JAST (Journal of Animal Science and Technology) TITLE PAGE

Upload this completed form to website with submission

3

2

1

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Dietary supplementation of solubles from shredded, steam-exploded
	pine particles modulates cecal microbiome composition in broiler
	chickens
Running Title (within 10 words)	Dietary solubles from shredded, steam-exploded pine particles
	affects chickens' microbiome
Author	Chris Major Ncho 1,2, Akshat Goel 1,2, Vaishali Gupta 1,3, Chae-Mi
	Jeong 1,3, Ji-Young Jung 2,4, Si-Young Ha 4, Jae-Kyung Yang 2,4
	and Yang-Ho Choi 1,2,3,*
Affiliation	1 Department of Animal Science, Gyeongsang National University,
	Jinju 52828, Korea
	2 Institute of Agriculture and Life Sciences, Gyeongsang National
	University, Jinju 52828
	3 Division of Applied Life Sciences (BK21 Plus Program),
	Gyeongsang National University, Jinju 52828, Korea
	4 Department of Environmental Materials Science, Gyeongsang
	National University, Jinju 52828, Korea
ORCID (for more information, please visit	
https://orcid.org)	
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	This work was supported by the Forest Science Technology R&D
_	
State funding sources (grants, funding sources,	Program (2020193C10-2022-BA01) provided by the Korea Forest
equipment, and supplies). Include name and number of	Service (Korea Forestry Promotion Institute)
grant if available.	
Acknowledgements	Not applicable.

Ncho et al. 1 / 38

Availability of data and material	Upon reasonable request, the datasets of this study can be available		
	from the corresponding author.		
Authors' contributions	Conceptualization: JaeK.Y. and YangH.C		
Please specify the authors' role using this form.	Data curation: Chris MN.		
	Formal analysis: Chris MN		
	Methodology: Chris. M.N., Akshat. G., ChaeM.J., Vaishali. G., Ji		
	Y.J., SiY.H., JaeK.Y. and YangH.C		
	Software: Chris. MN		
	Validation: Yang -HC		
	Investigation: Chris MN		
	Writing - original draft: Chris MN		
	Writing - review & editing: Chris MN and Yang -HC		
Ethics approval and consent to participate	All the experimental procedures for this study were approved by the		
	Institutional Animal Care and Use Committee of Gyeongsang		
	National University (GNU-200916-C0057).		
<u> </u>			

5 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for	Fill in information in each box below		
correspondence, proofreading, and reprints)			
First name, middle initial, last name	Yang-Ho Choi		
Email address – this is where your proofs will be sent	yhchoi@gnu.ac.kr		
Secondary Email address	-		
Address	501 Jinju-daero, Gajwa-dong, Jinju 52828, Republic of Korea		
Cell phone number	-		
Office phone number	055-772-1946		
Fax number	055-772-1946		

6

7

Ncho et al. 2 / 38

8	Dietary supplementation of solubles from shredded, steam-exploded pine particles
9	modulates cecal microbiome composition in broiler chickens
10	Running title: Dietary solubles from shredded, steam-exploded pine particles affects chickens'
11	microbiome
12	Chris Major Ncho ^{1,2} , Akshat Goel ^{1,2} , Vaishali Gupta ^{1,3} , Chae-Mi Jeong ^{1,3} , Ji-Young Jung ^{2,4} ,
13	Si-Young Ha ⁴ , Jae-Kyung Yang ^{2,4} and Yang-Ho Choi ^{1,2,3,*}
14	
15	¹ Department of Animal Science, Gyeongsang National University, Jinju 52828, Korea;
16	major159@gnu.ac.kr (C.M.N.); genesakshat@gnu.ac.kr (A.G.); wjdcoa@gnu.ac.kr (CM.J.);
17	vaishali2020@gnu.ac.kr (V.G.)
18	² Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828,
19	Korea; charmhanjjy@nate.com (JY.J.); jkyang@gnu.ac.kr (JK.Y.)
20	³ Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University,
21	Jinju 52828, Korea
22	⁴ Department of Environmental Materials Science, Gyeongsang National University, Jinju
23	52828, Korea; hellohsy2@gmail.com
24	* Correspondence:
25	Yang-Ho Choi; Department of Animal Science, Gyeongsang National University, 501 Jinju-
26	daero, Gajwa-dong, Jinju 52828, Korea; yhchoi@gnu.ac.kr ; Tel.: 055-772-1946; Fax: 055-772-
27	1949
28	

Ncho et al. 3 / 38

29

Abstract

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

This study evaluated the effects of supplementing solubles from shredded, steam-exploded pine particles (SSPP) on growth performances, plasma biochemicals, and microbial composition in broilers. The birds were reared for 28 days and fed basal diets with or without the inclusion of SSPP from 8 days old. There were a total of three dietary treatments supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. Supplementation of SSPP did not significantly affect growth or plasma biochemicals, but there was a clear indication of diet-induced microbial shifts. Beta-diversity analysis revealed SSPP supplementation-related clustering (ANOSIM: R = 0.31, p < 0.01), with an overall lower (PERMDISP: p < 0.05) individual dispersion in comparison to the control group. In addition, the proportions of the *Bacteroides* were increased, and the relative abundances of the families Vallitaleaceae, Defluviitaleaceae, Clostridiaceae, and the genera Butyricicoccus and Anaerofilum (p < 0.05) were significantly higher in the 0.4% SSPP group than in the control group. Furthermore, the linear discriminant analysis effect size (LEfSe) also showed that beneficial bacteria such as Ruminococcus albus and Butyricicoccus pullicaecorum were identified as microbial biomarkers of dietary SSPP inclusion (p < 0.05; | LDA effect size | > 2.0). Finally, network analysis showed that strong positive correlations were established among microbial species belonging to the class Clostridia, whereas Erysipelotrichia and Bacteroidia were mostly negatively correlated with *Clostridia*. Taken together, the results suggested that SSPP supplementation modulates the cecal microbial composition of broilers toward a "healthier" profile.

Keywords

microbiome; broiler; solubles from shredded, steam-exploded pine particles; cecum; growth

Ncho et al. 4 / 38

54 Introduction

The gut microbiota plays a vital role in the physiological, metabolic, and nutritional uptake
functions of its host [1]. The host usually accommodates and establishes a symbiotic
relationship with the different bacterial species populating its digestive tract [2]. Further, the
gut microbiota associates itself with the epithelial membrane of enterocytes to form a protective
layer against pathogens [3]. Therefore, a clear definition of a "healthy" microbiota is important
to help establish approaches for the modulation of its composition, which can result in improved
host health and performance. In chickens, the distal part of the intestinal tract, namely the cecum
and rectum, is inhabited by a greater number of microbial species than the proximal part, such
as the crop, proventriculus, and gizzard [4].
A growing body of evidence suggests that diet is a major factor affecting the microbiome [5, 6].
In fact, the non-digestible and unabsorbed portions of chicks' diets can serve as available fuel
for microbial growth in the gut [7]. Insoluble fibers in general are used by microbes to produce
short-chain fatty acids (SCFA) via fermentation [8]. These SCFA generated are widely
considered to be having health-promoting effects. For instance, studies revealed that after
purification, lignin and mannan oligosaccharides could be used as potential antibiotics and
growth promoters in broiler chickens [9, 10]. Besides, another dietary strategy used to positively
modify the intestinal bacterial population resides in the use of phenolic compounds.
Polyphenols are thought to be transformed by microbes into derived metabolites which can
inhibit pathogens and activate the proliferation of the same beneficial microbes [11].
Plant-derived products have been extensively evaluated as feed additives, due to their potential
effects on growth and health in livestock [12-14]. Indeed, researchers have been conducting
trials using non-conventional dietary ingredients in poultry farming. As a result, novel products
such as nine particles have been tested as feed additives in chickens under thermoneutral and

Ncho et al. **5** / **38**

heat stress conditions [15, 16]. Besides, it was highlighted that the submission of dietary fiberrich products to different extraction techniques could enhance the bioavailability of nutrients [17]. For instance, hot water extraction was used to transform spent mushroom substrate into a valuable feed additive in dairy cows [18]. Similarly, solubles from shredded, steam-exploded pine particles (SSPP) can be obtained after submitting pine particles to hot water extraction. The resulting SSPP is primarily composed of phenolic compounds, lignin, and carbohydrates. In this study, we attempted to thoroughly assess the cecal microbiota and growth performance in broilers supplemented with SSPP. Considering the chemical composition of SSPP, we hypothesized that its dietary inclusion in broiler diets can enhance beneficial bacterial growth, resulting in an overall "healthier" microbiota. For doing so, birds were fed SSPP-supplemented diets from 8 to 28 days old. Thereafter, parameters such as growth performances, organ indexes, plasma biochemicals, and cecal microbiota characteristics (diversity and structure) were evaluated.

