JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F ₂ crossbred chicken population
Running Title (within 10 words)	GWAS for free amino acid and nucleotide of chicken meat
Author	Minjun Kim1, Eunjin Cho2, Jean Pierre Munyaneza1, Thisarani Kalhari Ediriweera2, Jihye Cha3, Daehyeok Jin4, Sunghyun Cho5 and Jun Heon Lee1,2
Affiliation	 Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea Department of Bio-Al Convergence, Chungnam National University, Daejeon 34134, Korea Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang 50000, Korea Research and Development Center, Insilicogen Inc., Yongin 19654, Korea
ORCID (for more information, please visit https://orcid.org)	Minjun Kim (https://orcid.org/0000-0002-8173-8431) Eunjin Cho (https://orcid.org/0000-0003-4800-1603) Jean Pierre Munyaneza (https://orcid.org/0000-0003-2521-3339) Thisarani Kalhari Ediriweera (https://orcid.org/0000-0001-9649- 6925) Jihye Cha (https://orcid.org/0000-0002-9705-2979) Daehyeok Jin (https://orcid.org/0000-0001-5091-4271) Sunghyun Cho (https://orcid.org/0000-0002-2657-9159) Jun Heon Lee (https://orcid.org/0000-0003-3996-9209)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ0157852022)" Rural Development Administration, Republic of Korea.
Acknowledgements	Not applicable.
Availability of data and material	Upon reasonable request, the datasets of this study can be available from the corresponding author.
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Cha J, Jin D, Lee JH. Data curation: Kim M, Cho E, Cha J, Jin D, Cho S. Formal analysis: Kim M, Cho E. Methodology: Kim M, Cho E, Cho S. Software: Kim M, Cho E, Cho S. Validation: Cho E, Cho S, Lee JH. Investigation: Kim M, Cho E, Munyaneza JP, Ediriweera TK. Writing - original draft: Kim M. Writing - review & editing: Kim M, Cho E, Munyaneza JP, Ediriweera TK, Cha J, Jin D, Cho S, Lee JH.
Ethics approval and consent to participate	Experimental use of animal was approved by Animal Ethics Committee of Chungnam National University (202103A-CNU-061).

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below		
First name, middle initial, last name	Jun Heon Lee		
Email address – this is where your proofs will be sent	junheon@cnu.ac.kr		
Secondary Email address	kimmin6023@gmail.com		
Address	213, KTnG, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea		
Cell phone number	+82-10-5172-0816		
Office phone number	+82-42-821-7031		
Fax number	+82-42-825-9754		

Abstract

2	Flavor is an important sensory trait of chicken meat. The free amino acid (FAA) and nucleotide (NT) components of
3	meat are major factors affecting meat flavor during the cooking process. As a genetic approach to improve meat
4	flavor, we performed a genome-wide association study (GWAS) to identify the potential candidate genes related to
5	the FAA and NT components of chicken breast meat. Measurements of FAA and NT components were recorded at
6	the age of 10 weeks from 764 and 767 birds, respectively, using a White leghorn and Yeonsan ogye crossbred F_2
7	chicken population. For genotyping, we used 60K Illumina single-nucleotide polymorphism (SNP) chips. We found
8	a total of nine significant SNPs for five FAA traits (arginine, glycine, lysine, threonine content, and the essential
9	FAAs and one NT trait (inosine content), and six significant genomic regions were identified, including three
10	regions shared among the essential FAAs, arginine, and inosine content traits. A list of potential candidate genes in
11	significant genomic regions was detected, including the KCNRG, KCNIP4, HOXA3, THSD7B, and MMUT genes.
12	The essential FAAs had significant gene regions the same as arginine. The genes related to arginine content were
13	involved in nitric oxide metabolism, while the inosine content was possibly affected by insulin activity. Moreover,
14	the threonine content could be related to methylmalonyl-CoA mutase. The genes and SNPs identified in this study
15	might be useful markers in chicken selection and breeding for chicken meat flavor.
16	
17	Keywords: Chicken, Breast meat, Free amino acids, Nucleotides, GWAS

18

1

19 Introduction 20 21 Yeonsan ogye is a chicken breed native to Korea. The nutritional quality, taste, overall acceptance, and texture of 22 the meat of the Korean native chicken breed, including the content of taste-related compounds, are superior to those 23 of commercial broilers [1],[2]; thus, consumers have a higher preference for it. Therefore, it would be a good 24 strategy to crossbreed native chickens to produce broilers with tastier meat by taking advantage of the unique meat 25 quality characteristics of native chickens. A study of the characteristics of the Yeonsan ogye chicken meat reported 26 higher crude fat content and shearing power in Yeonsan ogye compared to other Korean native chickens, and the 27 color of the meat was expressed as black [3]. In addition, it has been reported that the breast meat extract of Korean 28 native chickens can alleviate inflammation [4]. 29 To improve the palatability of chicken products, many studies have been conducted to determine the factors that 30 influence meat quality. Studies have identified several parameters that influence meat quality, including tenderness, 31 water-holding capacity, and meat color, in relation to the physical composition, while pH, dry matter, moisture, and 32 intramuscular fat content are related to the chemical composition of the meat [5-8]. Taste-active precursors in meat, 33 such as free amino acid (FAA) and nucleotide (NT), undergo chemical reactions during cooking, which determines 34 many aspects of flavor, one of the main sensory features of meat [9-11]. 35 As reported in [9], glycine, alanine, serine, threonine, and proline in the form of FAAs provide the sweet taste to 36 the meat after cooking. Regarding NTs, inosine 5'-monophosphate, alone or in combination with other flavor 37 compounds, provides an umami taste, greatly affecting the flavor of meat [12]. 38 Many studies have been conducted to identify the genes related to the physicochemical properties of chickens. In 39 [13], a study of the association of the fatty acid composition in chicken was conducted, and in [14], a gene related to 40 the lipid profile of chicken muscle was reported. In [15, 16], association studies were conducted on body 41 composition. However, there have been no attempts to identify the genes related to FAA and NT content, which 42 determine the flavor of chicken, in the whole genome. Furthermore, the traits present in the chicken Quantitative 43 Trait Loci Database do not include the FAA and NT contents of breast meat [17]. Therefore, the objective of this 44 study was to identify the potential candidate genes related to different FAA and NT contents in chicken breast 45 through a whole-genome association analysis. 46

