.066	0.178	0.405^{*}	-0.083	-6 <u>6</u> 89
Rab9							0.465**	-0.208	0.481^{**}	0.493**	0.042
Rab11								0.255	0.465^{**}	0.157	-0.054
Rab14									0.141	-0.262	-0.027
Rab25										0.455^*	0.057
Rab27A											0.448^{*}

Table 2. Correlation between littersize and expression of Rab proteins after capacitation.

293 **P* < 0.05, ***P* < 0.01.

	Litter size	Rab3A	Rab4	Rab5	Rab8A	Rab9	Rab11	Rab14	Rab25	Rab27A	294 Rab344
Litter size	1	-0.575**	-0.619**	-0.605**	-0.431*	-0.512**	-0.089	-0.503**	0.019	-0.014	-6.091
Rab3A			0.203	0.378^*	-0.105	0.280	-0.084	0.240	0.008	-0.019	6989
Rab4				0.380^{*}	0.501^{**}	0.374^{*}	0.197	0.602^{**}	-0.113	0.297	Q2992
Rab5					0.268	0.482^{**}	-0.085	0.571**	-0.037	-0.040	-03883
Rab8A						0.389^{*}	0.281	0.359*	-0.207	0.375^*	B0 <u>7</u> 8
Rab9							0.308	0.295	0.007	0.272	-0.344
Rab11								-0.258	0.278	0.489**	-0.086
Rab14									-0.088	0.020	-0.011
Rab25										0.191	-0.187
Rab27A											0.083

	Litter size ≥ 14	Litter size < 14		Litter size ≥ 14	Litter size < 14		Litter size ≥ 14	Litter size < 14	
Expression of Rab $3A \le 0.0956$	11	2	Expression of Rab4 \leq 0.0945	7	1	Expression of Rab5 ≤ 0.1083	8	0	
Expression of Rab3A > 0.0956	5	13	Expression of Rab4 > 0.0945	9	14	Expression of Rab5 > 0.1083	8	15	
Sensitivity	68.	.75	Sensitivity	43.	.75	Sensitivity	50	.00	
Specificity	86.	.67	Specificity	93.	.33	Specificity	100	100.00	
Negative predictive value	72.	22	Negative predictive value	60.	87	Negative predictive value	65	65.22	
Positive predictive value	84.	62	Positive predictive value	87.	50	Positive predictive value	100.00		
Overall accuracy	77.42		Overall accuracy	67.74		Overall accuracy	74.19		
	Litter size ≥ 14	Litter size < 14		Litter size ≥14	Litter size < 14		Litter size ≥ 14	Litter size < 14	
Expression of Rab8A ≤ 0.1069	11	0	Expression of Rab9 ≤ 0.1026	10	5	Expression of Rab $25 \le 0.0945$	10	5	
Expression of Rab8A > 0.1069	5	15	Expression of Rab9 > 0.1026	5	11	Expression of Rab25 > 0.0945	6	10	
Sensitivity	68.	75	Sensitivity	66.	67	Sensitivity	62.50		
Specificity	100.00		Specificity	68.75		Specificity	66.67		
Negative predictive value	75.	00	Negative predictive value	68.	75	Negative predictive value	62	.50	
Positive predictive value	100	0.00	Positive predictive value	66.	67	Positive predictive value	66.67		
Overall accuracy	83.	87	Overall 67.74		74	Overall accuracy	64.52		

303 Table 3. Correlation between expression of Rab proteins and litter size before capacitation

304 Sensitivity = $[A / (A + C)] \times 100$; Specificity = $[D / (B + D)] \times 100$; Positive predictive value = $[A / (A + B)] \times 100$; Negative predictive value = $[C / (C + D)] \times 100$; and overall accuracy = $[(A + D) / (A + B + C + D)] \times 100$.