Materials and methods

All the experimental procedures for this study were approved by the Institutional Animal Care and Use Committee of Gyeongsang National University (GNU-200916-C0057).

Preparation of soluble from shredded, steam-exploded pine particles (SSPP)

SSPP was prepared via the explosion of pinewood chips (2 cm × 2 cm × 0.5 cm) with steamed water at 200 °C for 11.5 min. The first stage resulting particles were used in our previously published studies [15, 16]. The current SSPP used in this trial was obtained after mixing particles with water (ratio of 46:100 v/w) following extraction at 80 °C for 213 min. The extract

Ncho et al. 6 / 38

was then filtered through a Whatman filter paper, grade 2 (Z177601, Sigma-Aldrich Inc., Seoul, Korea), and stored at 4 °C until use. The chemical composition of SSPP obtained was the following: 4.9% phenolic compounds, 9.2% acid-insoluble lignin, and 75.2% carbohydrates (Table 1).

Experimental setup and birds housing

A total of 323 unsexed day-old Ross 308 broiler chicks were obtained from a commercial hatchery. Following standard rearing conditions, chicks were raised in a room containing H-type battery cage assemblies with 3 tiers and 7 cages per tier. The room environmental condition was set at $34 \pm 1^{\circ}$ C and 50% relative humidity (RH) for the first 3 days and then the temperature was decreased gradually to reach $22 \pm 1^{\circ}$ C on day 28. During the first seven days, the birds were fed ad libitum with a commercial starter diet (Nonghyup Feed Co., Seoul, Korea) in crumbled form. From day 8, chicks (n = 216) were allocated into three different treatment groups having similar body weights. The three dietary treatments were supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. The composition of the basal diets is shown in Table 2. During the whole trial, feed and water were provided ad libitium, and lightning conditions were 23 h of light and 1 h of dark. Each treatment had 12 cages containing 6 birds. The length, width, and height of the cages were 90 cm x 70 cm x 45 cm respectively. Average daily feed intake (ADFI), average daily gain (ADG), and feed conversion ratio (FCR) were calculated based on weekly body weight and feed intake.

Blood, tissue sampling, and plasma biochemical parameters analysis

On day 28, at the end of the trial, 8 birds from each treatment were randomly selected and euthanized using CO₂, thereafter, blood and organ were sampled. Blood was drawn from a heart

Ncho et al. 7 / 38

puncture and then collected into heparinized vacuum containers (#367874, BD Co., Ltd., Franklin Lakes, NJ, USA). Plasma was obtained by centrifuging blood samples at 2,000 x g for 10 min at 4°C, and was stored at –20 °C for subsequent analysis. The duodenum, jejunum, ileum, liver, and spleen were sampled and weighed. Absolute and relative weights were calculated as organ indexes. In addition, the length of the duodenum, jejunum, ileum, and ceca were measured before being snap-frozen in liquid N₂ and stored at –80°C for further analysis.. Plasma metabolite concentrations were measured according to the manufacturer guide using a VetTest Chemistry Analyzer (IDEXX Co., Ltd., Westbrook, ME, USA) with a dry-slide technology [19].

DNA isolation and next-generation sequencing

The DNeasyPowerSoil 135 Kit (Qiagen, Hilden, Germany) was used to conduct the total genomic DNA of cecal samples according to the manufacturer's protocol. The cecal samples were randomly selected from 8 birds per treatment. The DNA samples obtained were quantified using Quant-IT PicoGreen (Invitrogen, Waltham, MA, USA). Thereafter, the 16S metagenomic sequencing library was constructed for metagenomic estimation using the Herculase II Fusion DNA Polymerase Nextera XT Index Kit V2 (Illumina, San Diego, CA, USA). Illumina platform was used for sequencing the library (Macrogen, Inc., Seoul, Korea). The fastp program was then used to perform quality profiling, adapter trimming, and read filtering. Sequences within the range of 400 to 500 bp were used and paired-end reads were assembled into one sequence using FLASH (v1.2.11) software. The CD-HIT-EST program was used to determine the number of operational taxonomic units (OTUs) with a 97% sequence identity cutoff. BLAST+ (v2.9.0) program was then used to check taxonomic similarity against the reference database (NCBI 16S Microbial). Identical coverage of less than 85% was identified as not defined. QIIME software (v1.9) was used to evaluate the OTU abundance and taxonomic information of the microbes.

Ncho et al. 8 / 38

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Ecological and statistical analyses

In the current study, the cage was considered as the experimental unit. The experiment was performed in a completely randomized design with diet as a single factor. Downstream data wrangling, analysis, and visualization were performed using different packages of the R software v.4.1.0 (R core Team, 2021). Variables were tested for the homoscedasticity and normality assumption with Levene's and Shapiro-Wilk's tests respectively [20]. Data following a normal distribution, namely, growth performances, organ indexes, and plasma biochemical parameters were analyzed via a one-way ANOVA, followed by a Tukey post-hoc test when a significant p-value (p < 0.05) was found. Alpha and beta diversity metrics were calculated for the estimation of microbial community diversity. Indices such as OTUs, Chao1, Shannon, inverse Simpson, and Good's coverage were calculated to estimate alpha diversity. Non-parametric Kruskal-Wallis test followed by a pairwise Wilcoxon rank sum test (adjusted via the Benjamini-Hochberg method) was performed to assess alpha diversity indices and relative abundance between treatment groups. Concerning beta diversity analysis, Non-Metric Dimensional Scaling (NMDS) based on Bray Curtis distance matrix was used for visualizations [21]. Furthermore, the homogeneity of multivariate dispersion among treatment groups was tested by conducting a permutational multivariate analysis of dispersion (PERMDISP) [22]. Thereafter, analysis of similarities (ANOSIM) was used to evaluate the effects of SSPP supplementation on microbiota composition variability between samples based on beta diversity distance matrices [23]. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) was applied to determine the OTUs most likely to explain differences (p < 0.05; | LDA effect size | > 2.0) between control and SSPP-supplemented diets. In addition, to uncover internal interaction within microbial

Ncho et al. 9 / 38

communities, a correlation network analysis was executed [24].

One way-ANOVA, Kruskal-Wallis, and pairwise Wilcoxon rank sum tests were conducted using base R functions. NDMS, PERMDISP, and ANOSIM were conducted with envfit, betadisper, and anosim functions of the "vegan" package. Finally, the "igraph", and "circlize" packages were used to draw the microbial community network and chord diagram while the LEfSe algorithm was launched from the "mothur" software [25] via the R command line.

180 Results

Growth performances, organ indexes, and plasma biochemical parameters

Table 3 presents the effects of increasing the concentration of dietary SSPP supplementation on growth performance parameters. Supplemental SSPP did not significantly affect ADG, ADFI, and FCR, regardless of inclusion level. In addition, there was no impact of SSPP supplementation on absolute and relative organ weights (Table 4). Similarly, absolute and relative organ lengths were not significantly modified by the inclusion of different SSPP levels in the diet of broilers (Table 5). As depicted in Table 6, plasma metabolites did not present any changes in their concentration regardless of the inclusion of SSPP in the diet or not.

