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Abstract 1 

Protein-translated mRNA analysis has been extensively used to determine the function of various traits in animals. 2 

The non-coding RNA (ncRNA), which was known to be non-functional because it was not encoded as a protein, 3 

was re-examined as it was studied to actually function. One of the ncRNAs, long non-coding RNA (lncRNA), is 4 

known to have a function of regulating mRNA expression, and its importance is emerging. Therefore, lncRNAs 5 

are currently being used to understand the traits of various animals as well as human diseases. However, studies 6 

on lncRNA annotation and its functions are still lacking in most animals except humans and mice. lncRNAs have 7 

unique characteristics of lncRNAs and interact with mRNA through various mechanisms. In order to make 8 

lncRNA annotations in animals in the future, it is essential to understand the characteristics of lncRNAs and the 9 

mechanisms by which lncRNAs function. In addition, this will allow lncRNAs to be used for a wider variety of 10 

traits in a wider range of animals, and it is expected that integrated analysis using other biological information 11 

will be possible. 12 

Keywords: lncRNA,  Animal traits, lncRNA annotation, lncRNA-mRNA interaction, lncRNA function  13 
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Introduction 14 

Most of the genes refer to a region of a DNA sequence that functions related to animal traits or diseases. Therefore, 15 

gene expression profiling has been used to analyze biological functions (1), and analysis has been conducted by 16 

reading RNA sequences from the transcription process of DNA. However, coding RNAs that are translated into 17 

protein accounts for only about 4% of RNA, and the fact that non-coding RNAs existing in a vast region, which 18 

were treated with no role in the early days, are involved in gene regulation in various ways are being investigated 19 

(2). 20 

Among them, long non-coding RNA (lncRNA), unlike mRNA, is not translated into a protein, despite its 21 

similar sequence structure (3). In a small number of investigations involving animals, plants, and humans, it has 22 

been revealed that lncRNA functions in certain diseases or specific environments. It turns out that lncRNAs, 23 

previously considered to have no role, play many significant roles, the most important of which is to regulate 24 

mRNA expression (4, 5). LncRNAs regulate gene expression in a variety of ways at epigenetic, chromatin 25 

remodeling, transcriptional, and translational levels (6). With the development of Next Generation Suquencing, 26 

lncRNA identification has been performed in humans and plants but also various species of animals. As the studies 27 

progressed, it was found that lncRNA had longitudinal, tissue-specific, and environmental-specific properties, so 28 

various case studies began to progress in various animals (4). Prior studies and database construction are 29 

insufficient in other animals compared to humans and mice, so efforts are underway to continuously discover 30 

lncRNAs with essential functions and to be studied in many livestock animal samples (7-9). However, even after 31 

some time since the importance of lncRNA emerged, many lncRNA transcripts have not been identified in 32 

livestock animals, or the functions of lncRNAs have not been identified properly. Therefore, lncRNA research is 33 

expected to be actively conducted for higher-dimensional bioinformatic analyses and multi-omics integration 34 

(MOI).  35 
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1. RNA 36 

RNA is a polymeric genetic material that plays a vital role in various life phenomena, including control of gene 37 

expression (10, 11). Unlike DNA, RNA is not a pair of double strands but a single-stranded molecule with a short 38 

chain of nucleotides (12). Notably, RNA can be divided into two main categories: messenger RNA (mRNA), 39 

which is coded as protein, and non-cocing RNA (nc RNA), which is not coded (13).  40 

1.1 mRNA 41 

For DNA genetic information to be expressed as a protein, DNA must first be transcribed into RNA, and this RNA 42 

transcribed to be translated into protein is called mRNA (14). With the development of sequencing technology, it 43 

became possible to examine the transcriptome region and to identify genes representing functions. Therefore, 44 

studies on mRNA expression levels under various conditions and bioinformation analysis-related studies using 45 

these results are being actively pursued (15-17). In humans, mRNA is mainly used for pharmaceutical and vaccine 46 

development by enhancing the understanding of the immune system (18-24). Additionally, various studies in mice 47 

are being conducted for use in humans because mice are also very similar in their genes to humans (25-30). 48 

