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Abstract 25 

The threat posed by increased surface temperatures worldwide has attracted the attention of researchers to the 26 

reaction of animals to heat stress. Spermatogenesis in animals such as stallions is a temperature-dependent process, 27 

ideally occurring at temperatures slightly below the core body temperature. Thus, proper thermoregulation is 28 

essential, especially because stallion spermatogenesis and the resulting spermatozoa are negatively affected by 29 

increased testicular temperature. Consequently, the failure of thermoregulation resulting in heat stress may 30 

diminish sperm quality and increase the likelihood of stallion infertility. In this review, we emphasize upon the 31 

impact of heat stress on spermatogenesis and the somatic and germ cells and describe the subsequent testicular 32 

alterations. In addition, we explore the functions and molecular responses of heat shock proteins, including HSP60, 33 

HSP70, HSP90, and HSP105, in heat-induced stress conditions. Finally, we discuss the use of various therapies 34 

to alleviate heat stress–induced reproductive harm by modulating distinct signaling pathways. 35 

 36 

Keywords: heat stress, fertility, testicular cells, heat shock proteins, spermatogenesis 37 

 38 

Introduction 39 

The current rise in global temperatures is concerning for the horse industry, particularly the stud market, as hot 40 

and humid conditions can negatively influence stallion (Equus caballus) fertility. Spermatogenesis is a 41 

temperature-dependent process that optimally functions at 2°C–4°C below the body temperature (at 35°C) (1). 42 

Testicular hyperthermia due to inefficient scrotal thermoregulation may cause genital heat stress and, 43 

consequently, detrimental effects on spermatogenesis (2). The fertility index and per cycle conception rates of 44 

stallions are low compared with those of other animals because, unlike for other domestic species, the selection 45 

of stallions for breeding depends primarily on racetrack performance record and conformation rather than 46 

reproductive soundness and heritable traits (3). The reduced fertility or complete sterility experienced by most 47 

stallions are consequences of different environmental factors, including incomplete testicular descent, 48 

malnutrition, hormonal imbalances, chemicals, drugs, and elevated scrotal temperature (4). When testicular 49 

temperature increases because of fever, high ambient temperature, or inflammation, the metabolism increases at 50 

a faster rate than the blood flow, consequently rendering the testes hypoxic. Horses are mostly kept for racing 51 

purposes and a considerably high scrotal temperature has been observed during exercise, which may cause 52 

testicular insult and disrupt spermatogenesis (4). 53 

Heat shock proteins (HSPs) are naturally expressed in cells (5). Their expression can be stimulated to protect 54 

the cells in response to stress conditions induced by cellular injury, environmental changes, and high temperatures. 55 
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HSPs are expressed in males and females of numerous species and play a crucial role in the physiology of 56 

reproduction (6). The expression of different HSPs is highly conserved in different parts of the stallion sperm (7), 57 

thereby indicating the role of HSP not only in germ cell development and sperm motility (8) but also in 58 

mitochondrial protein folding, gamete interaction, and signaling associated with capacitation (9).  59 

High temperatures during summer may negatively affect stallion fertility (10), as demonstrated by changes in 60 

hormone secretion and semen quality (11). These effects may be influenced by the age of the stallion and mediated 61 

by the combined effects of obesity and oxidative stress. Management measures, such as using cooling systems, 62 

supplementing diets with antioxidants (12), and scheduling outdoor activities during the cooler parts of the day, 63 

should be considered for mitigating the negative effects of heat stress on stallion fertility. 64 

 65 

Effects of heat stress on stallion fertility 66 

Normal spermatogenesis requires maintaining the testes at a temperature lower than that of the body. When the 67 

testicular temperature rises owing to fever, inflammation, or high ambient temperature, testes become hypoxic as 68 

the metabolism increases more rapidly than the blood flow (13). Hypoxia can cause cell apoptosis, consequently 69 

triggering testicular degeneration (13). Extensive activity substantially increases the core body temperature of 70 

horses to values >41°C (14). The most common testicular thermoregulation methods in animals involve scrotal 71 

sweat glands, scrotal muscle relaxation, heat loss from the scrotal surface, and the arteriovenous countercurrent 72 

heat exchange mechanism at the pampiniform plexus (15). Optimum stallion fertility requires appropriate 73 

thermoregulation. A study conducted by Carlos et al. reported that rectal and body surface temperatures following 74 

sun exposure were increased, whereas the scrotal surface temperature (SST) remained unchanged owing to 75 

efficient thermoregulation in stallions (16). The inability to thermoregulate scrotal temperatures causes testicular 76 

hyperthermia and genital heat stress, which are harmful to spermatogenesis and result in low-quality spermatozoa 77 

