ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without	Complete genome sequence of probiotic Lactobacillus johnsonii
abbreviations)	7409N31 isolated from a healthy Hanwoo calf
Running Title (within 10 words)	Genome sequence of Lactobacillus johnsonii 7409N31 from a
	Hanwoo calf
Author	Young Joon Oh ¹ , Jieun Lee ² , Seul Ki Lim ¹ , Min-Sung Kwon ¹ ,
	Sulhee Lee ¹ , Sang-Pil Choi ¹ , Dohyeon Yu ³ , Yeon-su Oh ⁴ , Jinho
	Park ^{5*} , and Hak-Jong Choi ^{1*}
Affiliation	¹ Technology Innovation Research Division, World Institute of
	Kimchi, Gwangju 61755, Korea
	² Kimchi Industry Promotion Division, World Institute of Kimchi,
	Gwangju 61755, Korea
	³ College of Veterinary Medicine, Gyeongsang National University,
	Jinju 52828, Korea
	⁴ College of Veterinary Medicine and Institute of Veterinary Science,
	Kangwon National University, Chuncheon 24341, Korea
	⁵ Veterinary Internal Medicine, College of Veterinary Medicine,
	Jeonbuk National University, Iksan 54596, Korea
ORCID (for more information, please visit	Young Joon Oh (https://orcid.org/0000-0002-0422-4525)
https://orcid.org)	Jieun Lee (https://orcid.org/0000-0002-1584-9520)
	Seul Ki Lim (https://orcid.org/0000-0001-7371-2402)
	Min-Sung Kwon (https://orcid.org/0000-0001-8673-0255)
	Sulhee Lee (https://orcid.org/0000-0002-9481-128X)
	Sang-Pil Choi (http://orcid.org/0000-0001-8797-8332)

	Dohyeon Yu (https://orcid.org/0000-0001-7645-6926)
	Yeon-su Oh (https://orcid.org/0000-0001-5743-5396)
	Jinho Park (https://orcid.org/0000-0001-5235-5717)
	Hak-Jong Choi (https://orcid.org/0000-0003-1185-0919)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	This research was supported by Technology Development Program
State funding sources (grants, funding sources,	(Project No. 1116043-1) for Bio-industry, Ministry for Agriculture,
equipment, and supplies). Include name and number of	Food and Rural Affairs, Korea and partially supported by the
grant if available.	National Research Foundation of Korea (NRF) grant funded by the
	Korea government (MSIT) (No. 2021R1A2C100517111), by a
	research grant from the World Institute of Kimchi funded by the
	Ministry of Science and ICT, Korea (KE2201-1), and by Korea
	Institute of Planning and Evaluation for Technology in Food,
	Agriculture, Forestry, and Fisheries (IPET) through Agriculture
	Microbiome R&D Program, which is funded by Ministry of
	Agriculture, Food and Rural Affair (MAFRA) (918018-04-4-
	SB010), Korea.
Acknowledgements	Not applicable.
Availability of data and material	Upon reasonable request, the datasets of this study can be available
	from the corresponding author.
Authors' contributions	Conceptualization: Oh YJ, Lee J, Park J, Choi HJ.
Please specify the authors' role using this form.	Data curation: Oh YJ, Lee J.
	Formal analysis: Oh YJ, Lim SK, Kwon MS, Lee S, Choi SP.
	Methodology: Oh YJ, Lee J, Lim SK.
	Software: Oh YJ, Lim SK.
	Validation: Park J, Choi HJ.
	Investigation: Oh YJ, Lee J, Lim SK.