	Litter size ≥ 14	Litter size < 14		Litter size ≥ 14	Litter size < 14		Litter size ≥ 14	Litter size < 14
Expression of Rab3A ≤ 0.1008	15	11	Expression of Rab4 \leq 0.0953	12	1	Expression of Rab5 ≤ 0.1012	10	3
Expression of Rab3A > 0.1008	2	4	Expression of Rab4 > 0.0953	4	14	Expression of Rab5 > 0.1012	6	12
Sensitivity	88	.24	Sensitivity	75.0	00	Sensitivity	62	.50
Specificity	26	.67	Specificity	93.3	33	Specificity	80	.00
Negative predictive value	66.	.67	Negative predictive value	77.7	78	Negative predictive value	66	.67
Positive predictive value	57.	.69	Positive predictive value	92.3	31	Positive predictive value	76	.92
Overall accuracy	59.	.38	Overall accuracy	83.8	37	Overall accuracy	70	.97
	Litter size ≥ 14	Litter size < 14		Litter size ≥14	Litter size < 14		Litter size ≥ 14	Litter size < 14
Expression of Rab $8A \le 0.1005$	11	1	Expression of Rab9 ≤ 0.0977	15	8	Expression of Rab14 \leq 0.0987	12	5
Expression of Rab8A > 0.1005	7	14	Expression of Rab9 > 0.0977	3	5	Expression of Rab14 > 0.0987	4	10
Sensitivity	61	.11	Sensitivity	83.3	33	Sensitivity	75.00	
Specificity	93.	.33	Specificity	38.4	6	Specificity	66.67	
Negative predictive value	66	.67	Negative predictive value	62.5	50	Negative predictive value	71.43	
Positive predictive value	91	.67	Positive predictive value	65.2	22	Positive predictive value	70	.59
Overall accuracy	75.	.76	Overall accuracy	64.5	52	Overall accuracy	70	.97

306 Table 4. Correlation between expression of Rab proteins and litter size after capacitation

307 Sensitivity = $[A / (A + C)] \times 100$; Specificity = $[D / (B + D)] \times 100$; Positive predictive value = $[A / (A + B)] \times 100$; Negative predictive value = $[C / (C + D)] \times 100$; and overall accuracy = $[(A + D) / (A + B + C + D)] \times 100$.

310 FIGURE LEGENDS

311

Fig. 1. Correlation between expression of Rab proteins and litter size before capacitation. (A) Correlation between Rab3A in spermatozoa and litter size before capacitation. (B) Correlation between Rab4 in spermatozoa and litter size before capacitation. (C) Correlation between Rab5 in spermatozoa and litter size before capacitation. (D) Correlation between Rab8A in spermatozoa and litter size before capacitation. (E) Correlation between Rab9 in spermatozoa and litter size before capacitation. (F) Correlation between Rab25 in spermatozoa and litter size before capacitation. (F) Correlation between Rab25 in spermatozoa and litter size before capacitation. n = 3.

Fig. 2. Correlation between expression of Rab proteins and litter size after capacitation. (A) Correlation between Rab3A in spermatozoa and litter size after capacitation. (B) Correlation between Rab4 in spermatozoa and litter size after capacitation. (C) Correlation between Rab5 in spermatozoa and litter size after capacitation. (D) Correlation between Rab8A in spermatozoa and litter size after capacitation. (E) Correlation between Rab9 in spermatozoa and litter size after capacitation. (F) Correlation between Rab14 in spermatozoa and litter size after capacitation. n = 3.

Fig. 3. Receiver operating characteristic (ROC) curves for expression of Rab proteins. (A)

- 332 ROC curve for expression of Rab3A, 4, 5, 8A, 9, and 25 before capacitation. (**B**) ROC curve
- for expression of Rab3A, 4, 5, 8A, 9, and 14 after capacitation.
- 334

Fig. 4. Average litter size based on expression of Rab proteins before capacitation. (A) Average litter size according to the expression of Rab3A (cut-off value = 0.0956). (B) Average litter size according to the expression of Rab4 (cut-off value = 0.0945). (C) Average litter size according to the expression of Rab5 (cut-off value = 0.1083). (D) Average litter size according to the expression of Rab8A (cut-off value = 0.1069). (E) Average litter size according to the expression of Rab8A (cut-off value = 0.1069). (E) Average litter size according to the expression of Rab9 (cut-off value = 0.1026). (F) Average litter size according to the expression of Rab25 (cut-off value = 0.0956). Data represent the mean \pm SEM, **P* < 0.05.

Fig. 5. Average litter size based on expression of Rab proteins after capacitation. (A) Average litter size according to the expression of Rab3A (cut-off value = 0.1008). (B) Average litter size according to the expression of Rab4 (cut-off value = 0.0953). (C) Average litter size according to the expression of Rab5 (cut-off value = 0.1012). (D) Average litter size according to the expression of Rab8A (cut-off value = 0.1005). (E) Average litter size according to the expression of Rab9 (cut-off value = 0.0977). (F) Average litter size according to the expression of Rab25 (cut-off value = 0.0987). Data represent the mean \pm SEM, **P* < 0.05.