(2). Furthermore, numerous testicular insults can alter the chromatin structure of spermatozoa, inducing 78 

spermatozoal DNA denaturation (17). Love and Kenney reported that stallion spermatozoa with denatured DNA 79 

contain fewer disulfide bonds and exhibit increased DNA sensitivity to denaturation (18). They further observed 80 

that the vulnerability of spermatozoal DNA to denaturation depended on the spermatogenic cell stage at the time 81 

of heat shock (18). Reduced fertility has been linked to a higher rate of spermatozoal DNA denaturation in bulls 82 

(19) and humans (20), probably because the extent of intramolecular and intermolecular disulfide bonds of the 83 

protamine molecule plays a crucial role in the decondensation process that occurs immediately after fertilization. 84 

Additionally, the number of disulfide bonds in the spermatozoal nucleus affects the time of decondensation (21), 85 
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and this timing probably depends on the type of protamine present (22). Thus, the male and female genomes need 86 

to decondense to unite and form a zygote (23). 87 

Horses are primarily housed for racing purposes. High intensity exercise considerably increases the core body 88 

temperature to values of >41°C (24). Therefore, ambient airflow is critical during exercise to control SST and 89 

avoid potential damage to spermatogenic cells due to heat stress in stallion (25). Previous studies have reported 90 

that stallions experienced the exercise either through riding or treadmill wearing the suspensory have a significant 91 

influence on SST (26). The SST was 2°C higher in the stallions wearing a suspensory than in those without a 92 

suspensory (26). Reportedly, a small but recurrent rise in subcutaneous scrotal temperature of 1.4°C–2.0°C 93 

considerably reduced fertility in ram (27). The superficial testicular veins rapidly respond to variations in SST, 94 

and these changes influence the temperature of testicular arterial flow through heat exchange in the pampiniform 95 

plexus (28). Therefore, it is recommended to remove the suspensory immediately after exercising to maintain 96 

ambient airflow and prevent any heat stress to the spermatogenic cells. Thus, reduced sperm quality and 97 

maturation may be associated with elevated testicular temperatures. Indeed, the morphological defects and sperm 98 

head alterations positively correlate with SST in stallions (16). 99 

 100 

Effects of heat stress on the different testicular cell types in stallions 101 

Different testicular cell types respond differently to heat stress in terms of sensitivity, response, and 102 

physiological and pathological changes. However, spermatogenic cells are more susceptible to heat stress–induced 103 

damage than other cells as they undergo cell division frequently and lack superoxide dismutase (29). Study 104 

revealed that spermatocytes and mature sperm cells are sensitive to temperature and that zygotene and pachytene 105 

spermatocytes and early round spermatozoa are the cells most susceptible to heat damage in rats (30). Recently, 106 

our research team reported increased apoptosis of testicular cells, including somatic and spermatogonial stem cells, 107 

under heat stress in cell culture conditions compared with that at normal temperatures (in press). Another study 108 

involving porcine testes reported significantly higher Bcl-2 protein and mRNA expression levels following heat 109 

treatment than those in controls, indicating that apoptotic signals were stimulated under heat stress conditions and 110 

that spermatocytes and spermatids comprised the most affected cell types (31). Heat negatively impacts the 111 

integrity of spermatocytes and breaks double-stranded DNA; thus, DNA damage constitutes an additional cause 112 

of heat stress–induced apoptosis during spermatogenesis (32). Furthermore, heat stress may induce aberrant sex 113 

chromosome segregation during meiosis, producing unpaired Y chromosomes and consequently triggering 114 

spermatocyte apoptosis. DNA repair during spermatogenesis in developing germ cells is important for meiotic 115 

recombination (33). Recently, the role of deleted in azoospermia-like (DAZL), present in the different germ cell 116 
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types (differentiated spermatogonia and primary spermatocytes) of stallion testes (34), in germ cell fate has been 117 

discovered. Endogenous DAZL is involved in generating stress particles, including 40S ribosomal subunits, RNA-118 

binding proteins, translation initiation factors, and polyadenylated mRNAs, that react to different environmental 119 

stresses and are implicated in spermatocytes survival (35). Moreover, thermal damage affects spermatogonial 120 

stem cells (SSCs), although SSCs mostly recover independently and rarely undergo heat stress–induced apoptosis. 121 