Furthermore, it is widely used for various trait studies in livestock animals. Many mRNA-related studies have 49 

been conducted mainly for the analysis of animal production traits (31-39) and quality traits (40-44),  and they are 50 

also used for research in a wide range of areas, such as milk production (45-48), egg production (49-51), nutrients 51 

(52-54),  stress (55-60), disease (61-64), and reproductive traits (65-71). 52 

1.2 NcRNA 53 

NcRNA refers to RNA that is not translated into a protein (72), and there are many different types of ncRNA. 54 

First, ncRNA can be divided into housekeeping and regulatory ncRNA (Figure 1). Housekeeping ncRNAs include 55 

transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nuclear RNA (snoRNA), 56 

while regulatory ncRNAs include microRNAs (miRNA), small interfering RNA (siRNA), piwi-interacting RNA 57 

(piRNA), and long non-coding RNA (lncRNA) (73).  58 

Housekeeping ncRNAs are essentially expressed and mainly involved in rRNA modification RNA splicing 59 

control (74). tRNA has a complementary anticodon in protein synthesis, which carries the amino acid to mRNA 60 

(75), and rRNA is an RNA that plays a structural role in ribosome formation and contributes to enzyme activity 61 

for protein synthesis (76). Additionally, SnRNA binds with other proteins to form snRNPs, and plays a role in 62 
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recognizing introns in the splicing process (77). SnoRNA is primarily responsible for chemical transformation, 63 

such as rRNA and tRNA (78). Notably, the main difference between the two RNAs is that snRNA influences the 64 

alternative splicing of pre-mRNA molecules to determine which sequence should be translated into proteins. In 65 

contrast, snoRNA participates in tRNA, rRNA, and mRNA editing and genome imprinting (79).  66 

Regulatory ncRNAs can be divided into small RNAs and lncRNAs according to the length of RNA. The 67 

small ncRNA includes miRNA, siRNA, piRNA, and the like. MiRNA is an ncRNA composed of about 22 nt and 68 

functions in RNA silence and regulation of gene expression after transcription (80). Likewise, SiRNA is an ncRNA 69 

composed of approximately 23 nt, which is involved in RNA interference and interferes with gene expression by 70 

inhibiting the production of specific proteins (81). The main difference between the two RNAs is that miRNA 71 

regulates the expression of several mRNAs, and siRNA inhibits the expression of specific target mRNAs (82). 72 

Furthermore, PiRNA consists of about 30 nt, which induces PIWI proteins to cleave the target RNA, promote 73 

heterochromatin assembly, methylate DNA, and regulate gene expression (83). 74 

Among regulatory ncRNAs, RNA molecules greater than 200 nt in length are defined as lncRNA (84). 75 

Although lncRNAs are very similar in structure to mRNAs, they are not translated into proteins and regulate gene 76 

expression through various bases, including epigenetic modification (3). The various lists of annotated lncRNAs 77 

based on resemblance to protein-coding mRNAs account for only 0.05–1.12% of cellular RNA, while functional 78 

intronic RNAs could constitute as much as 16% (85). 79 

The extensive sequences that do not encode proteins (i.e., the majority of the vast regions of intronic and 80 

intergenic sequences) have been regarded as accumulated evolutionary remains arising from the early assembly 81 

of genes and/or the insertion of mobile genetic elements. However, as the aforementioned regulatory ncRNAs 82 

show,  most of these supposedly inert sequences are transcribed and widely employed for gene regulation in cis 83 

and trans (86).  84 
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2. LncRNA 85 

Although the structure of the lncRNA seems similar to that of the mRNA, lncRNA is not coded and exists as a 86 

ncRNA rather than mRNA. 87 

2.1 Generation of lncRNA formation 88 

LncRNAs mostly have a cap at the 5´ end and a poly(A) tail at the 3´ end, presumed to be transcribed similarly to 89 

mRNAs (87). LncRNAs are transcribed by RNA Polymerase II (Pol II) and RNA Polymerase III at several loci 90 

of the genome, most of which are transcribed by Pol II (88). Due to the lncRNA having a weak internal splicing 91 

signal and having a long distance between the 3' splice site and the junction, the lncRNA is spliced more 92 

inefficiently than the mRNA (89-91). The nuclear position and fate of lncRNAs appear to be coordinated by 93 

various causes, ranging from transcription to nuclear export via sequence motifs in cis and factors in trans (4, 92). 94 