48	Materials and Methods
49	Experimental animals
50	For the construction of the experimental chicken population, a reciprocal crossbred F2 generation was produced
51	using the Yeonsan ogye breed and the White leghorn breed owned by the National Institute of Animal Science
52	(NIAS, Korea). A total of 810 birds from the F_2 generation were made up of two lines according to the sex
53	combination of F_0 birds and were raised until 10 weeks of age with the mixing of males and females. All F_2 birds
54	were raised on a farm at the NIAS Center for Livestock Genetic Resources under the same environmental and
55	nutritional conditions. Overall experimental outline and the construction of the F2 generation is illustrated in Figure
56	1.
57	
58	Phenotype measurement and quality control
59	At 10 weeks of age, all birds were slaughtered on the same day at a commercial abattoir. Viscera were removed
60	from the chicken carcass immediately after slaughter, rapidly frozen at -35°C, and then stored at -20°C at NIAS
61	(Wanju, Korea) on the same day. Frozen samples were stored for 2-6 weeks, and then transported to Chungnam
62	National University (Deajeon, Korea) and stored at -80°C until deboning. Next, samples were thawed at 4°C for 20
63	h, the breast meat was separated from the carcass, and then the breast meat was divided into samples for the FAA
64	and NT component analyses. The FAA analysis was performed using a liquid chromatography system (UltiMate
65	3000RS; Thermo Fisher Scientific, Waltham, MA, USA) to quantify the content of 21 FAAs from a sample (Table
66	1). From the quantified FAA results, the essential FAAs and non-essential FAAs contents of chickens were added
67	and each phenotype was used in an association analysis. For the NT content analysis, high-performance liquid
68	chromatography (1200 Series; Agilent, Santa Clara, CA, USA) was applied. The resulting phenotypes were used in
69	the association test as traits for the content of each substance and are summarized in Table 1.
70	To normalize the phenotypic data, a transformation was carried out to accurately estimate the effect of single-
71	nucleotide polymorphisms (SNPs) in the association test. For each phenotype in the dataset, a Shapiro-Wilk
72	normality test was performed using R software with the "shapiro.test()" function, and a transformation step was
73	applied to the phenotype with a p -value < 0.05. To find the optimal transformation method, the dataset with the
74	highest <i>p</i> -value was adopted after performing normality tests on the raw data and data transformed by log, square
75	root, square, and minimum/maximum (min/max) methods (Table 1). Then, to remove outliers, values of three
76	standard deviations or more from the mean of each data point were treated as missing data, and all subjects whose

analysis results were identified as missing data were excluded from the analysis. The FAA and NT component
datasets were filtered in the quality control process, leaving 764 and 767 birds for the later analysis of FAA and NT
components, respectively.

80

81 Genotype data generation and quality control

82 For genomic DNA (gDNA) extraction, blood collection was performed from the brachial veins of birds at 8

83 weeks of age. gDNA was extracted from the collected blood using the Wizard Genomic DNA Purification Kit

84 (Promega, Madison, WI, USA), and the quality and concentration of the DNA were checked using a NanoDrop

85 1000 spectrophotometer (Thermo Fisher Scientific), with samples stored at -20°C. A total of 57,636 SNP genotypes

86 were produced from the extracted gDNA using the Illumina 60K Chicken SNP BeadChip. The SNPs were removed

87 if any of the following conditions were not met: call rate > 0.9, minor allele frequency > 0.01, Hardy–Weinberg

equilibrium test p-value > 0.01×10^{-6} . After filtering, 29,175 SNPs were available for the subsequent analysis.