	Writing - original draft: Oh YJ, Yu D, Oh Y. Writing - review & editing: Oh YJ, Park J, Choi HJ.
Ethics approval and consent to participate	This article does not require IRB/IACUC approval because there are no human and animal participants.
4	1

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for	Fill in information in each box below
correspondence, proofreading, and reprints)	
First name, middle initial, last name	Jinho Park and Hak-Jong Choi
Email address – this is where your proofs will be sent	Jinho Park: jpark@jbnu.ac.kr
	Hak-Jong Choi: hjchoi@wikim.re.kr
Secondary Email address	
Address	Jinho Park: Veterinary Internal Medicine, College of Veterinary
	Medicine, Jeonbuk National University, Iksan 54596, Republic of
	Korea.
	Hak-Jong Choi: Technology Innovation Research Division, World
	Institute of Kimchi, Gwangju 61755, Republic of Korea.
Cell phone number	Jinho Park, Tel: +82-10-2670-3046
	Hak-Jong Choi, Tel: +82-10-3362-1984
Office phone number	Jinho Park, Tel: +82-63-850-0949
	Hak-Jong Choi, Tel: +82-62-610-1729
Fax number	Jinho Park, Fax: +82-63-850-0910
6	Hak-Jong Choi, Fax: +82-62-610-1853

Abstract

Lactobacillus johnsonii 7409N31 was isolated from the feces of a healthy 11-day-old Hanwoo calf from a farm in Geochang-gun, Gyeongsangnam-do, Korea. The genome of the strain was completely sequenced using the PacBio RSII sequencing system, and it was confirmed that it was composed of one circular chromosome. The size of the entire genome was 2,198,442 bp, and it had 35.01 mol% G + C content and 2,222 protein-coding sequences, 24 rRNA, 3 ncRNA, and 112 tRNA genes. Strain 7409N31 possessed genes encoding enzymes involved in the hydrolysis of both fibrous and non-fibrous carbohydrates. These data provide a comprehensive theoretical understanding for developing industrial probiotic feed additives that improve nutrient digestibility.

Keywords: Lactobacillus johnsonii, Complete genome sequence, Hanwoo calf, Probiotics

Lactic acid bacteria (LAB) have been associated with the fermentation and preservation of food since ancient times and are one of the most important groups of industrial microorganisms with a multi-billion dollar market. They are naturally found in fermented foods as well as in human and animal cavities, including the gastrointestinal tract [1-2]. LAB colonizes the intestines of animals as a part of the normal intestinal flora, inhibit the growth of harmful bacteria, prevent diarrhea, and inhibit the absorption of toxic substances [3]. Ruminants utilize intestinal microbes to break down cellulose into glucose so that it can be used as an energy source, and some LAB are known to use cellulose as a carbon source [4]. Ruminant roughage contains both fibrous (cell wall material) and non-fibrous (cell content) carbohydrates, but most of them are composed of fibers such as cellulose, hemicellulose, and pectin [5]. In the present study, Lactobacillus johnsonii 7409N31 (KCCM 13026P) was isolated from the feces of a healthy 11day-old Hanwoo calf. Strain 7409N31 was anaerobically grown in deMan, Rogosa, and Sharpe (MRS, Difco, Franklin Lakes, NJ, USA) medium at 35 °C for 24 h. Genomic DNA of 7409N31 strain was extracted as described previously [6]. The complete genome of L. johnsonii 7409N31 was sequenced by using Pacific Biosciences (PacBio) reagents (DNA Link Inc., Seoul, Korea). A total number of 735,552 reads with a mean subread length of 5,638 bases (N50, 6,459 bases) were obtained with PacBio sequencing. These sequences were assembled de novo using the Hierarchical Genome Assembly Process (HGAP, version 3.0) workflow [7]. The genome of the L. johnsonii 7409N31 was annotated using the NCBI Prokaryotic Genome Annotation Pipeline and the Pathosystems Resource Integratin Center (PATRIC, version 3.6.12) genome data base [8]. Genome assembly completeness was evaluated using Benchmarking Universal Single-Copy Orthologous suite (BUSCO, version 5.1.3) [9], and evolutionary genealogy of genes: Non-supervised Orthologous Group-mapper (EggNOG-mapper, version 2.0, http://eggnog-mapper.embl.de) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases (www.genome.jp/kegg) were used for functional annotation. The complete genome of strain 7409N31 has one circular chromosome (2,198,442 bp), with a G + C content of 35.01 mol%, 2,222 protein-coding sequences, 24 rRNA, 3 ncRNA, and 112 tRNA genes (Fig. 1 and Table 1). Further analysis showed that about 80% of the proteincoding genes (1,778 proteins) could be clustered in 21 functional categories of cluster of orthologous groups (COG) (Fig. 2). Most of the proteins of strain 7409N31 were classified into categories related to 'core functions' such as replication, recombination and repair (category L: 10.2%), transcription (category K: 8.9%), translation, ribosomal structure and biogenesis (category J: 8.7%), and carbohydrate transport and metabolism (category G: 7.5%). This suggests that strain 7409N31 has a relatively strong carbohydrate metabolism ability similar to other strains in the genus Lactobacillus [10].