Since the arrangement and size of lncRNAs are diverse, it is not well known precisely what biogenesis pathways 95 

they are treated. It is also challenging to understand whether ribosome-related lncRNAs are involved by ribosomes 96 

for translation, so further research is needed (4). 97 

2.2 Genomic characteristic of lncRNA  98 

Unlike small ncRNAs such as siRNAs, miRNAs, and piRNAs, lncRNAs are relatively long and therefore have 99 

poorly conserved properties (93). Compared to mRNA, lncRNA has a shorter transcript length and a smaller 100 

number of exons on average, and many studies have demonstrated these characteristics (94-96). Furthermore, 101 

lncRNA has a shorter open reading frame (ORF) length than mRNA and a relatively low expression level (89, 97, 102 

98). 103 

Also, lncRNA can exist at various locations in the genome (Figure 2) (99). The lncRNA can be present in 104 

the intron region between exon and exon and in the intergenic region between the protein-coding gene (PCG) and 105 

PCG (100). In particular, lncRNAs present in the intergenic region are named long intergenic non-coding RNA 106 

(lincRNA). Additionally, because lincRNA does not overlap with PCG domains or other small RNA genes, it is 107 

relatively easy to conduct research such as the structure and function of lincRNA (101). Although lincRNAs are 108 

similar in many respects to lncRNAs, they are somewhat longer than lncRNAs and are characterized by their 109 

presence in mammalian nuclei (101, 102). Furthermore, LncRNA can also exist in an exonic region where the 110 

lncRNA transcript overlaps the exon portion of the PCG (103). Notably, there are also antisense lncRNAs 111 
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characterized by transcription from opposite strands of PCG (104), which regulate the expression of their 112 

endogenous sense genes (105). 113 

lncRNA has well-known tissue-specific, species-specific, and conditional-specific tendencies. Even the 114 

same individual can express lncRNA differently depending on what kind of tissue it is, and even the same tissue 115 

can express differently depending on the species (96, 106-110). Moreso, the tissue-specific characteristics of 116 

lncRNA demonstrated higher results even when compared to mRNA through the tissue specificity index calculated 117 

numerically in mammals (96, 111). 118 

2.3 Whole genomic of lncRNA identification 119 

Most animals, except humans and mice, do not yet have a well-established lncRNA database, so the process of 120 

identifying novel lncRNA identification for lncRNA analysis should be conducted. Therefore, a new Gene transfer 121 

format (GTF) file is needed to find the novel lncRNA instead of the reference gtf file of the animal containing 122 

only the information of previously known RNA. A merged GTF file is generated based on the transcripts of the 123 

samples to be analyzed and the reference GTF file of the corresponding animal (7, 108, 112). Following the 124 

merged GTF file, only transcripts longer than 200 bp and an open reading frame transcript length shorter than 300 125 

bp are selected. It also considers the positional relationship in the genome between lncRNA and PCG and 126 

designates transcripts consistent with the definition of lncRNA (intergenic, intronic, etc.). Subsequently, it filters 127 

only transcripts with low probability using various tools that calculate the potential for transcripts to be coded as 128 

proteins. Importantly, tools for evaluating coding potential are diverse and can be used flexibly depending on how 129 

to analyze. The transcripts filtered from the sequencing data can be selected and presented as potential novel 130 

lncRNA, and can be used for functional analysis and actual lncRNA sequence verification in the future (113-119).   131 
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3. Interaction lncRNA to mRNA 132 

