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Abstract  33 

Tenderness and taste characteristics of meat are the key determinants of the meat choices of 34 

consumers. This review summarizes the contemporary research on the molecular mechanisms by 35 

which postmortem aging of meat improves the tenderness and taste characteristics. The 36 

fundamental mechanism by which postmortem aging improves the tenderness of meat involves 37 

the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced 38 

degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by 39 

postmortem aging is mainly explained by the increase in the content of taste-related peptides, free 40 

amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our 41 

understanding of the published research on tenderness and taste characteristics of meat and 42 

provides insights to improve these attributes of meat through postmortem aging. 43 

 44 

Keywords: Aging, tenderness, taste characteristics, proteolysis, taste-related compounds 45 
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INTRODUCTION 47 

 48 

The sensory properties such as taste, flavor, and tenderness are among the most important 49 

determinants of meat purchase by consumers [1-3]. Several studies have shown that consumers 50 

are willing to pay more for better-quality meat [4-6]. Post-slaughter aging is an essential process 51 

to enhance the sensory properties of meat through the action of proteolytic systems inherent in 52 

meat. Industrially, several methods are used for the aging of meat to enhance its value. These 53 

methods range from traditional carcass hanging to storing vacuum-packed meat at refrigerated 54 

temperatures for a certain period. In general, two techniques are used for meat aging, i.e., dry-55 

aging and wet-aging. Wet-aging has the advantage of convenience while dry-aging has the 56 

advantage of conferring excellent sensory properties [7-9]. 57 

Although aging generally improves the sensory properties of meat, the specific conditions for 58 

maximizing the sensory properties according to the aging method have not been fully established. 59 

Therefore, it is important to investigate the optimal aging conditions by exploring the rate and 60 

extent of the aging effect according to the aging method to improve meat quality band value. From 61 

that perspective, this review summarizes the underlying molecular mechanisms by which aging 62 

induces changes in meat quality and discusses the mechanisms and factors for improving the 63 

sensory properties of aged meat. During aging, the natural enzymes in the meat break down the 64 

proteins and connective tissue, increasing the tenderness of meat [10-11]. Moreover, during the 65 

dry-aging process, meat juice is further concentrated in meat and the chemical breakdown of 66 

protein and fat constituents creates a more intense nutty and meaty flavor [12]. However, the dry-67 

aging process is more expensive and time-consuming than the wet-aging process due to high aging 68 

shrinkage, trim loss, contamination risk, and requirements for aging conditions and space [13-14].  69 
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The aging process improves both the tenderness the taste characteristics of meat. The 70 

improvement of the savory taste of meat is largely attributable to the increased content of amino 71 

acids related to the umami, such as glutamic acid and aspartic acid, caused by proteolysis [15]. 72 

With the recent advances in omics analysis techniques, several studies have investigated the 73 

mechanism of the breakdown of meat proteins and the increase of taste-related substances due to 74 

aging [16-19]; however, the underlying mechanisms are not well characterized. In addition, novel 75 

technologies or new aging techniques are being developed and applied to enhance the effect of 76 

meat aging [10,11,20,21]. However, there is a lack of review related to the increase in sensory 77 

properties. Therefore, this review summarizes the available evidence regarding the molecular 78 

mechanism of the degradation of proteins and the changes in meat quality and taste characteristics 79 

during postmortem aging.  80 

 81 

 82 

 83 

MECHANISM OF POSTMORTEM AGING ON CHANGES IN MEAT QUALITY 84 

 85 

Several reports have described significant biochemical and biophysical changes during muscle 86 

conversion to meat, and these changes have a direct effect on meat quality [22-25]. During the 87 

postmortem aging process, cytoskeletal myofibrillar protein degradation by endogenous proteases 88 

results in significant improvements in the sensory properties of meat [25]. Meat color, water-89 

holding capacity (WHC), tenderness, and texture are the major quality attributes of meat [1]. 90 

Tenderness is the most important attribute influencing beef palatability [25, 26] while WHC is the 91 

most important attribute for the sensory properties of pork [1, 27]. Therefore, in this respect, 92 
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improvements in tenderness and WHC have been extensively studied in beef and pork, 93 

respectively, in relation to the development of aging techniques [11, 21].  94 

 95 

Tenderizing mechanism of postmortem aging 96 

Proteolysis is a major factor in improving meat quality traits such as tenderness and WHC [26, 97 