Microbial diversity

The alpha diversity results including OTUs, Chao1, Shannon, inverse Simpson, and Good's coverage are presented in Fig. 1. Compared to the control group (0% SSPP) a decrease (p < 0.05) in species richness was observed with low supplementation levels (0.1% SSPP). On the other side, the birds belonging to the 0.4% SSPP group presented an overall increase (p < 0.01) in species richness when compared to their 0.1% SSPP counterpart, as indicated by observed

Ncho et al. 10 / 38

OTUs and Chao1 indices. Furthermore, the similar pattern observed in both indices was indicating that the sequencing depth obtained was sufficient. In contrast, none of the other indices (Shannon, inverse Simpson, and Good's coverage) were showing statistical differences neither when SSPP was supplemented at 0.1% or 0.4%.

Beta diversity results are depicted in Fig. 2. In this trial, PERMDISP revealed that individual community variation was greater (p < 0.05) in the control group (0% SSPP), while lower variances were found in SSPP-supplemented groups (0.1% SSPP and 0.4% SSPP). In addition, the NMDS plot using the Bray-Curtis distance matrix showed SSPP supplementation-related clustering, with birds fed SSPP clustering closer to each other (Fig. 2B). Similarly, microbial community structures were significantly different (R = 0.31, p < 0.01) when all birds fed SSPP (0.1% SSPP) and 0.4% SSPP) were compared to the control group based on ANOSIM.

Microbial community composition

As illustrated in Fig. 3 the relative abundance of OTUs from birds' cecal microbiota was analyzed at different taxonomic levels. *Firmicutes* (56.6%) and *Bacteroidetes* (40.2%) together were representative of the majority of the microbiome from birds' cecal samples in the current trial (Fig. 3A). SSPP supplementation also led to an increase in *Bacteroidetes* relative abundance (from 35.5% to 42.7%) while concomitantly decreasing *Firmicutes* proportions (from 60.3% to 52.6%). Although minimal, there was a reduction in *Proteobacteria* relative abundance (from 3.8% to 1.2%) with the supplementation of SSPP. The dominant classes across treatment groups were *Clostridia* (45.4%), *Bacteroidia* (40.2%), and *Bacilli* (8.3%) (Fig. 3B). The birds supplemented with SSPP had a higher abundance of *Bacteroidia* and a lower abundance of *Bacilli* while the *Clostridia* abundance did not seem to be affected treatment-wise. More precisely, the relative abundances of *Bacteroidia* increased from 34.5% for 0% SSPP to

Ncho et al. 11 / 38

42.4% and 42.7% for 0.1% SSPP and 0.4% SSPP, respectively. On the other side, Bacilli 220 proportions dropped from 11.7% to 7.4% and 5.9% for 0% SSPP, 0.1% SSPP and 0.4% SSPP, 221 respectively. Order level microbiota analysis revealed that Eubacteriales (45.4%), 222 Bacteroidales (40.2%), and Lactobacilliales (6.51%) which were unchanged, increased (from 223 35.5% to 42.7%), and decreased (from 8.5% to 5.1%) by SSPP supplementation, respectively, 224 225 and accounted for the largest proportion of the microbial composition (Fig. 3C). 226 At lower taxonomic levels (family and genus), statistically, significant modifications were detected, with 0.4% SSPP group generally increasing abundance (Fig. 4). Indeed, Vallitaleaceae, 227 228 Defluviitaleaceae, and Clostridiaceae had their proportion significantly increased (p < 0.05) by 0.4% SSPP when compared to either the 0.1% SSPP or 0% SSPP groups. In addition, the 229 abundance of *Clostridiaceae* was also significantly higher at 0.1% SSPP in contrast to 0% SSPP. 230 Similarly, the Vallitalea, Hespellia, Defluviitalea, Butyricicoccus and Anaerofilum genera were 231 significantly more abundant in the 0.4% SSPP. On the other side, 0.1% SSPP led to a reduction 232 of Defluviitalea when set against the 0% SSPP diet. 233 234 The identification of species potentially representing biomarkers of SSPP supplementation was conducted via LEfSe (Fig. 5). Ruminococcus albus, Christensella timonensis, Acetivibrio 235 alkalicellulosi, Butyricicoccus pulliceacorum, and Anaerotignum propionicum were enriched 236 237 (p < 0.05; | LDA effect size | > 2.0) in the cecum of birds fed SSPP supplemented diets. Besides, LEfSe identified only Anaerofilum agile as a biomarker of the basal diet. 238

239

240

241

242

243

Microbial network patterns

Correlation network analysis was used to detect interactions between cecal microbial species of birds (Fig. 6). Simultaneous visualization from the network graph, and chord diagram is primordial to enhance the reader's understanding of the microbial interactions. After prevalence

Ncho et al. 12 / 38

filtering and selecting strong and significant correlations (p < 0.05, | r |= 0.65) the correlation network obtained had 43 nodes (species) and 35 edges (interactions). There was a striking predominance of *Clostridia* in the network, while *Bacilli* and *Erysipelotrichia* were represented in minority. Besides, *Tissirella* and *Bacterodia* had only single individuals in the network. *Bacilli* appeared to be mostly connected between themselves while *Erysipelotrichia* were linked to *Clostridia*. Two interesting subnetworks could be spotted (Fig. 6A) with the first one composed of *Bacilli* and *Clostridia* while the second one regrouped *Clostridia* and *Erysipelotrichia*. *Clostridia* were generally positively correlated with each other. Only a few negative correlations were detected in the network and appeared to be evenly distributed among intra-classes (3) and inter-classes (4) connections.

Discussion

The utilization of phytogenic feed additives in animal nutrition has been the subject of recent research due to their potential role in the growth and health of livestock [26]. Among these compounds, byproducts from the wood industry are gaining popularity [27, 28]. Their relatively low price and availability make them suitable for their inclusion in broilers' diets [29]. The current study provides a detailed assessment of the growth, health, and cecal microbiota in broilers after SSPP supplementation.

There were no significant differences in ADFI, final body weight, and ADG between control and SSPP-fed birds. These results were in agreement with our previous study that evaluated the effects of other particles (from 1% to 2% of inclusion) on broilers' growth [16]. Similarly, a 0.2% chestnut wood extract supplementation did not significantly increase growth performance in broilers [28]. On the other side, a considerable improvement was seen in ADG, feed intake, and FCR when chicks were supplemented (from 25 to 100g/kg of feed) with dietary charcoal

Ncho et al. 13 / 38

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

obtained from the oak tree [30]. Therefore, it is easily understandable that in vivo trials focusing on the supplementation of byproducts from the wood industry have inconsistent effects on poultry performances. The disparity observed in the results within studies can be explained by their setups and designs. Even though dietary wood-derived products are well known for their relatively high amount of fiber, carbohydrates, and phenolic compounds [31, 32], factors such as source, extraction method, supplementation duration, and inclusion level have a greater influence on growth-related outcomes [33]. Although relatively simple to assess the organ index is a highly informative parameter that gives insights into the development status of the organ [34]. In the current study, we evaluated the relative weight and length of intestinal segments. None of the different organ indexes evaluated appeared to be affected by the inclusion of SSPP in broilers' diets. It is already acknowledged that improvement in intestinal development leads to enhanced nutrient absorption, which is reflected by higher growth [35]. Since chicks' body weight did not significantly differ among treatments, the observed results were therefore expected. While our findings did not support any effects of SSPP supplementation on phenotypic parameters (growth and organ development), there was a clear indication of diet-induced microbial shifts. Other researchers also highlighted that feed additives and diet were usually associated with significant modifications in microbiome composition and diversity [36-38]. In the current trial, both the diversity and composition of the cecal microbiota were influenced by the inclusion of SSPP in the diet. SSPP supplementation significantly impacted not only richness indices (OTUs and Chao1) but also beta diversity. For example, a lower individual variation was observed in the SSPP-supplemented birds in comparison to the control birds, suggesting that regardless of the inclusion level, SSPP had the same effects on broilers' microbial community structure. Besides, it is critical to mention that the overall variations observed between controls and birds supplemented with SSPP were mostly caused by changes

Ncho et al. 14 / 38

in relative abundance rather than taxonomic composition. Similar findings were also reported in our previously performed trials [15, 16].