Among the many known lncRNA functions, a representative and key function is to regulate mRNA expression 133 

including , such as epigenetic modification (3, 4). Therefore, a method of conducting mRNA and lncRNA analysis 134 

is actively used as an experimental design for exploring animal traits. Importantly, it is used in a wide variety of 135 

fields, including production traits (120-123) and quality traits (124-127), milk production (128-130), egg 136 

production (9, 131, 132), stress (133-135), diseases (136) and reproductive traits (137-140).    137 

The types of lncRNA that regulate transcription can be divided into two based on the transcription site and 138 

functional location of the lncRNA. It is classified as cis-acting lncRNA if its functional location depends on the 139 

transcription site, and trans-acting lncRNA if transcribed to exert functions elsewhere without relying on the 140 

transcription site (Figure 3) (141). Notably, a method for obtaining a candidate target gene for cis- and trans-141 

acting lncRNA has not yet been fully established. However, the candidate target gene interacting with cis-acting 142 

lncRNA is primarily a candidate group of PCGs within 100 kb on the same chromosome of lncRNA. In contrast, 143 

the candidate gene interacting with trans-acting lncRNA is a candidate group of PCGs on different chromosomes 144 

(141, 142). 145 

3.1 Cis-acting  146 

As mentioned earlier, the cis-acting mechanism is preferred because lncRNA is less likely to function normally 147 

due to dilution from diffusion and transport to other cellular compartments. After all, the expression level is 148 

generally relatively low (141). 149 

The cis-acting lncRNA can increase or inhibit the expression of target genes through various mechanisms. 150 

The mechanism by which cis-acting lncRNA increases gene expression is closely related to enhancers. These 151 

lncRNAs can be broadly divided into two categories: 1) lncRNAs derived from and transcribed from the enhancer 152 

after mutation or translocation has occurred in the gene enhancer (143, 144), and 2) those transcribed from other 153 

sources that act like the enhancer of the target gene or affect the enhancer (145, 146). These both lncRNAs can 154 

activate the target gene by influencing the target gene’s enhancer or act as the enhancer and activate the target 155 

gene. As a first mechanism, lncRNA transcripts regulate enhancer activity by forming or maintaining chromatin 156 

loops with target genes (147, 148). Additionally, since the lncRNA transcript affects the nuclear localization of 157 

the enhancer, it can increase the expression of the target gene by giving strength to the enhancer as an indirect 158 
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mechanism (149). The cis-acting lncRNA can activate the expression of a target gene by influencing the enhancer 159 

through mechanisms other than spatial interaction. It is an lncRNA that attracts a protein that enhances the 160 

enhancer of the target gene (150-152). There are also cis-acting lncRNAs that activate gene expression 161 

independent of enhancers. The lncRNA is transcribed near the target gene, or the preformed chromatin loop 162 

structure locates the lncRNA near the target gene, thereby increasing the expression of the target gene by attracting 163 

activating factors to the lncRNA (153).  164 

The cis-acting lncRNA not only increases the expression of a target gene but also inhibits it. First, lncRNA 165 

near the target gene can suppress the expression by silencing the target gene's promoter through the enhancer 166 

competition of the target gene (154, 155). In addition, the lncRNA is transcribed near the target gene, or the 167 

preformed chromatin loop structure places the lncRNA near the target gene so that the lncRNA attracts repressive 168 

complexes such as Polycomb repressive complex 2, resulting in the same effect as histone modification. Thus, 169 

gene expression can be inhibited (156). Another mechanism by which cis-acting lncRNA suppresses gene 170 

expression is transcriptional interference. Through nucleosome remodeling, in which nucleosomes are rearranged, 171 

nucleosome occupancy is reduced, or multiple epigenetic modifications, lncRNA that approaches or overlaps the 172 

target gene suppresses the expression of the target gene (157, 158).  173 

Previous studies have revealed that cis-acting lncRNA does not only interact one-to-one with the target 174 

gene. One lncRNA may be involved in the transcription of several target genes, and conversely, it appears that 175 

several lncRNAs may be involved in transcribing a target gene in unison. (4, 141).  176 

3.2 Trans-acting  177 

Unlike cis-acting lncRNAs, trans-acting lncRNAs can interact independently of complementary sequences for 178 

target gene regions (99). Trans-acting lncRNAs function by binding to proteins, DNA, and other RNAs (159). 179 