27]. Several factors influence the rate and extent of proteolysis such as species, breed, animal age, 98 

diet, individual muscle, marbling content, and aging method [17, 28-31]. The effect of aging on 99 

the tenderness of beef has long been studied, and many theories have emerged, such as those 100 

related to calpain, calcium ion, and cathepsin [32]. Among these theories, the calpain system has 101 

received much attention and is considered a major cause of proteolysis during postmortem storage. 102 

Proteolysis of myofibrillar proteins has been reported to be the main cause of improvement in meat 103 

tenderness during postmortem storage [33]. Specifically, the weakening of Z-disks and 104 

degradation of desmin, titin, troponin-T, and nebulin increase the fragility of myofibrils [34-36]. 105 

As shown in Fig. 1, the mechanism by which the calpain system affects meat tenderness is 106 

summarized into four points. First, calpain weakens the interactions between myofilaments and 107 

the Z-disk with the breakdown of titin and nebulin and fractures the I-band and Z-disk in myofibrils, 108 

loosening the microstructure of myofibers [35]. Second, the calpain breaks down costamere and 109 

desmin, deranging the orderly structure of myofibrils or the integrity between myofibrils and 110 

peripheral muscles [37]. Third, calpain plays a decisive role in the degradation of tropomyosin, 111 

weakening the bond between thick and thin filaments [38]. Fourth, calpain degrades troponin-T, a 112 

tropomyosin-binding subunit, weakening the structure of thin actin filaments [39].  113 

In general, there is a rapid change in tenderness between 3 and 7 days postmortem, after which 114 

the rate of change in tenderness slows significantly [36, 40]. However, in the case of beef produced 115 
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from innate tough muscles or old cattle muscles, some reports suggest that tenderness may 116 

gradually improve up to 28 days postmortem [8, 41-43]. The aging-induced improvement in 117 

tenderness is attributable to the decrease in mechanical strength of the intramuscular connective 118 

tissue due to proteolysis caused by endogenous enzymes [10, 44-46]. This decrease in mechanical 119 

strength is mainly caused by an increase in collagen solubility and dissociation of the structural 120 

integrity of muscle connective tissue [15, 47, 48]. The strength and structural integrity of collagen 121 

fibrils, usually stabilized by proteoglycan, degrade with the progression of postmortem aging. This 122 

leads to further exposure of the active sites of potential degradative enzymes, such as lysosomal 123 

glycosidase or β-glucuronidase, further weakening the structural integrity and making the meat 124 

tender [15].  125 

Recent studies have further clarified the tenderizing mechanism of postmortem aging. A 126 

schematic illustration of the newly proposed muscle aging mechanisms is presented in Fig. 2. 127 

Tenderizing of postmortem muscle is driven by the calpain system, which depends on the 128 

concentration of Ca2+ in the sarcoplasm [49], and the increase in Ca2+ concentration in postmortem 129 

muscle is due to apoptosis [50]. Postmortem aging generates reactive oxygen species (ROS) which 130 

induce oxidative stress and apoptosis [51]. Some of the apoptotic proteins released from 131 

mitochondria in response to ROS participate in regulating apoptosis [52]. These apoptotic enzymes 132 

participate in the early stages of muscle aging, leading to the degradation of titin and nebulin, as 133 

well as regulation of the Ca2+-activated enzyme system [53-55]. Activation of apoptotic enzymes 134 

such as caspase-3 by denitrification induces apoptosis for myofibril fragmentation, as well as direct 135 

proteolytic activity against calpastatin [56-58]. Moreover, chaperone proteins such as small heat 136 

shock proteins (sHSPs) have an anti-apoptotic effect [59]. sHSPs delay the postmortem tenderizing 137 

process by inhibiting the onset of apoptosis by directly binding to key proteins in the apoptotic 138 
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cascade such as cytochrome c and caspase-3 [60]. On the other hand, calpain is a cysteine protease, 139 

and the cysteine residue at the active site can be modified by protein S-nitrosylation, which 140 

consequently affects its autolysis and proteolytic activity [61, 62]. Protein S-nitrosylation modifies 141 

the release channels of Ca2+, affecting the rate of Ca2+ release and resulting in muscle contraction 142 

and altered moisture distribution in myofibrils [63]. In addition, S-nitrosylation inhibits the activity 143 

of enzymes such as phosphofructokinase involved in postmortem glycolysis, affecting the rate of 144 

decline in pH, ultimate pH, and meat quality traits including tenderness [64]. 145 