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

The genome of *L. johnsonii* 7409N31 possessed the *bcsZ* gene that encodes an endoglucanase involved in the hydrolysis of the D-glycosidic bond of cellulose. In addition, the presence of genes such as beta-fructofuranosidase (*sacA*), cellobiose PTS components (*celB* and *chbC*), and oligo-1,6-glucosidase (IMA, *malL*) involved in the metabolism of non-fibrous carbohydrates such as starch was confirmed. These results suggest that *L. johnsonii* strain 7409N31 has the potential to be developed as an industrial probiotic feed additive because it can facilitate digestion of both fibrous and non-fibrous carbohydrates.

Nucleotide sequence accession number

The GenBank accession number for the genome of L. johnsonii strain 7409N31 is CP084221.

60 References 61 1. Tannock GW. Analysis of the intestinal microflora, a renaissance. Antonie van Leeuwenhoek. 62 1999;76:265-78. 63 2. Vaughan EE, de Vries MC, Zoetendal EG, Ben-Amor K, Akkermans AD, de Vos WM. The intestinal 64 LABs. Antonie van Leeuwenhoek. 2002;82:341-352. 65 3. Shahani, KM, Ayebo AD. Role of dietary lactobacilli in gastrointestinal microecology. Am J Clin Nutr. 66 1980;33:2448-57. https://doi.org/10.1093/ajcn/33.11.2448. 67 Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD. The rumen microbiome: a crucial 4. 68 consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes. 69 2019;10:115-132. https://doi.org/10.1080/19490976.2018.1505176. 70 5. Fontaine AS, Bout S, Barriere Y, Vermerris W. Variation in cell wall composition among forage maize 71 (Zea mays L.) inbred lines and its impact on digestibility: Analysis of neutral detergent fibre composition 72 by pyrolysis-gas chromatography-mass spectrometry. J Agric Food Chem. 2003;51:8080-7. 73 https://doi.org/10.1021/jf034321g. 74 6. Oh YJ, Kim JY, Lee J, Lim SK, Yu D, Oh YS, Park J, Choi HJ. Complete genome sequence of 75 Lactobacillus amylovorus 1394N20, a potential probiotic strain, isolated from a Hanwoo calf. J Anim Sci 76 Technol. 2021;63:1207-10. https://doi.org/10.5187/jast.2021. 77 7. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial 78 genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563-9. 79 https://doi.org/10.1038/nmeth.2474. 80 8. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. The PATRIC Bioinformatics 81 Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 2020;48:D606-12. 82 https://doi.org/10.1093/nar/gkz943. 83 9. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome 84

assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210-3212. 85 https://doi.org/10.1093/bioinformatics/btv351.

86 10. Boekhorst J, Siezen RJ, Zwahlen MC, Vilanova D, Pridmore RD, Mercenier A, et al. The complete 87 genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in 88 organization chromosome and gene content. Microbiology. 2004;150:3601-3611. 89 https://doi.org/10.1099/mic.0.27392-0.