First, trans-acting lncRNAs can act as post-transcriptional regulatory factors by interacting with RNA-binding 180 

proteins (RBPs). These lncRNAs interact with RBPs to inhibit mRNA splicing and the stability and translation of 181 

mRNAs (160-162). Notably, splicing regulation by lncRNA causes a mutation or transformation in the splicing 182 

regulation sequence of the target pre-mRNA, resulting in the mis-splicing of the mRNA (163). 183 

Trans-acting lncRNAs can also promote or inhibit the stability of mRNA by interacting directly with RNA 184 

through base pairing. This is likely due to the ability to attract proteins involved in mRNA decomposition by 185 

directly base pairing with other RNAs (164, 165). While its existence has been revealed and its importance as a 186 
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post-transcriptional control factor has emerged, research on trans-acting lncRNA is insufficient. Further research 187 

will be needed to clarify the apparent correlation between trans-acting lncRNA and target genes and reveal the 188 

mechanisms by which several trans-acting lncRNAs interact with RBP.  189 
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4. Another function of lncRNA 190 

Until recently, interactions between ncRNAs have rarely been studied. However, recent studies have shown that 191 

lncRNA can interact with miRNA and mRNA (166). Importantly, the lncRNA acts as a sponge to attract miRNA 192 

and competes with PCG, which was supposed to bind to miRNA. This attraction process reduces the target gene 193 

regulation effect of miRNA (167-170). Therefore, studies on high-dimensional access to specific biological 194 

information are being conducted by analyzing the correlation and interaction of 3 RNAs of lncRNA-miRNA-195 

mRNA (171-173). It has also been suggested that some lncRNAs can be preferentially post-processed into 196 

snoRNA (99, 174, 175). As mentioned earlier, the possibility of interaction between lncRNAs or other RNAs is 197 

still open, such as various lncRNAs involved in regulating one mRNA expression. However, further research is 198 

needed as it is unclear. If these mechanisms are revealed, not only will we be able to understand the principles of 199 

lncRNA and mRNA interaction that have not yet been accurately identified, but we will also be able to make much 200 

more expansive use of MOI network research using lncRNA.  201 
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Conclusions 202 

In the past, only studies on mRNA encoded by functional genes were conducted, but now the role of ncRNAs has 203 

been re-examined, and research on this topic is being actively conducted. Among them, lncRNA has a high 204 

probability of being present in many different places on the genome, and it is known that it has many functions. 205 

Therefore, its importance is emerging from these added investigations. As a key function of lncRNA, it can 206 

regulate gene expression through various mechanisms. In addition, since it has tissue-specific and species-specific 207 

characteristics, it is possible to analyze bioinformation using lncRNA from multiple perspectives in particular 208 

tissues of different species. This means that lncRNAs can be used as biomarkers involved in improving 209 

reproductive traits and diseases in mammals, including livestock animals. Therefore, lncRNA exploration and 210 

functional analysis are being conducted to study various animal traits. However, analysis for identifying lncRNA 211 

in animal species other than humans and mice is still lacking, and analysis of the mechanism and function of 212 

lncRNA is insufficient. If studies that can supplement these areas are conducted, it is likely that high-dimensional 213 

MOI analysis using lncRNA will be possible.  214 
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Tables and Figures 620 
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 623 

Figure 1. A schematic diagram of RNA classification. 624 
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 629 

Figure 2. Locations where lncRNA can exist in the genome. lncRNAs present in intergenic regions are called 630 

lincRNA. 631 

 632 
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 636 

 637 

Figure 3. Two mechanisms by which lncRNAs affect PCG expression. (A) lncRNA activates or represses the 638 

expression of pcg in the cis-acting condition. A representative method for PCG regulation of cis-acting lncRNAs 639 

is to affect enhancers. (B) lncRNA activates or represses the expression of pcg in the trans-acting condition. A 640 

representative method for pcg regulation of trans-acting lncRNAs is to affect RBPs. 641 