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

In chickens, the cecal microbiota considerably increases in complexity and composition in comparison to the proximal part of the gastrointestinal tract [39]. Firmicutes and Bacteroidetes are the two dominant phyla usually followed by *Proteobacteria* and *Actinobacteria* [40]. Bacteroidetes are gram-negative bacteria providing their host energy in the form of acetate and propionate through the fermentation of originally indigestible polysaccharides [41]. On the other side, Firmicutes are gram-positive bacteria and the main producer of butyrate [42]. In the current study, SSPP-supplementation was shown to induce an augmentation in *Bacteroidetes* abundance concomitant with a reduction in *Proteobacteria* proportions. Like most plant-based bioproducts, SSPP contains considerable amounts of lignin, phenolic compounds, and carbohydrates. It was suggested that polyphenols ingestion can lead to modifications in Firmicutes to Bacteroidetes ratios by mainly supporting the proliferation of Bacteroidetes [11]. Similarly, Bacteroidetes proportions were found to increase in cecal and cloacal samples from chickens fed polyphenol-rich mulberry byproducts [43]. Healthy broiler individuals tended to have a similar proportion of Firmicutes and Bacteroidetes while a higher Firmicutes to Bacteroidetes ratio was correlated with obesity and body fat accumulation [44]. Furthermore, an increase in *Proteobacteria* abundance may lead to compromised growth and inflammatory reactions [45, 46]. Although SSPP supplementation is likely to be associated with overall health improvement in broiler chicks, the relatively short duration of inclusion (21 days) in the current trial might have limited the effectiveness of SSPP as we only saw a slight improvement in birds' body weight. Therefore, further studies evaluating the long-term supplementation of SSPP will be of great interest.

In agreement with other studies [47, 48], the abundance of bacteria belonging to families Clostridiaceae, Defluviitaleaceae, and Vallitaleaceae was significantly affected by feed

Ncho et al. 15 / 38

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

supplementation. Clostridiaceae are among the phylotypes responsible for the transformation of glucose, lactate, and succinate into butyrate [49]. Furthermore, starch cleavage enzyme production is one of the main characteristics of bacteria in this family [50]. Clostridiaceae relative abundance was not only significantly higher after SSPP supplementation, but the level of significance increased with higher SSPP doses. This finding suggests that SSPP inclusion in broilers' diets resulted in the proliferation of bacteria with amylolytic properties, indicating an overall higher metabolic activity of hydrolyzable components. The relative abundance of the genera Defluviitaleaceae, and Vallitaleaceae was also modified by SSPP supplementation, and the 0.4% SSPP group consistently showed the highest value. Interestingly, both genera were similarly affected, perhaps because they are close phylogenetic relatives with an estimated sequence similarity of about 89% [51]. In fact, in our datasets, each of these genera represented a single species which were Defluviitalea raffinosedens and Vallitalea pronyensis for Defluviitalea and Vallitalea, respectively. Defluviitalea raffinosedens is a saccharolytic bacterium that acts synergistically with its cellulolytic counterpart to enhance cellulolysis by preventing feedback inhibition and improving the degradation process [52]. Vallitalea pronyensis is a fermentative anaerobic bacterium found in hydrothermal chimneys rich in alkaline compounds [53]. Interestingly, both species are thermophilic and thus can withstand temperatures ranging from 41 to 122 °C. As chicken core body temperature can reach 45°C under heat stress [54], the current results suggest that SSPP supplementation can be an appropriate approach against heat stress. Here, as described in another study [55], the relative abundance of the genus Butyricicoccus was significantly increased by dietary supplements. Furthermore, LEfSe identified Butyricicoccus pulliceacorum as a biomarker of SSPP supplementation (|LDA| effect size |>3). This particular species has recently been used as a probiotic in chickens [55] and humans [56] due to its resistance to bile, colonization efficiency, and butyrate production. From an intestinal health perspective, this type of butyrate-producing

Ncho et al. 16 / 38

bacteria stimulates enterocyte growth and reduces the invasion of pathogenic bacteria such as *Salmonella* [57].

LEfSe also showed that *Ruminococcus albus*, *Christensella timonensis*, *Acetivibrio alkalicellulosi*, and *Anaerotignum propionicum* were microbial biomarkers of dietary SSPP inclusion. In LEfSe, the effect size can be translated as the magnitude difference of the abundance [58]. Therefore, species with higher LDA scores in absolute values, rank higher for biomarker relevance. *Ruminococcus albus* was the top-ranked biomarker (| LDA effect size | > 3.5) of SSPP supplementation. This particular specie was found to produce significant amounts of albusin-B, a bacteriocin that is lethal to several other gram-positive bacteria [59]. Since bacteria belonging to the phyla *Firmicutes* are gram-positive, it might therefore explain the reduction in their proportion seen after including SSPP in the diet. Information related to *Christensella timonensis*, *Acetivibrio alkalicellulosi*, and *Anaerotignum propionicum* remains limited and scarce, especially concerning chicken. Indeed, only studies related to the discovery and taxonomy of these microbial species are available [60, 61]. Thus, more specialized experiments are needed to elucidate their potential roles in the chicken microbiome.

Interactions between bacteria and their environment contribute greatly to the balance in microbial systems [62]. In the current study, we used microbial network analysis to gain additional insights into the structure of the microbial communities. In a microbial network, cooperative interactions or similar biological functions between species are positively correlated whereas competition between species is negatively correlated [63]. From our current results, the prevalence of positive correlations observed between species belonging to the class *Clostridia*, was suggesting mutualistic relationships between such microbes. Similarly, the coculture of bacteria belonging to the *Clostridia* class has been shown to improve the yield of cellulose fermentation [64, 65]. On the other side, negative correlations in the network were found between *Erysipelotrichia*, *Bacteroidia* and *Clostridia*. A previous study [66] suggested

Ncho et al. 17 / 38

that some bacteria of the classes *Clostridia* and *Erysipelotrichia* consume sugar acids and sugar alcohols to produce butyrate. Therefore, the anticorrelation between these species revealed in the network may indicate competition for nutrient availability. Consistent with our previous study [67], we detected a negative correlation between the only *Bacteroidetes* (*Bacteroides fragilis*) and a *Firmicute* (*Acetanaerobacterium elongatum*) present in our network. While there is a lack of studies reporting interactions between these two species, the negative correlation can be largely explained by considering their phylum. In fact, a significant number of trials have highlighted the negative correlation between these two phyla [15, 16, 68].

In conclusion, SSPP supplementation strongly influenced the cecal microbiota of broilers without affecting growth performances. When birds were fed with SSPP, there was an overall shift in microbial community structure toward a "healthier" profile. However, the results also

suggest that trials focusing on supplementing SSPP for a longer period and evaluating its effect

in heat-stressed birds can lead to interesting findings.