89 PLINK 1.9 software was used for genotype quality control procedure[18].

90

91 The genome-wide association study (GWAS) and identification of the candidate genes

A genetic relationship matrix (GRM) was calculated using the genome-wide complex trait analysis (GCTA)
 tool[19]. An association analysis was performed using GCTA's mixed linear model leave-one-chromosome-out

94 statistical method, and the following model was used:

$$y = a + bx + g^- + e$$

95

96 where, y is a vector of the phenotype value, including FAAs and NTs; a is the mean value of phenotypic record; b is 97 the additive effect of the SNP to be tested for association; x is the genotype of the SNP to be tested; g is the effect of 98 all SNPs captured by the GRM, except those on the chromosome where SNP testing is located; and e is the residual 99 effect vector. To accurately estimate the marker effect, sex, experimental batch, half-sibling family, and body weight 100 were used as covariates. After the association analysis, the significance of the SNP effect was evaluated by a 101 Bonferroni corrected *p*-value of 5%: p < 0.05/number of SNPs use for the association test. The GWAS result was 102 visualized with a Manhattan plot using R software. 103 Based on the chicken reference genome (GRCg6a), we assumed that the genomic region around 1 Mbp was the

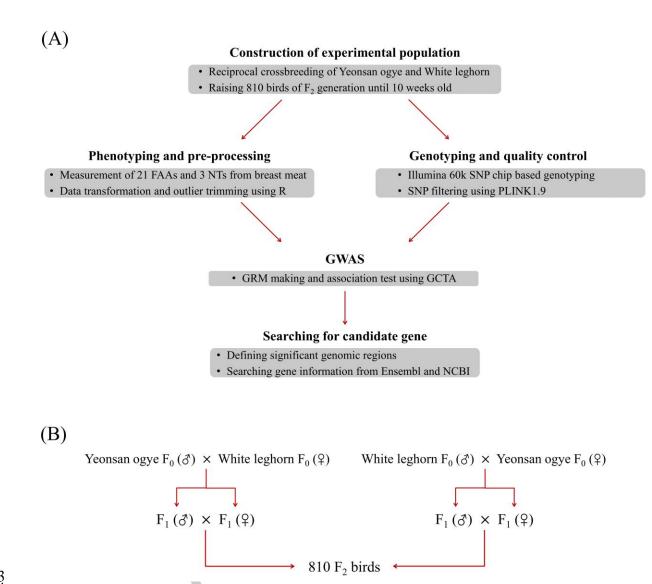
104 significant region centered on the position of the most significant SNP for each chromosome, and known genes

105	included in that region were reported as candidate genes. Location-based gene information was obtained by
106	searching the Ensembl (https://asia.ensembl.org) and NCBI (https://www.ncbi.nlm.nih.gov) databases.
107	
108	
109	
110	Results
111	Basic statistics of phenotypic values
112	The descriptive statistics of the phenotype measurements of FAAs and NTs from the F_2 chicken population are
113	presented in Table 1. For these phenotypic values, basic statistical analyses were performed after transformation and
114	outlier trimming. Histograms and quantile-quantile plots are shown in Figure 2. Lysine, for which most values were
115	measured as zero, was excluded from the test because its distribution was judged to be inappropriate for the
116	association test. It was determined that the cause of this inappropriate data was an error in phenotype measurement.
117	
118	GWAS results and related genomic regions
119	Table 2 shows the significant SNPs for each trait as a result of the association test, with results presented as
120	summary statistics of the GWAS. The SNP markers were located at chicken (Gallus gallus) chromosome 1 (GGA1),
121	GGA2, GGA3, GGA4, and GGA7. Of the three SNPs associated with the essential FAAs, Gga_rs15943371 and
122	Gga_rs14162297 were located at bp 33,096,495 and 33,432,575 on GGA2, respectively, and Gga_rs16609168 was
123	located at bp 31,241,647 on GGA7. In arginine, Gga_rs14162297 did not reach the significance level, but it was the
124	second most significant SNP among the markers located on GGA2, and Gga_rs16609168 was also the SNP with the
125	highest significance in GGA7. Another SNP related to arginine was Gga_rs13971906, which was located at bp
126	170,582,107 on GGA1, and was significant for inosine. As other SNPs associated with inosine, GGaluGA265714,
127	GGaluGA265712, and GGaluGA265969 were located on GGA4 at bp 74,314,272, 74,285,145, and 75,827,200,
128	respectively. The SNP associated with glycine was GGaluGA028030 and was located at bp 81,831,988 on GGA1.
129	The SNP associated with threonine was Gga_rs14412837 and was located at bp 108,537,571 on GGA3.
130	The Manhattan plot in Figure 3 presents only the traits with significant SNPs. The most significant SNP on GGA1
131	was rs13971906 for the essential FAAs, arginine, and inosine. Gga_rs14162297, which had the second highest
132	significance for the essential FAAs, also had the second highest significance for arginine. Table 3 shows the
133	significantly related genomic regions for each trait and the genes included therein.