A previous study revealed that heat treatment in SSCs changed the self-renewal, protein localization, and protein 122 

folding, causing cell cycle arrest, but did not substantially alter the expression levels of apoptosis-related genes 123 

(36). Undifferentiated transcription factor 1 (UTF-1) is reportedly expressed in undifferentiated spermatogonia 124 

(34) and DDX4/MVH (VASA) is expressed in the cytoplasm of spermatogonia, primary spermatocytes, and round 125 

spermatid in stallions. VASA immunolabeling intensity is substantially greater in pachytene spermatocytes than 126 

in spermatogonia and round spermatids (37). Recently, our laboratory (data not published) detected no significant 127 

difference in the UTF-1 mRNA expression levels between normal and cryptorchism stallion testes, whereas the 128 

VASA mRNA expression levels were significantly lower in cryptorchidism testes than in normal testes. These 129 

results further strengthen the hypothesis that heat stress does not exert a long-lasting effect on SSCs and that 130 

pachytene and primary spermatocytes are the cell types most affected by heat stress. 131 

Leydig cells, located within the Leydig portions of seminiferous tubules release testosterone, which is 132 

controlled by gonadotropin-releasing hormone released from the hypothalamus. Leydig cells produce >95% 133 

testosterone in mammals (38). There is a significant association between the testosterone levels of stallions and 134 

their fertility. Inoue et al. reported that azoospermic stallions exhibit considerably lower testosterone levels than 135 

normal adult stallions (39). Furthermore, in another study, the serum testosterone levels in stallions found 136 

significantly different in hot summer conditions (11). Lipids are precursors of androgen synthesis (40). When 137 

mouse Leydig cells are exposed to heat stress, there is an increase in lipid accumulation which suggests that heat-138 

shocked cells experience a disruption in testosterone production. In rats induced with scrotal hyperthermia, the 139 

number of testosterone-positive Leydig cells was considerably lower than that in the control group, as 140 

demonstrated via immunohistochemistry (41). Studies have revealed that, following heat treatment, the expression 141 

levels of the androgen receptor and junction-associated proteins, such as occludin and zonula occludens-1 (ZO-142 

1), is significantly reduced in SSCs (42). 143 

Sertoli cells are essential components of the brain–testis barrier (BTB) and are the principal supporting cells of 144 

the spermatogenic epithelium, supplying the nutrients and support required for spermatogenic cell development 145 

(43). The BTB is essential for spermatogenesis and plays a crucial role in testicular physiology and pathology 146 

(44). Increase in testicular temperature disrupts the function and shape of Sertoli cells, leading to infertility and 147 
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germ cell death. Recently, our laboratory reported significantly high apoptosis rate in the testicular cells of 148 

stallions subjected to heat stress in vitro (in press). Alterations in various BTB-associated proteins due to scrotal 149 

heat stress induce ultrastructural BTB damage and reversible spermatogonial cell dedifferentiation (45). Cai et al. 150 

reported that, following 48 h of brief heat treatment (30 min) at 43°C, the protein and mRNA expression levels of 151 

the tight junction molecules ZO-1 and occludin in the BTB of mice drastically decreased, resulting in loose tissue 152 

and high permeability (46). Further, they demonstrated that the expression levels of two proteins, Wilms’ Tumor 153 

1 protein and transferrin, which are markers of Sertoli differentiation and secretion function, were reduced in 154 

Sertoli cells. Additionally, the organization of microtubule (⍺- and ß-tubulin) and microfilament (f-actin) networks 155 

was lost, suggesting that cytoskeletal changes occur under thermal stimulation (42). Moreover, thermal 156 

stimulation alters the expression levels of the BTB components, including ZO-1, connexin 43, claudin 1, claudin 157 

5, and vimentin, as well as the expression levels of mRNAs encoding the inflammatory cytokines interleukin (IL)-158 