 146 

Change in WHC and meat color during postmortem aging 147 

WHC is one of the most important quality traits of fresh meat because it is closely related to 148 

meat color, texture, and tenderness [1, 11]. An increase in water loss is unavoidable due to the 149 

occurrence of rigor mortis in the process of conversion from muscle to meat. The formation of 150 

crosslinks between thick and thin filaments within the myofibrils stiffens the muscle fibers and 151 

leads to the extrusion of intracellular water from the myofibers [65]. Subsequently, with the 152 

resolution of rigor and initiation of postmortem aging, intracellular water continues to move to the 153 

surface of the meat and is observed in the form of a purge or drip. However, long-term aged meat 154 

often shows improved WHC due to the degradation of proteins. Postmortem proteolysis of 155 

structural/cytoskeleton proteins, including desmin, titin, nebulin, and integrin, is associated with 156 

the improvement of WHC [66-68]. Changes in the microstructure of muscle fibers during 157 

postmortem aging are believed to improve WHC. First, during postmortem aging, degradation of 158 

costamere linkages reduces myofibril shrinkage, resulting in more space within muscle fibers to 159 

retain water [65, 68, 69]. In addition, the so-called ‘sponge effect’ occurs wherein the myofibrillar 160 

proteins break down and disturb the drip channels, resulting in water trapping within the myofiber 161 
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[70]. This is the likely underlying mechanism by which aging beef improves the juiciness of steak 162 

[8, 71, 72].   163 

However, the relationship of juiciness of aged meat with tenderness and WHC has not yet been 164 

clearly identified. Several studies have shown a positive correlation between sensory tenderness 165 

and juiciness [73, 74]. Therefore, the improved juiciness of aged meat is likely attributable to the 166 

synergistic effect due to the increase in sensory tenderness [10]. Many sensory studies and 167 

consumer surveys have reported a positive correlation between tenderness and juiciness of meat; 168 

however, the coefficient of determination (R2) was not high enough and varied depending on the 169 

species or muscles [75]. Thus, although there is less correlation between objective shear force 170 

measurements and sensory tenderness of cooked meat, a positive correlation between sensory 171 

tenderness and juiciness can be inferred. In this respect, some studies have proposed the so-called 172 

‘halo effect’ whereby improved tenderness increases the perception of juiciness, and vice versa 173 

[76, 77]. Indeed, there is an increase in WHC associated with the swelling of myofibers during 174 

postmortem aging, but this does not lead to lower cooking loss [78]. This is because aged meat not 175 

only causes pronounced shrinkage of myofibers during cooking but also exhibits a significant 176 

decrease in myofibrillar water after cooking. The water lost during cooking is higher in meat aged 177 

for at least 3-6 days than unaged meat, but this depends on the aging period [79-81]. Compared to 178 

un-aged meat, the increase in cooking loss in aged meat varies depending on the pre-rigor 179 

temperature conditions of muscles and sarcomere length [82]. In aged meat, weakened protein 180 

structure appears to be unable to retain or trap water during cooking because the swelling of muscle 181 

fibers is limited due to the degradation of myofibrillar and cytoskeletal proteins [83]. However, 182 

even if the cooking loss of aged meat is high, a recent study showed that juiciness is improved at 183 
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the same time as the early activation of calpain-2, suggesting that postmortem proteolysis may 184 

play a role in improving the juiciness of aged meat [84]. 185 

The meat color, color stability, and WHC of meat undergo significant changes during 186 

postmortem aging. The surface redness of aged meat is initially improved compared to non-aged 187 

meat or relatively short-term aged meat [27, 85]. The temporary improvement in the redness of 188 

the aged meat surface is due to a decrease in oxygen consumption of respiratory enzymes within 189 

mitochondria. However, with the prolongation of the aging period, the oxidative stability of the 190 

myoglobin or lipid eventually deteriorates. Extended aging period under lighting conditions of 191 

meat retailers accelerates surface discoloration and promotes off-flavor generation [86, 87, 88]. 192 