134	
135	
136	Discussion
137	The shared significant genomic region between the arginine and the essential FAAs content
138	In this study, the candidate genes related to FAA and NT contents of chicken breast meat were identified through
139	the GWAS analysis. In the GWAS result, the trend of significance for the essential FAAs was similar to that of
140	arginine (Figure 3). The reason why the two traits shared a significant genomic region in GGA1, GGA2, and GGA7
141	was that arginine content accounted for the largest portion of the essential FAAs in the phenotype. The arginine
142	content in the breast meat of the F_2 crossbred chicken was greater than the content of all other FAAs when the mean
143	values were compared.
144	
145	Candidate genes in the shared significant region of the arginine and inosine contents
146	From the GWAS results of inosine and arginine, it was observed that the genomic region on GGA1 was
147	commonly significantly related (Table 2). One of the genes included in this region, the KCNRG gene, encoded a
148	voltage-gated potassium channel regulator protein. The voltage-gated potassium channel can regulate the nitric
149	oxide synthesis pathway, which is a process in which L-arginine is converted to nitric oxide. This might have an
150	effect on the arginine content in the body [20, 21]. In addition, the voltage-gated potassium channel can modulate
151	the insulin sensitivity of human skeletal muscle, which modulates the nitric oxide pathway and affects L-arginine
152	transport and metabolism. Therefore, the potassium channel may be related to the amount of L-arginine in muscle
153	[22-24]. Interestingly, if the content of adenosine triphosphate (ATP), a glucose metabolite in the muscle, changes as
154	insulin manages skeletal muscle glucose uptake, the content of inosine, which is a repeatedly degraded form of ATP,
155	may also be affected [25, 26]. For the same reason, it could be concluded that the KCNIP4 gene on the significant
156	region in GGA4 encodes a potassium channel interacting protein.
157	Diet and nutritional level in birds are factors affecting the chemical composition of muscles. Among the candidate
158	genes related to dry matter intake in cattle reported in [27] and [28], the RB1, LPAR6, RCBTB2, CYSLTR2, FNDC3A,
159	MLNR, PHF11, and KPNA3 genes were identical to the genes in the genomic region commonly related to inosine
160	and arginine in this study. Therefore, it is possible that the difference in nutritional condition according to the feed
161	intake of chickens raised under autonomous vegetarian conditions in this study affected the chemical composition of
162	breast meat [27].

164 Candidate genes related to arginine and threonine 165 It has been reported that the arginine content can be increased by reducing nitric oxide synthase when the 166 expression of the HOXA3 gene among the GGA2 genes related to arginine content in Table 3 is regulated [29]. It has 167 also been confirmed that mutations in the THSD7B gene of GGA7 affect nitric oxide metabolism [30]. In the GWAS 168 result of the threonine content, the MMUT gene encoding the methylmalonyl-CoA mutase located on GGA3 was 169 included as a candidate gene. In animals, including chickens, threonine is catabolized to alpha-ketobutyrate by 170 serine/threonine dehydratase, then converted to propionyl-CoA and carboxylated to meyhylmalonyl-CoA [31-33]. 171 The catalyzed product is finally converted to succinyl-CoA by methylmalonyl-CoA mutase and used in the 172 tricarboxylic acid cycle [34]. Therefore, threonine content may be affected by methylmalonyl-CoA mutase involved 173 pathway which use threonine as a substrate. 174 175 Further improvements from the present study 176 The molecules with significantly related SNP markers in this study were arginine, inosine, threonine, and glycine. 177 As taste-active precursors that determine meat flavor during cooking, arginine and inosine give a bitter taste, and 178 threonine and glycine give a sweet taste [9]. This study had limited success in finding a significant gene region 179 related to the contents of FAA and NT molecules that give umami and sour tastes in chicken breast. The reason that 180 significant SNPs were not found through GWAS in most traits is thought to be due to the large impact of 181 environmental effects on the FAA and NT contents. The FAA content increases as protease hydrolyzes meat protein, 182 and this degradation proceeds even in frozen meat [35]. A significant change in the amino acid profile of meat 183 according to the storage duration at freezing temperature has also been reported [36]. In addition, in the process of 184 thawing frozen meat, several NT-metabolizing enzymes perform a chain degradation to change the NT content [37-185 39]. Based on the results of this study, it could be concluded that the period of storage under freezing conditions 186 before analysis after the slaughter of chickens was long enough to result in significant changes in the FAA and NT 187 contents. Future studies may capture more genetic effects when association tests are conducted by performing 188 phenotyping on meat with a shorter storage time than in the present study. 189 190 Conclusion 191

192	Changes in the concentrations of FAAs and NTs in chicken are the main factors that change the flavor. To our
193	knowledge, this was the first GWAS to explore genetic markers related to the content of FAAs and NTs in chicken.
194	Through the GWAS, nine significant SNPs related to essential FAAs, arginine, glycine, threonine, and inosine
195	components were found, and six significant genomic regions and candidate genes included therein were reported.
196	These genomic regions were mapped on chromosome 1, 4, and 7 of chicken, and the potential candidate genes were
197	KCNRG for arginine and inosine, HOXA3 and THSD7B for arginine, KCNIP4 for inosine, and MMUT for threonine.
198	The reported candidate genes might be important genetic markers in chicken selection and breeding to help meet
199	consumer expectations for healthier, tastier, and flavored meat.
200	
201	
202	Acknowledgments
203	Not applicable.
204	
205	
206	Funding sources
207	This work was carried out with the support of "Cooperative Research Program for Agriculture Science &
208	Technology Development (Project No. PJ0157852022)" Rural Development Administration, Republic of Korea.
209	
210	
211	