Ncho et al. 18 / 38

382		References
383 384	1.	O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688-93. https://doi.org/10.1038/sj.embor.7400731
385 386	2.	Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65-80. https://doi.org/10.1053/j.gastro.2008.10.080
387 388	3.	Yegani M, Korver DR. Factors affecting intestinal health in poultry. Poult Sci. 2008;87:2052-63. https://doi.org/10.3382/ps.2008-00091
389 390 391	4.	Wang J, Fan H, Han Y, Wei J, Zhao J, Zhou Z. Pyrosequencing of the broiler chicken gastrointestinal tract reveals the regional similarity and dissimilarity of microbial community. Can J Anim Sci. 2016;97:302-13. https://doi.org/10.1139/cjas-2015-0120
392 393 394	5.	De Cesare A, do Valle IF, Sala C, Sirri F, Astolfi A, Castellani G, et al. Effect of a low protein diet on chicken ceca microbiome and productive performances. Poult Sci. 2019;98:3963-76. https://doi.org/10.3382/ps/pez132
395 396 397 398	6.	Zou A, Nadeau K, Xiong X, Wang PW, Copeland JK, Lee JY, et al. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. Microbiome. 2022;10:1-29. https://doi.org/10.1186/s40168-022-01319-7
399 400	7.	Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut microbes. 2014;5:108-19. https://doi.org/10.4161/gmic.26945
401 402 403	8.	Singh V, San Yeoh B, Chassaing B, Xiao X, Saha P, Olvera RA, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell. 2018;175:679-94.e22. https://doi.org/10.1016/j.cell.2018.09.004
404 405 406	9.	Baurhoo B, Phillip L, Ruiz-Feria C. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult Sci. 2007;86:1070-8. https://doi.org/10.1093/ps/86.6.1070
407 408 409 410	10.	Baurhoo B, Letellier A, Zhao X, Ruiz-Feria C. Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci. 2007;86:2509-16. https://doi.org/10.3382/ps.2007-00136
411 412	11.	Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut microbiota-polyphenol interactions in chicken: A review. Animals. 2020;10:1391. https://doi.org/10.3390/ani10081391

Ncho et al. 19 / 38

- 413 12. Giannenas I, Bonos E, Skoufos I, Tzora A, Stylianaki I, Lazari D, et al. Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid
- oxidation of broiler chickens. Br Poult Sci. 2018;59:545-53.
- 416 https://doi.org/10.1080/00071668.2018.1483577
- 417 13. Fresno Rueda A, Samuel R, St-Pierre B. Investigating the effects of a phytobiotics-based product
- on the fecal bacterial microbiome of weaned pigs. Animals. 2021;11:1950.
- 419 https://doi.org/10.3390/ani11071950
- 420 14. Kurekci C, Al Jassim R, Hassan E, Bishop-Hurley SL, Padmanabha J, McSweeney CS. Effects of
- feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens. Poult
- 422 Sci. 2014;93:2337-46. https://doi.org/10.3382/ps.2014-03950
- 423 15. Goel A, Kim B-J, Ncho C-M, Jeong C-M, Gupta V, Jung J-Y, et al. Dietary Supplementation of
- Shredded, Steam-Exploded Pine Particles Decreases Pathogenic Microbes in the Cecum of Acute
- 425 Heat-Stressed Broilers. Animals. 2021;11:2252. https://doi.org/10.3390/ani11082252
- 426 16. Goel A, Kim B-J, Ncho C-M, Jeong C-M, Gupta V, Jung J-Y, et al. Utilization of Shredded Steam-
- Exploded Pine Particles as a Dietary Ingredient to Modify Cecal Microbiota in Broilers. Agriculture.
- 428 2021;11:1196. https://doi.org/10.3390/agriculture11121196
- 429 17. Li J, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role
- for delignification of aspen wood by steam explosion. Bioresour Technol. 2007;98:3061-8.
- 431 https://doi.org/10.1016/j.biortech.2006.10.018
- 432 18. Liu Y, Zhao C, Lin D, Lin H, Lin Z. Effect of water extract from spent mushroom substrate after G
- anoderma balabacense cultivation by using JUNCAO technique on production performance and
- hematology parameters of dairy cows. Anim Sci J. 2015;86:855-62.
- 435 https://doi.org/10.1111/asj.12371
- 19. Ncho C-M, Goel A, Jeong C-M, Youssouf M, Choi Y-H. In Ovo Injection of GABA Can Help Body
- Weight Gain at Hatch, Increase Chick Weight to Egg Weight Ratio, and Improve Broiler Heat
- 438 Resistance. Animals. 2021;11:1364. https://doi.org/10.3390/ani11051364
- 439 20. Ncho CM, Goel A, Gupta V, Jeong CM, Choi YH. Effect of in ovo feeding of γ-aminobutyric acid
- 440 combined with embryonic thermal manipulation on hatchability, growth, and hepatic gene
- expression in broilers. Anim Biosci. 2022. https://doi.org/10.5713/ab.22.0099
- 442 21. Ocejo M, Oporto B, Hurtado A. 16S rRNA amplicon sequencing characterization of caecal
- 443 microbiome composition of broilers and free-range slow-growing chickens throughout their
- 444 productive lifespan. Sci Rep. 2019;9:1-14. https://doi.org/10.1038/s41598-019-39323-x
- 445 22. Maki JJ, Bobeck EA, Sylte MJ, Looft T. Eggshell and environmental bacteria contribute to the
- intestinal microbiota of growing chickens. J Anim Sci Biotechnol. 2020;11:1-17.
- 447 https://doi.org/10.1186/s40104-020-00459-w

Ncho et al. 20 / 38

- 23. Cui L, Zhang X, Cheng R, Ansari AR, Elokil AA, Hu Y, et al. Sex differences in growth performance are related to cecal microbiota in chicken. Microb Pathog. 2021;150:104710.
- 450 https://doi.org/10.1016/j.micpath.2020.104710
- 451 24. Ma Y, Wang W, Zhang H, Wang J, Zhang W, Gao J, et al. Supplemental Bacillus subtilis DSM
- 452 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep.
- 453 2018;8:1-13. https://doi.org/10.1038/s41598-018-33762-8
- 454 25. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur:
- open-source, platform-independent, community-supported software for describing and comparing
- 456 microbial communities. Appl Environ Microbiol. 2009;75:7537-41.
- 457 https://doi.org/10.1128/AEM.01541-09
- 458 26. Steiner T, Syed B. Phytogenic feed additives in animal nutrition. Medicinal and aromatic plants of the world: Springer; 2015. p. 403-23.
- 460 27. Rezar V, Salobir J. Effects of tannin-rich sweet chestnut (Castanea sativa mill.) wood extract
- supplementation on nutrient utilisation and excreta dry matter content in broiler chickens. Eur Poult
- 462 Sci. 2014;78:1-10.
- 28. Pascual A, Pauletto M, Trocino A, Birolo M, Dacasto M, Giantin M, et al. Effect of the dietary
- supplementation with extracts of chestnut wood and grape pomace on performance and jejunum
- response in female and male broiler chickens at different ages. J Anim Sci Biotechnol. 2022;13:1-
- 466 17. https://doi.org/10.1186/s40104-022-00736-w
- 467 29. Amerah A, Ravindran V, Lentle R. Influence of insoluble fibre and whole wheat inclusion on the
- 468 performance, digestive tract development and ileal microbiota profile of broiler chickens. Br Poult
- 469 Sci. 2009;50:366-75. https://doi.org/10.1080/00071660902865901
- 470 30. Kutlu HR, Ünsal I, Görgülü M. Effects of providing dietary wood (oak) charcoal to broiler chicks
- 471 and laying hens. Anim Feed Sci Technol. 2001;90:213-26. https://doi.org/10.1016/S0377-
- 472 8401(01)00205-X
- 473 31. ung JY, Ha SY, Goel A, Jung C, Choi Y-H, Yang J-K. The chemical and physical properties of
- 474 steam-exploded wood at different temperatures and times at the same severity as a dietary fiber
- 475 source. BioResources. 2022;17:2129. https://doi.org/10.15376/biores.17.2.2129-2142
- 476 32. ung JY, Ha SY, Yang J-K. Effect of water-impregnation on steam explosion of Pinus densiflora. J
- 477 Korean Wood Sci Technol. 2019;47:189-99. https://doi.org/10.5658/WOOD.2019.47.2.189
- 478 33. Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for
- swine and poultry. J Anim Sci. 2008;86:E140-E8. https://doi.org/10.2527/jas.2007-0459
- 480 34. Kokoszyński D, Bernacki Z, Saleh M, Stęczny K, Binkowska M. Body conformation and internal organs characteristics of different commercial broiler lines. Braz J Poult Sci. 2017;19:47-52.