1α, IL-1 β, and IL-6 (47). Thus, heat treatment induces the breakdown of cell junctions (42) and disrupt the 159 

spermatogenesis. 160 

 161 

Functions of heat shock proteins in stallion spermatogenesis 162 

Heat shock proteins (HSPs) were discovered in cells exposed to high temperatures. They constitute a very 163 

intricate and well-preserved cellular defense system and play a crucial role in maintaining cell viability in 164 

unfavorable environmental circumstances. HSPs perform two key tasks. First, they function as molecular 165 

chaperones under physiological circumstances, facilitating the transport and folding of other intracellular proteins 166 

alongside assembling proteins into oligomeric structures in certain situations. However, HSPs do not constitute 167 

the final protein structure. Furthermore, HSPs play vital functions in intracellular trafficking, preserving proteins 168 

in their inactive states, and preventing protein breakdown (48). Second, HSPs are selectively expressed in response 169 

to various stressors, including temperature variation, inflammation, bacterial and viral infections, heavy metals, 170 

and free oxygen radicals (49). The term “heat shock response” denotes the stress-induced activation of heat shock 171 

genes and is widely observed in clinical conditions, such as circulatory and hemorrhagic shock and ischemia. 172 

Cellular stress alters the tertiary structure of proteins, exerting negative consequences on cellular metabolism. 173 

However, a “stress tolerance” phenomenon induces HSP expression and protects cells from insults as HSPs 174 

interact with intracellular polypeptides to prevent improper protein assembling or denaturation (6). The molecules 175 

in the heterogeneous family of HSPs are often categorized based on their molecular weight as HSP60, HSP70, 176 

HSP90, or HSP105. Numerous molecular complexes with receptor functions have been detected in the sperm tail 177 

and midpiece of spermatocytes. HSPs may be components of receptors that are either directly engaged in 178 
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controlling motility or indirectly involved in promoting the folding of the hormone-binding domain of receptors 179 

to a high-affinity hormone-binding conformation (7). 180 

HSP60 immunoreactivity was detected in the midpiece of spermatocytes of various animals, including stallions 181 

(7). HSP60 facilitates the ATP-dependent proteolytic destruction of misfolded or denatured proteins by 182 

participating in mitochondrial protein folding (50). Owing to the significant resemblance between its bacterial and 183 

human amino acid sequences, HSP60 is well recognized as a key autoantigen in various autoimmune disorders 184 

and pathogenic infections (51). In stallions, HSP60 expression has been correlated with environmental 185 

temperature and semen quality and exposure of high temperature leads to low semen quality and decreased male 186 

fertility (52). Albrizio et al. reported that the highest HSP60 expression levels were recorded in stallion 187 

spermatozoa during the months with the highest total number of hot days (9). However, the HSP60 expression 188 

levels were the lowest in December. Reportedly, photoperiod influences horse reproduction (53), and fall and 189 

winter anestrus are characterized by short daylengths. Therefore, we hypothesize that photoperiod affects HSP 190 

expression levels. HSP60 is involved in regulating apoptosis of cells, including Sertoli cells and spermatogonia. 191 

In a study involving monkeys, an increase in apoptotic spermatocytes and round spermatids and HSP60 expression 192 

levels was observed on days 3, 8, and 30 following a temporary rise in testicular temperature (43°C once/day for 193 

2 consecutive days) (54). The antiapoptotic effects of HSP60 and HSP10 have been demonstrated in several cell 194 

types. Additionally, the expression of these two proteins may be upregulated in response to cellular stress (55). 195 

Shan et al. overexpressed HSP60 and HSP10 and discovered that both HSPs independently influence the post-196 

translational modifications of the members of the Bcl-2 protein family (56). Furthermore, HSP60 overexpression 197 

was linked with greater Bax suppression, more pronounced Caspase 3 inhibition and improved Bcl-xl induction 198 

along with downregulated Bad in doxorubicin-treated cells (56). These findings indicate that HSP60 induces 199 

antiapoptotic properties in cells, including somatic and germ cells. Recent research has shown that HSP60, in 200 

addition to providing protection against stress, is important for sperm's ability to fertilize eggs, and it has been 201 

postulated that the immunological response of these HSPs may play a role in male infertility (57). 202 

HSP70 is one of the most common chaperone proteins. According to previous research, HSP70 plays a major 203 

role in the biological processes including protein synthesis and energy metabolic processes for sperm motility 204 

(58). HSP70 is essential for spermatogenesis as it protects cells from oxidative stress and apoptosis (59) and plays 205 

a role in sperm maturation and sperm–egg recognition (60). It is expressed in mature sperm and male germ cells 206 

during spermatogenesis in mice (61), humans (62), bulls (63), boars (64), and stallions (7). The localization of 207 