212		References
213 214 215	1.	Choe J-H, Nam K-C, Jung S, Kim B-N, Yun H-J, Jo C-R. Differences in the quality characteristics between commercial Korean native chickens and broilers. Food Science of Animal Resources. 2010;30(1):13-9 https://doi.org/10.5851/kosfa.2010.30.1.13.
216 217 218	2.	Jung Y-K, Jeon H-J, Jung S, Choe J-H, Lee J-H, Heo K-N, et al. Comparison of quality traits of thigh meat from Korean native chickens and broilers. Food Science of Animal Resources. 2011;31(5):684-92 https://doi.org/10.5851/kosfa.2011.31.5.684.
219 220 221	3.	Lee SG, Utama DT, Baek KH, Park YH, Han JY, Lee SK. Comparison of physicochemical characteristics of the meat in four lines of Korean native chickens. Korean Journal of Poultry Science. 2015;42(4):335-45 https://doi.org/10.5536/KJPS.2015.42.4.335.
222 223 224	4.	Lee KC, Leem K-H, Kim M-G, Kim HK. Comparison of Chemical Composition and Immune-enhancing Activity of the Four Lines of Korean Native Chickens. Korean Journal of Poultry Science. 2016;43(3):135-42 https://doi.org/10.5536/KJPS.2016.43.3.135.
225	5.	Lee Y, Saha A, Xiong R, Owens C, Meullenet J. Changes in broiler breast fillet tenderness, water-holding

- capacity, and color attributes during long-term frozen storage. Journal of Food Science. 2008;73(4):E162-E8
 https://doi.org/10.1111/j.1750-3841.2008.00734.x.
- Kirkpinar F, Ünlü H, Serdaroğlu M, Turp G. Effects of dietary oregano and garlic essential oils on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. British Poultry Science. 2014;55(2):157-66 https://doi.org/10.1080/00071668.2013.879980.
- Park M-N, Hong E-C, Kang B-S, Kim H-K, Kim J-H, Na S-H, et al. Chemical composition and meat quality of crossbred Korean native chickens (KNC). Korean Journal of Poultry Science. 2010;37(4):415-21 https://doi.org/10.5536/KJPS.2010.37.4.415.
- 8. Tougan PU, Dahouda M, Salifou CFA, Ahounou SGA, Kpodekon MT, Mensah GA, et al. Conversion of chicken muscle to meat and factors affecting chicken meat quality: a review. International Journal of Agronomy and Agricultural Research. 2013;3(8):1-20
- Dashdorj D, Amna T, Hwang I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: an overview. European Food Research and Technology. 2015;241(2):157-71 https://doi.org/10.1007/s00217-015-2449-3.
- Mottram D. Some aspects of the chemistry of meat flavour. Flavor of meat and meat products: Springer; 1994.
 p. 210-30 https://doi.org/10.1007/978-1-4615-2177-8_12.
- Liu Y, Xu X-l, Zhou G-h. Changes in taste compounds of duck during processing. Food Chemistry. 2007;102(1):22-6 https://doi.org/10.1016/j.foodchem.2006.03.034.
- 12. Jung S, Bae YS, Kim HJ, Jayasena DD, Lee JH, Park HB, et al. Carnosine, anserine, creatine, and inosine 5'monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poultry Science.
 246 2013;92(12):3275-82 https://doi.org/10.3382/ps.2013-03441.

- In S, Lee SH, Lee DH, Manjula P, Lee SH, Lee JH. Genetic association of DEGS1, ELOVL6, FABP3, FABP4,
 FASN and SCD genes with fatty acid composition in breast and thigh muscles of Korean native chicken. Anim
 Genet. 2020;51(2):344-5 https://doi.org/10.1111/age.12908.
- Hirwa CDA, Yan W, Wallace P, Nie Q, Luo C, Li H, et al. Effects of the thyroid hormone responsive spot 14α gene on chicken growth and fat traits. Poultry science. 2010;89(9):1981-91 https://doi.org/10.3382/ps.2009-00582.
- Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, et al. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One. 2013;8(4):e61172 https://doi.org/10.1371/journal.pone.0061172.
- Nie Q, Fang M, Xie L, Peng X, Xu H, Luo C, et al. Molecular characterization of the ghrelin and ghrelin receptor genes and effects on fat deposition in chicken and duck. Journal of biomedicine and biotechnology. 2009;2009 https://doi.org/10.1155/2009/567120.
- Hu Z-L, Park CA, Reecy JM. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges
 and providing updated services. Nucleic acids research. 2022;50(D1):D956-D61
 https://doi.org/10.1093/nar/gkab1116.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics. 2007;81(3):559-75
- Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. The
 American Journal of Human Genetics. 2011;88(1):76-82 https://doi.org/10.1016/j.ajhg.2010.11.011.
- 20. Pérez-Garc ía MT, Cidad P, López-López JR. The secret life of ion channels: Kv1. 3 potassium channels and proliferation. American Journal of Physiology-Cell Physiology. 2018;314(1):C27-C42
 269 https://doi.org/10.1152/ajpcell.00136.2017.
- 21. Senbel AM, Abd Elmoneim HM, Sharabi FM, Mohy El-Din MM. Neuronal Voltage Gated Potassium Channels May Modulate Nitric Oxide Synthesis in Corpus Cavernosum. Frontiers in Pharmacology. 2017;8:297 https://doi.org/10.3389/fphar.2017.00297.
- 273 22. Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, et al. The voltage-gated potassium channel Kv1. 3 regulates
 274 peripheral insulin sensitivity. Proceedings of the National Academy of Sciences. 2004;101(9):3112-7
 275 https://doi.org/10.1073/pnas.0308450100.
- 276 23. Petrie JR, Ueda S, Webb DJ, Elliott HL, Connell JM. Endothelial nitric oxide production and insulin sensitivity: a physiological link with implications for pathogenesis of cardiovascular disease. Circulation. 1996;93(7):1331-3 https://doi.org/10.1161/01.CIR.93.7.1331.
- 279 24. Rajapakse NW, Chong AL, Zhang W-Z, Kaye DM. Insulin-mediated activation of the L-arginine nitric oxide 280 pathway and its impairment in diabetes. PloS one. 2013;8(5):e61840 in man, 281 https://doi.org/10.1371/journal.pone.0061840.
- 282 25. Uemoto Y, Ohtake T, Sasago N, Takeda M, Abe T, Sakuma H, et al. Effect of two non-synonymous ecto-5'-
- nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation
 products in Japanese Black beef. BMC genomics. 2017;18(1):1-15 https://doi.org/10.1186/s12864-017-4275-4.