Ncho et al. **21 / 38**

482		https://doi.org/10.1590/1806-9061-2016-0262
483 484 485	35.	Sacranie A, Svihus B, Denstadli V, Moen B, Iji P, Choct M. The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poult Sci. 2012;91:693-700. https://doi.org/10.3382/ps.2011-01790
486 487 488	36.	Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal. 2004;60:223-32. https://doi.org/10.1079/WPS200415
489 490 491	37.	Torok VA, Allison GE, Percy NJ, Ophel-Keller K, Hughes RJ. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl Environ Microbiol. 2011;77:3380-90. https://doi.org/10.1128/AEM.02300-10
492 493 494	38.	Danzeisen JL, Kim HB, Isaacson RE, Tu ZJ, Johnson TJ. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE. 2011;6:e27949. https://doi.org/10.1371/journal.pone.0027949
495	39.	Rychlik I. Composition and function of chicken gut microbiota. Animals. 2020;10:103.
496 497 498	40.	Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, et al. The chicken gastrointestinal microbiome. FEMS Microbiol Lett. 2014;360:100-12. https://doi.org/10.1111/1574-6968.12608
499 500 501	41.	Johnson EL, Heaver SL, Walters WA, Ley RE. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. J Mol Med. 2017;95:1-8. https://doi.org/10.1007/s00109-016-1492-2
502 503	42.	Chakraborti CK. New-found link between microbiota and obesity. World J Gastrointest Pathophysiol. 2015;6:110. https://doi.org/10.4291/wjgp.v6.i4.110
504 505	43.	Chen Y, Ni J, Li H. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken. BMC Vet Res. 2019;15:1-6. https://doi.org/10.1186/s12917-019-1822-z
506 507 508 509	44.	Yadav S, Caliboso KD, Nanquil JE, Zhang J, Kae H, Neupane K, et al. Cecal microbiome profile of Hawaiian feral chickens and pasture-raised broiler (commercial) chickens determined using 16S rRNA amplicon sequencing. Poult Sci. 2021;100:101181. https://doi.org/10.1016/j.psj.2021.101181
510 511 512	45.	Kollarcikova M, Kubasova T, Karasova D, Crhanova M, Cejkova D, Sisak F, et al. Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. Poult Sci. 2019;98:2347-53. https://doi.org/10.3382/ps/pey594

Ncho et al. **22 / 38**

46. Prasai TP, Walsh KB, Bhattarai SP, Midmore DJ, Van TT, Moore RJ, et al. Biochar, bentonite and

513

514 515 516		zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces campylobacter load. PLoS ONE. 2016;11:e0154061. https://doi.org/10.1371/journal.pone.0154061
517 518 519	47.	orouzandeh A, Blavi L, Abdelli N, Melo-Duran D, Vidal A, Rodríguez M, et al. Effects of dicopper oxide and copper sulfate on growth performance and gut microbiota in broilers. Poult Sci. 2021;100:101224. https://doi.org/10.1016/j.psj.2021.101224
520 521 522	48.	De Grande A, Leleu S, Delezie E, Rapp C, De Smet S, Goossens E, et al. Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poult Sci. 2020;99:441-53. https://doi.org/10.3382/ps/pez525
523 524 525	49.	squivel-Elizondo S, Ilhan Z, Garcia-Peña E, Krajmalnik-Brown R. Insights into butyrate production in a controlled fermentation system via gene predictions. MSystems. 2017;2:e00051-17. https://doi.org/10.1128/mSystems.00051-17
526 527 528	50.	l'Ina L, Yildirim E, Nikonov I, Filippova V, Laptev GY, Novikova N, et al. Taxons of chicken cecum microbiom are abundant, and influenced by the combined feed composition and decreased metabolizable energy. Сельскохозяйственная биология. 2015:817-24.
529 530	51.	Fardeau ML, Postec A, Ollivier B. Defluviitaleaceae. Bergey's Manual of Systematics of Archaea and Bacteria. 2015:1-2.
531 532 533 534	52.	Rettenmaier R, Schneider M, Munk B, Lebuhn M, Jünemann S, Sczyrba A, et al. Importance of Defluviitalea raffinosedens for hydrolytic biomass degradation in co-culture with Hungateiclostridium thermocellum. Microorganisms. 2020;8:915. https://doi.org/10.3390/microorganisms8060915
535 536 537	53.	Aissa FB, Postec A, Erauso G, Payri C, Pelletier B, Hamdi M, et al. Vallitalea pronyensis sp. nov., isolated from a marine alkaline hydrothermal chimney. Int J Syst Evol Microbiol. 2014;64:1160-5. https://doi.org/10.1099/ijs.0.055756-0
538 539 540	54.	Ncho CM, Goel A, Gupta V, Jeong C-M, Choi Y-H. Impact of embryonic manipulations on core body temperature dynamics and survival in broilers exposed to cyclic heat stress. Sci Rep. 2022;12:15110. https://doi.org/10.1038/s41598-022-19063-1
541 542 543 544	55.	Eeckhaut V, Wang J, Van Parys A, Haesebrouck F, Joossens M, Falony G, et al. The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front Microbiol. 2016;7:1416. https://doi.org/10.3389/fmicb.2016.01416
545 546 547 548	56.	Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JB, Van Immerseel F, et al. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe. 2014;30:70-4. https://doi.org/10.1016/j.anaerobe.2014.08.010

Ncho et al. 23 / 38

- 549 57. Van Immerseel F, Boyen F, Gantois I, Timbermont L, Bohez L, Pasmans F, et al. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult
- 551 Sci. 2005;84:1851-6. https://doi.org/10.1093/ps/84.12.1851
- 552 58. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker 553 discovery and explanation. Genome Biol. 2011;12:1-18. https://doi.org/10.1186/gb-2011-12-6-r60
- 59. Wang HT, Yu C, Hsieh YH, Chen SW, Chen BJ, Chen CY. Effects of albusin B (a bacteriocin) of
- Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of
- broiler chickens—its potential role as an alternative to feed antibiotics. J Sci Food Agric.
- 557 2011;91:2338-43. https://doi.org/10.1002/jsfa.4463
- 558 60. Ndongo S, Dubourg G, Khelaifia S, Fournier P-E, Raoult D. Christensenella timonensis, a new
- bacterial species isolated from the human gut. New Microbes New Infect. 2016;13:32-3.
- 560 https://doi.org/10.1016/j.nmni.2016.05.010
- 561 61. Choi S-H, Kim J-S, Park J-E, Lee KC, Eom MK, Oh BS, et al. Anaerotignum faecicola sp. nov.,
- isolated from human faeces. J Microbiol. 2019;57:1073-8. https://doi.org/10.1007/s12275-019-
- 563 9268-3
- 62. Guan Q, Ye C, Zhang C, Foster JA, Forney LJ. Network analysis suggests a potentially
- 655 'evil'alliance of opportunistic pathogens inhibited by a cooperative network in human milk
- bacterial communities. Sci Rep. 2015;5:1-6. https://doi.org/10.1038/srep08275
- 63. Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence
- patterns in soil microbial communities. ISME J. 2012;6:343-51.
- 569 https://doi.org/10.1038/ismej.2011.119
- 570 64. Mori Y. Characterization of a symbiotic coculture of Clostridium thermohydrosulfuricum YM3 and
- 571 Clostridium thermocellum YM4. Appl Environ Microbiol. 1990;56:37-42.
- 572 https://doi.org/10.1128/aem.56.1.37-42.1990
- 573 65. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P. Artificial symbiosis for acetone-butanol-ethanol (ABE)
- fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii
- and Clostridium cellulovorans. Microb Cell Fact. 2014;13:1-11. https://doi.org/10.1186/s12934-
- 576 014-0092-5
- 577 66. Tiffany CR, Lee J-Y, Rogers AW, Olsan EE, Morales P, Faber F, et al. The metabolic footprint of
- 578 Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum.
- 579 Microbiome. 2021;9:1-13. https://doi.org/10.1186/s40168-021-01123-9
- 580 67. Goel A, Ncho C-M, Jeong C-M, Gupta V, Jung J-Y, Ha S-Y, et al. Effects of Dietary
- Supplementation of Solubles from Shredded, Steam-Exploded Pine Particles on the Performance
- and Cecum Microbiota of Acute Heat-Stressed Broilers. Microorganisms. 2022;10:1795.
- https://doi.org/10.3390/microorganisms10091795