Even if aging improves the eating quality of meat, discoloration due to metmyoglobin and 193 

darkening due to surface dehydration as a result of extended aging will inevitably cause economic 194 

losses [89, 90]. The negative effect of extended aging on meat color and oxidative stability is due 195 

to the accumulation of pro-oxidants (heme and non-heme iron) and the depletion of endogenous 196 

reducing compounds (NAD+, α-Tocopherol, and β-Carotene) or antioxidants (acylcarnitines, 197 

nucleotides, nucleosides, and glucuronides) [91, 92, 93]. 198 

 199 

 200 

CHANGES IN TASTE CHARACTERISTICS OF MEAT DUE TO AGING 201 

Postmortem aging causes a significant increase in meat flavor. This phenomenon is related to 202 

the reducing sugars, the release of free amino acids and peptides, and the increase in the content 203 

of IMP, GMP, inosine, and hypoxanthine due to the breakdown of ribonucleotides [94-96]. In 204 

addition, flavor enhancement in aged beef is associated with the production of other flavor-related 205 

volatile compounds such as n-aldehydes (e.g., pentanal and hexanal) and ketones, which also 206 
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contain lipid oxidation-related products [10, 12, 97]. These flavor precursors interact with each 207 

other throughout the cooking process, generating new flavor components [12]. Therefore, the 208 

development of meat flavor can be considered as a dynamically evolving process, as illustrated in 209 

Figure 3. 210 

 211 

Mechanism of improvement in meat flavor during postmortem aging 212 

The improvement of meat taste characteristics during aging is mainly due to hydrolysis activity. 213 

In addition, the activity of various hydrolases such as calpain, which fragments the muscle 214 

structure, and cathepsin, which is involved in the production of taste peptides, also plays an 215 

important role in improving taste characteristics [95]. During the longer aging period, more taste-216 

related peptides and free amino acids are broken down due to the enzymatic activity in meat. 217 

Among them, aliphatic amino acids are related to the sweetness of meat while Cys and Met, 218 

containing a sulfur atom, and Glu and Asp are associated with the umami taste [98]. Furthermore, 219 

during aging, carbohydrates are broken down into sugars, enhancing the sweetness of meat, and 220 

fats and fat-like membrane molecules are broken down into aromatic fatty acids. All these end-221 

products produced during postmortem aging contribute to the intensity of meat aroma, nut-like 222 

flavor, and umami taste of cooked aged meat [98, 99].   223 

The taste characteristics of aged meat, such as umami intensity or flavor, are not determined by 224 

any single factor, but rather by the complex interaction between sulfur-containing amino acids, 225 

aspartic acid, glutamic acid, nucleotide compounds, and β-histidyl dipeptides [98, 100]. Moreover, 226 

postmortem energy metabolism also affects the taste of meat by causing an increase in sugar 227 

fragments through the degradation of glycogen content, resulting in an increase in the substrate for 228 

the Maillard reaction [101]. In addition, prolonging the aging period to >28 days was found to 229 

ACCEPTED



13 

 

considerably increase the aromatic volatile compounds [59, 102]. While it is generally agreed that 230 

aging improves meat flavor, prolonged aging may adversely affect the flavor. Aging of beef for 4 231 

days at 4°C desirably improves the sweetness and beefy flavor; however, further prolongation of 232 

the aging time may increase undesirable taste characteristics such as bitterness and sourness [95]. 233 

In addition, on prolonged aging, free fatty acids that are easy to oxidize are released, which react 234 

with proteins and other flavor precursors to negatively affect the aroma and/or flavor of aged meat 235 

[103]. Therefore, controlling the appropriate aging method is necessary to maximize the desirable 236 

taste and flavor of aged meat and minimize the off-flavor and off-odor. 237 

 238 

Formation of taste-enhancing peptides by aging 239 

Several peptides that are released during proteolysis in aging meat affect the taste characteristics. 240 