90

Table and Figure

Table 1. Genomic features of Lactobacillus johnsonii strain 7409N31

Properties	Value
BioProject	PRJNA766157
BioSample	SAMN21619988
Accession No.	CP084221
Sequencing method	PacBio RSII
Assembly method	HGAP version 3.0
Genome size (bp)	2,198,442
Contig	1
Total CDSs	2,222
rRNA genes	24
tRNA genes	112
G + C content (mol%)	35.01

HGAP, hierarchical genome assembly process; CDSs, coding sequences; G + C, guanine + cytosine

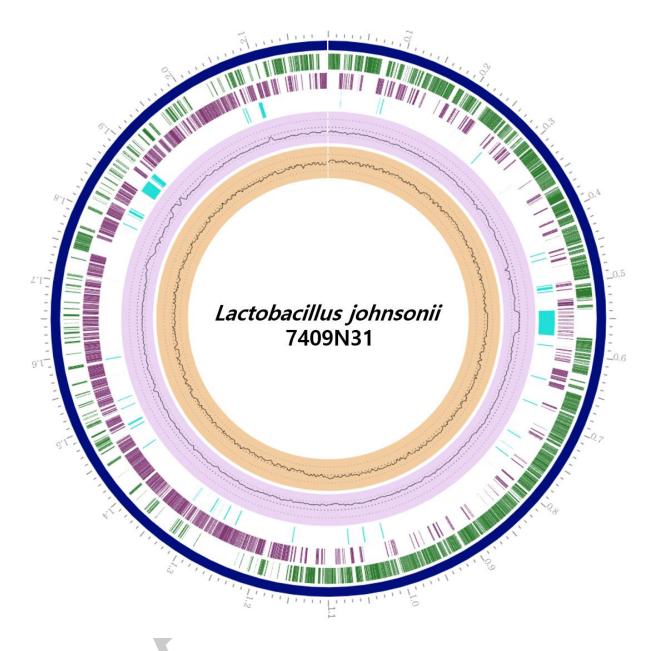


Figure 1. Circular view of the genome of *Lactobacillus johnsonii* 7409N31 showing the physical map of its significant features generated using PATRIC. From outside to inside: contigs (blue), annotated reference genes (particularly, coding sequences [CDSs]) on the forward strand (green), and annotated reference genes on the reverse strand (purple). The fourth circle shows non-CDSs featured in the genome (light blue). The next circle indicates guanine–cytosine (GC) content (lavender/light purple), while the innermost circle indicates the GC skew (peach).

106

COG functional category

Figure 2. COG functional annotation of Lactobacillus johnsonii 7409N31.

CELLULAR PROCESSES AND SIGNALING

- [D] Cell cycle control, cell division, chromosome partitioning
- [M] Cell wall/membrane/envelope biogenesis
- [N] Cell motility
- [O] Post-translational modification, protein turnover, and chaperones
- [T] Signal transduction mechanisms
- [U] Intracellular trafficking, secretion, and vesicular transport
- [V] Defense mechanisms
- [W] Extracellular structures
- [Y] Nuclear structure
- [Z] Cytoskeleton
- INFORMATION STORAGE AND PROCESSING
- [A] RNA processing and modification
- [B] Chromatin structure and dynamics
- [J] Translation, ribosomal structure and biogenesis
- [K] Transcription
- [L] Replication, recombination and repair
- METABOLISM
- [C] Energy production and conversion
- [E] Amino acid transport and metabolism
- [F] Nucleotide transport and metabolism
- [G] Carbohydrate transport and metabolism
- [H] Coenzyme transport and metabolism
- [I] Lipid transport and metabolism
- [P] Inorganic ion transport and metabolism
- [Q] Secondary metabolites biosynthesis, transport, and catabolism
- POORLY CHARACTERIZED
- [R] General function prediction only
- [S] Function unknown