Ncho et al. 24 / 38

68. Oakley BB, Kogut MH. Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Frontiers in veterinary science. 2016;3:11. https://doi.org/10.3389/fvets.2016.00011

Ncho et al. **25 / 38**

Tables and Figures

Table 1. The composition of solubles from shredded, steam-exploded pine particles (SSPP)

Composition	mg/mL	%
Total solid	216.7±4.3	100
Ash	2.6±0.1	1.2
Acid insoluble lignin	19.9±0.6	9.2
Total phenolic compound	10.6±0.3	4.9
Carbohydrate		
Glucose	19.5±0.9	9.0
Arabinose	5.5±0.6	2.5
Xylose	23.9±0.7	11.0
Galactose	88.7±2.1	40.9
Mannose	25.5±0.6	11.8
Others		9.4

591

589

592

593

Ncho et al. 26 / 38

Table 2. The composition and nutrient levels of the basal diets¹

	Starter	Grower	Finisher
	(0-7 days)	(8-21 days)	(22-28 days)
Ingredients (%)			
Corn grain	38.97	45.87	39.68
Wheat grain	15	15	25
Soybean meal (42.6% CP)	32	25.6	20.6
Corn gluten	3	2.64	3
Meat & bone meal	2	2	2.5
Animal fat	4	3.88	4.54
Salt	0.25	0.25	0.25
Tricalcium phosphate	1.3	1.04	0.86
Limestone	1.26	1.22	1.26
Sodium bicarbonate	0	0.02	0
L-threonine	0.12	0.16	0.16
Lysine	1.23	1.44	1.32
DL-methionine	0.33	0.34	0.29
Choline chloride (50.0%)	0.03	0.03	0.03
Premix ²	0.2	0.2	0.2
Phytase	0.05	0.05	0.05
Feed additive	0.25	0.25	0.25
Anti-coccidia	0.01	0.01	0.01
Total	100	100	100

Calculated nutrients

Ncho et al. **27 / 38**

Crude protein (%)	23	20.5	19.5
Crude fat (%)	6.31	6.36	6.9
Crude Fiber (%)	3.01	2.8	2.68
Crude Ash (%)	5.99	5.34	5.02
Calcium (%)	1.01	0.9	0.86
Available Phosphorus (%)	0.6	0.53	0.49
Digestible Lysine (%)	1.43	1.24	1.09
Digestible Methionine + Cystine (%)	1.07	0.95	0.86
Copper (ppm)	82.21	81.04	80.78
Zinc (ppm)	100.27	96.63	97.33
Metabolizable energy (kcal/kg)	3050	3150	3200

¹ The feeds were purchased from Nonghuyp Feed, Inc. (Seoul, Korea), and their compositions were provided by the company.

Ncho et al. 28 / 38

² Trace minerals and vitamins provided per kilogram of premix: vitamin A, 12,000,000 IU; vitamin D3, 3,000,000 IU; vitamin E, 40,000 IU; vitamin K3, 2,000 IU; vitamin B1, 2,000 mg; vitamin B2, 5,000 mg; vitamin B6, 3,000 mg; vitamin B12, 20 mg; niacin, 40,000 mg; pantothenic acid, 10,000 mg; folic acid, 1000 mg; iron, 88,000 mg; copper, 72,600 mg; zinc, 60,000 mg; manganese, 66,000 mg; iodine, 990 mg; selenium, 220 mg; cobalt, 330 mg."

Table 3. Effects of supplementing diets with solubles from shredded, steam-exploded pine particles (SSPP) on broilers' growth performances

604

605

606

607

608

Parameters	SSPP su	pplementation	SEM	<i>p</i> -value	
	0	0.1	0.4	- SEM	p-varue
Initial body weight (g)	184.8	185.8	186.1	0.21	0.369
Final body weight (g)	1635.4	1680.7	1660.5	10.1	0.182
Day 8-14					
ADG (g)	44.39	44.65	43.78	0.33	0.594
ADFI (g)	58.07	59.29	58.93	0.32	0.277
FCR	1.31	1.33	1.35	0.005	0.093
Day 14-21					
ADG (g)	70.31	70.73	71.19	0.53	0.803
ADFI (g)	98.87	100.57	101.23	0.61	0.273
FCR	1.41	1.42	1.42	0.007	0.627
Day 21-28)			
ADG (g)	92.72	98.17	94.29	1.14	0.133
ADFI (g)	138.5	143.87	140.9	1.27	0.228
FCR	1.5	1.47	1.5	0.008	0.225

Values are presented as mean \pm SEM (n = 12). Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP. Abbreviations: ADG: average daily gain; ADFI: average daily feed intake; FCR: feed conversion ratio

Ncho et al. **29** / **38**

Table 4. Effects of supplementing diets with solubles from shredded, steam-exploded pine particles (SSPP) on broilers' organs weight

Parameters	SSPP sup	plementati	CEM		
Parameters	0	0.1	0.4	SEM	<i>p</i> -value
Absolute weight (g)					
Duodenum	8.21	8.07	8.04	0.25	0.960
Jejunum	16.59	15.99	17.5	0.55	0.557
Ileum	12.67	11.57	13.24	0.41	0.229
Liver	45.72	49.04	49.25	1.02	0.299
Spleen	1.68	1.81	1.75	0.11	0.871
Relative weight (%)					
Duodenum	0.528	0.504	0.509	0.01	0.789
Jejunum	1.074	0.998	1.098	0.03	0.420
Ileum	0.821	0.723	0.834	0.02	0.129
Liver	2.951	3.041	3.136	0.06	0.484
Spleen	0.109	0.112	0.111	0.006	0.982

Values are presented as mean \pm SEM (n = 8). Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

Ncho et al. 30 / 38

Table 5. Effects of supplementing diets with solubles from shredded, steam-exploded pine particles (SSPP) on broilers' organs length

Parameters	SSPP sup	plementa	SEM	<i>p</i> -value	
ranneters	0	0.1	0.4	. SLW	P varae
Absolute length (cm)					
Duodenum	27.3	26.9	26.4	4.58	0.723
Jejunum	63.1	61.8	60.8	1.48	0.819
Ileum	62.1	61.5	65.6	3.53	0.539
Cecum	15.8	15.4	16.2	0.28	0.498
Relative length (cm/kg)				V	
Duodenum	17.6	16.7	16.8	0.37	0.559
Jejunum	41	38.4	38.6	1.09	0.579
Ileum	40.1	38.3	41.6	1.01	0.406
Cecum	10.2	9.6	10.3	0.24	0.523

Values are presented as mean \pm SEM (n = 8). Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

618

619

620

616

617

Ncho et al. **31 / 38**

Table 6. Effects of supplementing diets with solubles from shredded, steam-exploded pine particles (SSPP) on broilers' plasma biochemicals