These peptides show different taste characteristics depending on the specific size (i.e., fraction). 241 

The small peptides (<5 kDa) that are most noticeable and reproducible during postmortem aging 242 

are fragments of troponin T, nebulin, pro-collagen, and cipher proteins [104-106]. In particular, 1- 243 

to 5-kDa peptides, so-called Maillard peptides, and 3- to 10-kDa peptides were found to improve 244 

the flavor and taste intensity of grilled beef [107, 108]. In addition, 1- to 10-kDa and 0.5- to 1-kDa 245 

fractions significantly inhibit the sourness of beef and pork [109,110].  246 

In the past few decades, many peptides related to the taste characteristics of meat have been 247 

reported. The content of oligopeptides increases during the refrigerated aging of meat. Among the 248 

oligopeptides, glutamic acid especially improves the savory taste of beef [111]. Octapeptide (Lys-249 

Gly-Asp-Glu-Glu-Ser-Leu-Ala), called “beefy meaty peptide”, also occurs naturally during 250 

postmortem aging and is responsible for the delicious taste of beef [112]. In addition, the peptides 251 

(Glu-Glu, Glu-Val, Ala-Asp-Glu, Ala-Glu-Asp, Asp-Glu-Glu, and Ser-Pro-Glu) found in chicken 252 
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are related to umami intensity, and the peptides (Glu-Asp-Glu, Asp-Glu-Ser, and Ser-Glu-Glu) 253 

found in fish hydrolysates are related to savory taste [113]. The peptide (Ala-Pro-Pro-Pro-Pro-Ala-254 

Glu-Val-His-Glu-Val) found in pork suppresses sourness [110].  255 

On the other hand, there is no clear consensus on the effect of naturally occurring dipeptides 256 

produced during aging on the taste characteristics. These dipeptides include carnosine, β-alanyl-257 

L-histidine; anserine, β-alanyl-L-1-methylhistidine; balenine, β-alanyl-L-3-methylhistidine. Some 258 

studies have found a positive effect of these dipeptides on the taste characteristics of meat [114]. 259 

However, other reports suggest that anserine and carnosine produce bitterness if the presence of 260 

glutamic acid oligomers such as Glu-Leu, Pro-Glu, and Val-Glu is not effective in masking the 261 

bitter taste [115]. In addition, some dipeptides may indirectly affect the taste characteristics of 262 

meat. For example, carnosine and histidine, including dipeptide anserine, destroy unsaturated 263 

aldehydic products, reducing the lipid oxidation products and minimizing the rancidity in meat 264 

[116]. 265 

Studies have investigated the interrelationship between peptides and taste characteristics using 266 

various model systems. One such study evaluated the taste of synthesized oligopeptides containing 267 

Phe, Tyr, and Leu and found that hydrophobic residues in the peptides function as a bitter taste 268 

determinant site. Moreover, the intensity of its bitterness increased when the hydrophobic amino 269 

acid with the L-configuration was located at the C terminus and the number of hydrophobic amino 270 

acids at the C-terminal increased [117]. In addition, as a result of identifying amino acid 271 

compositions and amino acid sequences by separating two peptide fractions from a commercial 272 

beef extract as a macromolecular meaty flavor enhancer, it was confirmed that two peptides were 273 

composed of collagen and tropomyosin [118]. These results suggested that collagen and 274 

tropomyosin are precursors of the macromolecular meaty flavor enhancer. Studies involving other 275 

ACCEPTED



15 

 

types of meat have identified different strips of amino acids responsible for the unique taste of 276 

individual meats. This means that the function of small peptides that affect the taste characteristics 277 

of meat depends on the type of meat (i.e., species or muscles).  278 

 279 

Production of free amino acids during postmortem aging 280 

Free fatty acids (FFAs), which are related to improving the taste of meat, show dramatic changes 281 

during postmortem aging. Many studies have reported concentrated taste-activated compounds 282 

produced during the aging of meat; of these, FFAs in particular, are cited as a major contributor to 283 

the taste of aged meat [98]. Dry aging offers a great advantage in this regard as it can promote an 284 

increase in the FFA content. This increased FFA content directly increases the flavor of the meat. 285 