- 285 26. Liu W, Zhao J. Insights into the molecular mechanism of glucose metabolism regulation under stress in chicken
 286 skeletal muscle tissues. Saudi journal of biological sciences. 2014;21(3):197-203
 287 https://doi.org/10.1016/j.sjbs.2014.01.005.
- 27. Javaid S, Javid A, Farooq U, Kiran U, Akmal T. Variations in meat chemical composition of some captive avian species. J Rural Dev Agric. 2017;2:57-65
- 28. Brunes LC, Baldi F, Lopes FB, Lôbo RB, Espigolan R, Costa MF, et al. Weighted single-step genome-wide
 association study and pathway analyses for feed efficiency traits in Nellore cattle. Journal of Animal Breeding
 and Genetics. 2021;138(1):23-44 https://doi.org/10.1111/jbg.12496.
- 29. Al Sadoun H, Burgess M, Hentges KE, Mace KA. Enforced expression of Hoxa3 inhibits classical and promotes alternative activation of macrophages in vitro and in vivo. The Journal of Immunology. 2016;197(3):872-84 https://doi.org/10.4049/jimmunol.1501944.
- 30. Yao Z, Lin A, Yi Y, Shen W, Zhang J, Luo P. THSD7B Mutation Induces Platinum Resistance in Small Cell
 Lung Cancer Patients. Drug Design, Development and Therapy. 2022;16:1679
 https://doi.org/10.2147%2FDDDT.S363665.
- 31. Kidd M, Kerr B. L-threonine for poultry: A review. Journal of Applied Poultry Research. 1996;5(4):358-67
 https://doi.org/10.1093/japr/5.4.358.
- 301 32. Macelline SP, Chrystal PV, Liu SY, Selle PH. Implications of elevated threonine plasma concentrations in the development of reduced-crude protein diets for broiler chickens. Animal Production Science. 2021;61(14):1442-8 https://doi.org/10.1071/AN20554.
- 304
 33. Tang Q, Tan P, Ma N, Ma X. Physiological functions of threonine in animals: beyond nutrition metabolism. Nutrients. 2021;13(8):2592 https://doi.org/10.3390/nu13082592.
- 306 34. Shane B. Folate and Vitamin B12 Function. Encyclopedia of Biological Chemistry. 2013:324-8
- 307 35. Baranenko D, Kolodyaznaya V, Broyko Y. Effect of cold treatment on the amino acid composition of veal.
 308 Agronomy Research. 2014;12(3):705-16
- 309 36. Al-Sabagh ES, El-Far AH, Sadek KM, Taha NM, Saleh EA. Effect of Freezing and Frozen Storage on Amino
 310 Acid Profile and Fatty Acid Pattern in Imported and Local Meat. Alexandria Journal for Veterinary Sciences.
 311 2016;49(1) https://doi.org/10.5455/ajvs.209080.
- 312 37. Qi J, Xu Y, Zhang W, Xie X, Xiong G, Xu X. Short-term frozen storage of raw chicken meat improves its flavor traits upon stewing. LWT. 2021;142:111029 https://doi.org/10.1016/j.lwt.2021.111029.
- 314 38. Zhang T, Lu H, Wang L, Yin M, Yang L. Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. Plos one. 2018;13(8):e0201736
 316 https://doi.org/10.1371/journal.pone.0201736.
- 317 39. Hong H, Regenstein JM, Luo Y. The importance of ATP-related compounds for the freshness and flavor of
 318 post-mortem fish and shellfish muscle: A review. Critical Reviews in Food Science and Nutrition.
 319 2017;57(9):1787-98 https://doi.org/10.1080/10408398.2014.1001489.
- 320

Tables and Figures 322

323 324 Figure 1. Outline of the experimental workflow and the construction of the F_2 generation chicken population. (A) 325 Diagram of overall experimental contents. FAA, Free amino acid content; NT, Nucleotide content; SNP, Single 326 nucleotide polymorphism; GRM, genetic relationship matrix. (B) The construction of the reciprocal crossbred F_2 327 generation chickens using Yeonsan ogye and White leghorn. The male bird of Yeonsan ogye and the female bird of 328 White leghorn produced F_1 generation birds. And F_1 birds mated between F_1 siblings so that a part of F_2 birds was 329 generated. Another part of F₂ birds was made up of the F₂ progeny of a different sex combination of Yeonsan ogye 330 and White leghorn chickens as the F₀ generation.