Parameters	SEM	<i>p</i> -value			
	0	0.1	0.4	-	1
Glucose (mg/dl)	252.4	251.4	258.8	4.56	0.790
Total protein (g/dl)	2.9	2.8	2.8	0.07	0.530
Triglycerides (mg/dl)	25.6	26.5	25.8	1.76	0.978
Cholesterol (mg/dl)	129.6	133	130.6	3.04	0.905

Values are presented as mean \pm SEM (n = 8). Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

Ncho et al. 32 / 38

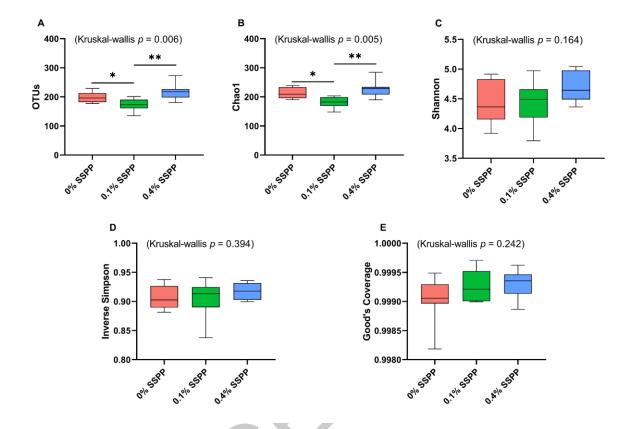


Fig. 1. Box plots representing the distribution of alpha diversity indices OTUs (A), Chao1(B), Shannon(C), Inverse Simpson (D), and Good's coverage (E) of broilers' cecal samples. Data were analyzed using the Kruskal-Wallis test followed by the Wilcoxon rank sum test (adjusted by the Benjamini-Hochberg method). For each experimental group, the samples represent biological replicates (n = 8). Box plots indicate median values, quartiles as well as whiskers of the distribution of numerical data. Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

* indicates significance for the pairwise Wilcoxon rank sum test at p < 0.05.

** indicates significance for the pairwise Wilcoxon rank sum test at p < 0.01.

Ncho et al. 33 / 38

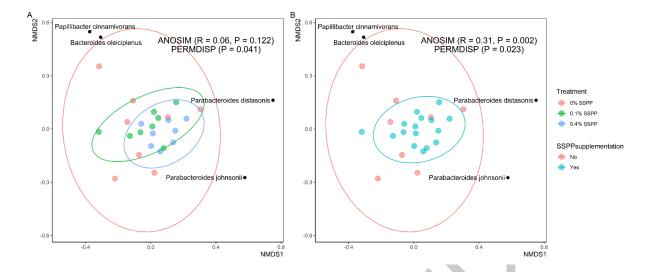


Fig. 2. Non-metric multidimensional scaling (NMDS) plot issued from Bray-Curtis dissimilarity matrix based on relative abundance data of cecal samples. Colored dots represent cecal samples (biological replicates), while black dots are microbial species. Ellipses indicate 95% confidence intervals of multivariate t-distribution around centroids of the groupings with treatments (A) and SSPP supplementation (B) as factors. PERMDISP (p = 0.041 (A); p = 0.023 (B)) revealed lower individual variation in the SSPP-supplemented group, and ANOSIM (R = 0.31, p = 0.002) indicated SSPP-related clustering. Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

Ncho et al. 34 / 38

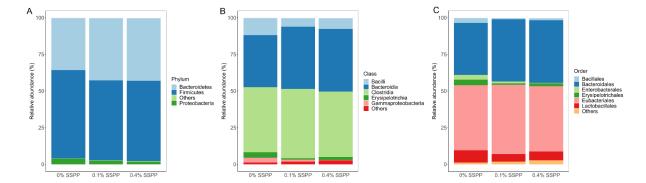


Fig. 3. Microbial composition of broilers' cecal samples. Relative abundances of major phyla (A), classes (B), and orders (C) are depicted in stacked bar plots. Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

Ncho et al. 35 / 38

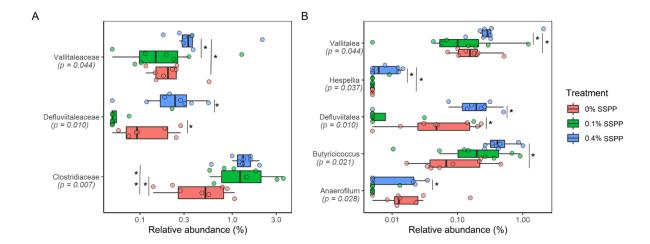


Fig. 4. Relative abundance of significantly different families (A) and genera (B) from broilers' cecal samples. Data were analyzed using the Kruskal-Wallis test followed by the Wilcoxon rank sum test (adjusted by the Benjamini-Hochberg method). For each experimental group, the samples represent biological replicates (n = 8). Box plots indicate median values, quartiles as well as whiskers of the distribution of numerical data. The p values under each taxon were derived from the Kruskal-Wallis test. Treatments are as follows: 0% SSPP, chicks fed with the basal diet; 0.1% SSPP, chicks fed with the basal diet supplemented with 0.1% of SSPP; 0.4% SSPP, chicks fed with the basal diet supplemented with 0.4% of SSPP.

- * indicates significance for the pairwise Wilcoxon rank sum test at p < 0.05.
 - ** indicates significance for the pairwise Wilcoxon rank sum test at p < 0.01.

Ncho et al. 36 / 38

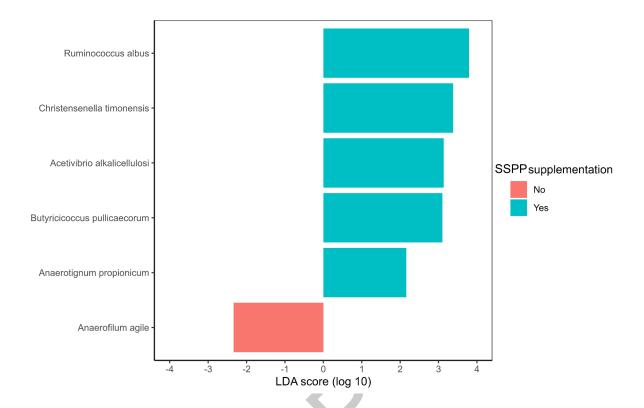


Fig. 5. Linear discriminant analysis (LDA) combined effect size measurements (LEfSe) analysis of cecal microbiota in broiler chickens. The species represented are statistically significant (p < 0.05; | LDA effect size | > 2.0) and play an important role in the control (red) or SSPP-supplemented groups (green).

Ncho et al. 37 / 38

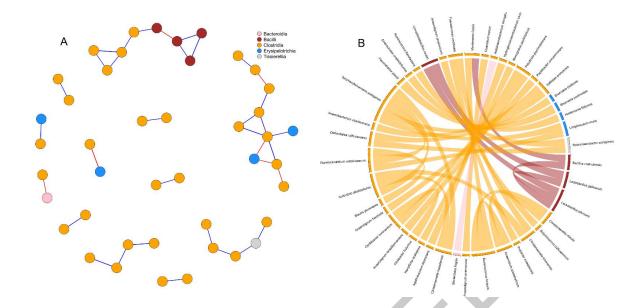


Fig. 6. Network pattern (A) and chord diagram (B) of broilers' cecal microbiota at the class level. Both network and chord diagrams network have been drawn based on Spearman's rank correlation. The significance was set at p < 0.05 and the threshold of correlation was set as $|\mathbf{r}| = 0.65$. In the network (A), the vertexes (circles) correspond to microbial species while the weight of the edges (segments) represents correlations between microbes. Positive correlations are colored in blue while negative correlations are colored in red. In the chord diagram (B), sectors represent the same species described in the network while the thickness of the links is proportional to correlations.

Ncho et al. 38 / 38