In addition, as a Maillard reaction and a Strecker degradation substrate, FAAs react to form aroma-286 

active components and affect various taste characteristics [119]. For example, glutamine, alanine, 287 

glycine, methionine, and serine are related to sweetness, while leucine, isoleucine, phenylalanine, 288 

tyrosine, and valine are related to bitterness. Furthermore, cysteine, methionine, and glutamic acid 289 

are associated with umami, while aspartic acid and histidine are associated with sourness [120]. 290 

Some amino acids have more than one taste characteristic. Valine has a combination of bitterness 291 

and slight sweetness, threonine and lysine have sweetness, slight bitterness, and sourness, and 292 

aspartic acid has both sourness and sweetness [94, 120]. As shown in Fig. 3, all these water-soluble 293 

metabolites affect the flavor of cooked meat to some extent as precursors to the Maillard reaction 294 

or by themselves.  295 

In general, dry-aging of beef increases the content of FFAs such as leucine, phenylalanine, 296 

valine, tyrosine, glutamate, and tryptophan compared to wet-aging [119]. In addition, the FFA 297 

content increases with the decrease in the moisture content of dry-aged beef; however, FAAs such 298 
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as glycine, arginine, and alanine decrease with the decrease in moisture content. Therefore, the 299 

increase in FFA content in dry-aged beef cannot be entirely explained by the changes in moisture 300 

content. Rather, the greater content of taste-active compounds in dry-aged beef compared to wet-301 

aged beef is likely attributable to the concentration effect of moisture evaporation. Studies have 302 

shown that the difference in the concentration of metabolites and the rate of protein degradation 303 

due to the evaporation of moisture can increase the FFA content [120, 121]. 304 

Two main mechanisms promote the production of FFAs during postmortem aging: proteolytic 305 

enzyme activity and microbial activity. The proteolytic enzymes that cause hydrolysis of proteins 306 

include endonucleases (such as calpain and cathepsin) and exonucleases (such as peptidase and 307 

aminopeptidase) that release amino peptidase C and H from muscles [122-124]. However, the 308 

endogenous enzymes in dry-aged beef can be inactivated with an extension of the aging time. 309 

Therefore, further hydrolysis of protein in dry-aged beef may be related to the action of 310 

microorganisms in the dry-aged process [119]. In a study, dry-aging of beef for 28 days led to a 311 

significant increase in mold distribution from 1.22% to 11.67%, which improved the flavor and 312 

tenderness [125]. This is because the growth of mold and yeast during the dry-aging process can 313 

induce additional proteolysis of dry-aged beef by activating muscle aminopeptidase and/or 314 

proteolytic enzymes [126, 127]. The growth of beneficial molds or fungi during dry-aging of beef 315 

releases protease and collagenase, and breaks down myofibrillar proteins and connective tissue to 316 

improve the taste and flavor of meat.  317 

 318 

Changes in taste-related chemicals during postmortem aging 319 

  One of the most notable chemicals in relation to changes in taste of aged meat is nucleotides. 320 

In particular, disodium 5-inosinate (5’-IMP) and disodium 5-guanosinate (5’-GMP), the so-called 321 
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taste nucleotides, have a positive effect on meat taste and umami intensity [128, 129]. IMP is 322 

widely known to improve the flavor and palatability of meat. The IMP content changes during 323 

postmortem aging. Therefore, changes in meat taste during aging are related to changes in IMP 324 

content, especially glutamic acid and aspartic acid, which have a synergistic effect on amplifying 325 

the umami intensity [15, 99, 130]. In a study, the change in flavor intensity of high-marbling beef 326 

was consistent with the change in umami intensity [122].  327 

The aging method also affects the extent of change in the IMP content. Therefore, the taste of 328 

meat varies considerably depending on the aging method. The IMP content in beef decreases 329 

rapidly during dry-aging compared to wet-aging [119, 120, 128]. Dry-aging increases the activity 330 

of enzymes related to IMP degradation, reducing IMP content which can negatively affect the taste 331 

of meat. Furthermore, in dry-aged beef, hypoxanthine produced by further degradation of IMP 332 