331 Table 1. Descriptive statistics of the measured phenotypes in the F₂ chicken population.

Trait	Туре	unit	Mean	SD	CV(%)	Min	Max	Trans
Alanine	Nonessential	µmol/g	1.5772	0.7439	0.4716	0.032	5.139	Sqrt
Arginine	Essential	µmol/g	9.0896	5.9595	0.6556	0.059	42.62	Sqrt
Asparagine	Nonessential	µmol/g	0.2946	0.158	0.5363	0	0.834	Sqrt
Aspartic acid	Nonessential	µmol/g	0.4188	0.2583	0.6169	0.012	1.93	Sqrt
Cysteine	Nonessential	µmol/g	3.4547	1.9151	0.5544	0.09	12.61	Sqrt
GABA	Nonessential	µmol/g	0.0564	0.0632	1.1207	0	0.68	Sqrt
Glutamic acid	Nonessential	µmol/g	1.2466	0.661	0.5302	0.031	9.389	Sqrt
Glutamine	Nonessential	µmol/g	1.1161	0.6518	0.584	0.02	5.257	Sqrt
Glycine	Nonessential	µmol/g	0.8388	0.5757	0.6863	0.01	4.91	Sqrt
Histidine	Essential	µmol/g	0.34	0.1819	0.5349	0.01	1.07	Sqrt
Isoleucine	Essential	µmol/g	0.3973	0.1789	0.4503	0.008	1.12	Min-Max
Leucine	Essential	µmol/g	0.8782	0.4067	0.4631	0.019	2.38	No trans
Lysine	Essential	µmol/g	0.0299	0.1128	3.7769	0	1.44	Sqrt
Methionine	Essential	µmol/g	0.6394	0.5242	0.8198	0.013	4.169	Log
Phenylalanine	Essential	µmol/g	0.4195	0.1998	0.4762	0.006	1.58	Min-Max
Proline	Nonessential	µmol/g	0.3564	0.2792	0.7834	0.004	6.29	Sqrt
Serine	Nonessential	µmol/g	1.342	0.5624	0.419	0.039	3.26	Min-Max
Threonine	Essential	µmol/g	0.8727	0.4369	0.5006	0.014	3.007	Sqrt
Tryptophan	Essential	µmol/g	0.0343	0.0376	1.0964	0	0.89	Sqrt
Tyrosine	Nonessential	µmol/g	0.6248	0.5362	0.8582	0.019	2.97	Log
Valine	Essential	µmol/g	0.3802	0.2194	0.5771	0.002	1.707	Sqrt
Essential FAAs		µmol/g	15.2358	7.4925	0.4918	0.32	52.59	Sqrt
Nonessential FAAs		µmol/g	9.108	3.7094	0.4073	0.74	25.98	Sqrt
AMP	NT	mg/100g	10.2654	4.4131	0.4299	0.03	30.61	Sqrt
IMP	NT	mg/100g	297.7067	86.4317	0.2903	24.4	572.61	No trans
Inosine	NT	mg/100g	49.8131	20.7431	0.4164	4.6749	146.47	Sqrt
Hypoxanthine	NT	mg/100g	15.7305	5.7408	0.3649	4.74	42.52	Log

332 333 334 335 Abbreviation: SD, Standard deviation; CV, Coefficient of variation; Min, Minimum; Max, Maximum; Trans,

~

Transformation; Sqrt, Square root scaling; Min-Max, Minimum-maximum scaling; Log, Log scaling; FAA, Free

amino acid content; NT, Nucleotide content.

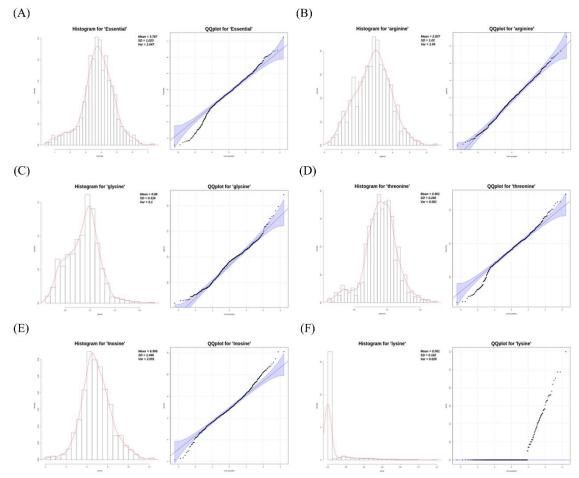
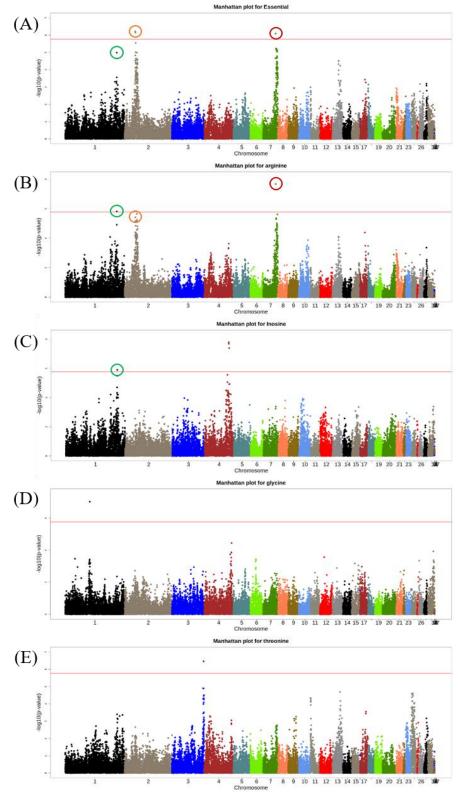