increases the bitterness of meat [119]. On the other hand, low-temperature aging not only greatly 333 

increases the IMP content but also induces the formation of GMP, resulting in a significant increase 334 

in the saltness and umami intensity of chicken and pork. However, the changes in IMP and GMP 335 

in cooked beef were found to be minimal or even undetectable [98]. 336 

The content of reducing sugars, which provides a desirable sweetness for meat, is lower in wet-337 

aged beef than in dry-aged beef [124]. Beef contains reducing sugars, such as glucose, fructose, 338 

and ribose, which are formed by glycolysis and ATP degradation [98]. These reducing sugars not 339 

only confer sweetness but also react with amino acids to produce volatile flavor components. For 340 

example, ribose and cysteine form many sulfur compounds by the Maillard reaction [98]. Maillard 341 

reaction refers to the reaction between a carbonyl compound (such as reducing sugars) and an 342 

amino compound (such as amino acids or proteins). This reaction produces sulfur and nitrogen 343 

compounds, such as pyrazine, resulting in the formation of brown or even black macromolecular 344 
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substance melanoid or pseudomelanins [132]. The final product of the Maillard reaction varies 345 

depending on the substrate and affects the taste of meat. For example, cysteine and glucose mainly 346 

produce sulfide, while cysteine and glucose produce more pyrazines and furans under oxidative 347 

conditions [133]. Glutathione and glucose have a meat-like taste if they cause a thermal reaction, 348 

with or without chicken fat/oxidized chicken fat [134]. With the prolongation of the aging period 349 

of beef, the content of two sulfur compounds (methyl mercaptan and dimethyl disulfide) and one 350 

pyrazine (2-methyl pyrazine) showed a significant increase [135]. These sulfur compounds and 351 

pyrazine have a low odor detection threshold and play an important role in the flavor and taste of 352 

cooked beef. 353 

 354 

 355 

CONCLUSION 356 

 357 

Many studies have shown that the aging of meat improves both the tenderness of meat and the 358 

taste characteristics by producing taste-related substances. The fundamental mechanism by which 359 

aging improves the tenderness of meat involves the operation of the calpain system due to 360 

apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar 361 

proteins. The improvement of taste characteristics by aging is mainly explained by an increase in 362 

the content of taste-related peptides, free amino acids, and nucleotides produced by increased 363 

hydrolysis activity. However, the method or conditions of aging greatly influence the improvement 364 

of the tenderness and/or taste characteristics of meat. More robust studies on meat aging are 365 

required to obtain optimal tenderness and taste of different types of meat. 366 

 367 
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 756 

Fig. 1. Schematic illustration of the sites of muscle microstructure collapse due to the activity of muscle 757 

proteolytic enzyme calpain during aging.  (1) Calpain breaks down the titin connecting myosin filament 758 

and Z-disk to loosen the I-band and Z-disk structures of myofibril. (2) Degradation of costamere and desmin 759 

by calpain destroys the orderly structure of myofibers and/or the integrity between myofibrils and peripheral 760 

muscles. (3) Calpain plays a crucial role in the degradation of tropomyosin, thus weakening the interaction 761 

between myosin filaments and actin filaments. (4) Calpain breaks down troponin-T, a troponin subunit that 762 

binds to tropomyosin, weakening the structure of actin filaments. 763 
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 768 

Fig. 2. Schematic illustration of tenderizing mechanism by postmortem aging. (1) The calpain system 769 

activated by Ca2+ plays a leading role in the process of muscle ageing or tenderization. (2) The apoptotic 770 

enzymes participate in the early stages of muscle aging to degrade cytoskeletal myofibrillar proteins such 771 

as titin and nebulin and regulate the Ca2+ activating enzyme system. (3) Cysteine residues at the calpain 772 

active site are modified by protein S-nitrosylation, affecting autolysis and proteolytic activity. (4) The 773 

activity of enzymes involved in postmortem glycolysis such as phosphofructokinase, can be inhibited by 774 

S-nitrosylation and affects the quality of aged meat.  775 
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 782 

Fig. 3. Schematic representation of meat flavor developing reactions from taste-active water-soluble 783 

precursors. Adapted from Dashdorj et al. (2015). 784 
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