Figure 2. Phenotype distribution of free amino acids and nucleotide contents used for the association test. (A)–(F)
Histogram and quantile–quantile plot of the essential free amino acids, arginine, glycine, threonine, inosine, and
lysine contents, respectively. Note that most values of lysine are zero in (F).

341 342 Figure 3. Genome-wide Manhattan plot of the $-\log_{10}(p$ -value) for significant single-nucleotide polymorphisms. (A) 343 the essential free amino acids, (B) arginine, (C) inosine, (D) glycine, and (E) threonine components. The x-axis 344 shows the chromosome number and the y-axis indicates the $-\log_{10}(p-value)$. The red horizontal line indicates a 345 Bonferroni-corrected significance level of 5%. Circles with the same color indicate the same genomic region.

348 Table 2. Genome-wide significant single-nucleotide polymorphisms for the tested traits.

Traits	SNP ID	Chr	Position (bp)	Allele 1	Allele 2	MAF	SNP effect	<i>p</i> -value
Essential FAAs	Gga_rs15943371	2	33,096,495	Т	С	0.38	0.25	$6.08 imes 10^{-7}$
Essential FAAs	Gga_rs14162297	2	33,432,575	Т	С	0.42	0.24	$7.12 imes 10^{-7}$
Essential FAAs	Gga_rs16609168	7	31,241,647	С	Т	0.26	0.29	$8.09 imes 10^{-7}$
Arginine	Gga_rs16609168	7	31,241,647	С	Т	0.26	0.32	$2.16 imes 10^{-8}$
Arginine	Gga_rs13971906	1	170,582,107	А	G	0.36	0.24	$1.54 imes 10^{-6}$
Inosine	GGaluGA265714	4	74,314,272	G	А	0.39	-0.32	$1.63 imes 10^{-8}$
Inosine	GGaluGA265712	4	74,285,145	А	G	0.39	-0.32	$2.08 imes 10^{-8}$
Inosine	GGaluGA265969	4	75,827,200	Т	С	0.30	-0.34	$4.08 imes 10^{-8}$
Inosine	Gga_rs13971906	1	170,582,107	А	G	0.36	0.30	$1.27 imes 10^{-6}$
Glycine	GGaluGA028030	1	81,831,988	Т	С	0.06	0.16	$9.37 imes 10^{-8}$
Threonine	Gga_rs14412837	3	108,537,571	G	А	0.50	-0.06	$3.47 imes 10^{-7}$

349 350 351 352 * Chr, Chromosome; bp, base pair; Allele 1, Minor allele; Allele2, Major allele; MAF, Minor allele frequency; FAA,

Free amino acids.

353	Table 3. Genes located in the	genomic regions for	the significant	single-nucleotide i	olymorphisms.
555	Tuble 5. Genes located in the	genomie regions for	the biginiteunt	single nucleotide	joi y mor prinsmo.

Trait	Chr	Start position (bp)	End position (bp)	Genes
Arginine, Inosine	1	170,065,610	170,700,171	RB1, LPAR6, RCBTB2, CYSLTR2, FNDC3A, MLNR, CDADC1, CAB39L, SETDB2, PHF11, RCBTB1, ARL11, KPNA3, SPRYD7, TRIM13, KCNRG
Arginine, Essential FAAs	2	32,588,887	33,940,447	HOXA3, HOXA4, HOXA5, HOXA6, HOXA7, HOXA9, HOXA10, HOXA11, HOXA13, EVX1, HIBADH, TAX1BP1, JAZF1, CREB5, TRIL, CHN2, WIPF3, SCRN1, FKBP14, PLEKHA8
Arginine, Essential FAAs	7	30,761,616	31,457,806	CXCR4, THSD7B, HNMT, SPOPL, NXPH2
Inosine	4	74,767,885	75,920,712	KCNIP4, ADGRA3, PPARGC1A, LDB2, QDPR, CLRN2, LAP3, MED28, FAM184B, LCORL, NCAPG
Glycine	1	81,317,906	82,292,366	CHD1L, FAAHL, TMEM39A, B4GALT4, B4GALTL, B3GAT1L, UPK1B, IGSF11, LSAMP
Threonine	3	108,221,189	108,846,159	TFAP2B, TFAP2D, CRISP3, CRISP2, RHAG, CYP2AC1, CYP2AC2, CENPQ, MMUT, OPN5L2, CDC5L

354 355 356 Abbreviations: Chr, Chromosome; bp, base pair; FAA, Free amino acid

> j