HSP70 is highly conserved among species and between fresh ejaculate and after capacitation and acrosomal 208 

reaction. Volpe et al. reported HSP70 localization in boar sperm on the equatorial segment in a triangular region, 209 

ACCEPTED



10 

 

whereas the fluorescent signal shifted to the subequatorial band following the capacitation and acrosomal reaction 210 

(AR). Only ~50% freshly ejaculated spermatozoa of a stallion demonstrated a positive signal for HSP70 in a thick  211 

postacrosomal band; conversely, this signal was visible in ~85% spermatozoa following the AR stimulation. The 212 

immunolocalization of HSP70 in the subequatorial region of stallion sperm and the increase in this localization 213 

following capacitation and AR indicates the significant role of HSP70 in sperm maturation (7). According to a 214 

recent study conducted by Albrizio et al., HSP70 expression in stallion semen is directly proportionate to the 215 

duration of daylight (9). Indeed, the expression levels of HSP70 increases during the breeding season, decreases 216 

during the fall transition and winter season, and finally increases again during the spring transition. In the same 217 

study, Albrizio et al. also investigated the positive correlation between environmental variables and equine semen 218 

quality as well as sperm kinetics, including total motility, progressively motile sperm percentage, and average 219 

path velocity (9). Similar research conducted in goats revealed that the HSP70 mRNA levels were higher during 220 

the peak summer season than during the peak winter season. These results indicate that HSP70 expression is 221 

directly correlated with semen quality in stallions (65). Conversely, Erata et al. reported that alongside increase 222 

in DNA damage, the HSP70 expression levels increase in the sperm of infertile men (66). Furthermore, in vitro 223 

experiments revealed that treatment with an anti-HSP70 antibody decreases fertilization rate in a dose-dependent 224 

manner, indicating that HSP70 is important for the interaction between sperm and oocytes (64). Further research 225 

on HSP70 expression will be beneficial for comprehending its precise function and may contribute to improving 226 

assisted reproductive technologies to tackle male infertility.  227 

HSP90 is a highly abundant and ubiquitous chaperone protein that plays a crucial role in cell survival, cell cycle 228 

regulation, and hormone and other signaling pathways. Volpe et al. first reported HSP90 expression in stallion 229 

spermatozoa. Although HSP90 immunoreactivity sometimes appears in the neck or midpiece, it is mostly detected 230 

throughout the tail of spermatozoa. Capacitation and AR do not appreciably change the HSP90 localization of 231 

stallion spermatozoa. The tail location of HSP90 in the mature fresh semen of stallions may be crucial for the 232 

signaling processes involved in capacitation, and thus, HSP90 may impact the fertilization ability of spermatozoa. 233 

Nitric oxide (NO) is a proven essential component of several signaling pathways regulated via cAMP and protein 234 

kinase A (PKA) (67), which induce tyrosine phosphorylation (68). HSP90 efficiently activates NO synthase 235 

(NOS), thereby stimulating NO synthesis (69). PKA in the fibrous sheath of the sperm flagellum has been related 236 

to tail-associated tyrosine phosphorylation that occurs only in the midpiece and principal tail regions of the 237 

capacitated spermatozoa of stallions (70). HPS90 possibly significantly influences sperm motility. HSP90 may 238 

interact with its protein partners engaged in signaling cascades or with the hormone-binding domains of receptors 239 

located on the sperm tail to modulate the motility of subcellular structures, such as the axoneme or thick outer 240 
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longitudinal fibers. Both treatment with the HSP90-specific inhibitor geldanamycin (8) and decreased HSP90 241 

levels during cooling or after cryopreservation reportedly reduce porcine sperm motility (71). HSP90 plays a role 242 

in maintaining the integrity of mitochondria in sperm cells. It is a chaperone protein that helps fold and stabilize 243 

other proteins in the cell. Reportedly, HSP90 interacts with several proteins involved in mitochondrial function in 244 

sperm. One study reported that HSP90 is required for the proper assembly and stability of the mitochondria-245 

associated membrane (MAM), a structural and functional unit that connects the endoplasmic reticulum (ER) and 246 

mitochondria in cells. The MAM is imperative for maintaining mitochondrial integrity and regulating calcium ion 247 

flow between the ER and mitochondria. In sperm cells, the MAM maintains the structural integrity of the 248 

mitochondria and ensures that the mitochondria can provide the energy required for sperm motility. The 249 

dysregulation of HSP90 or the MAM causes defects in mitochondrial functions and impairs sperm motility (72). 250 

Additionally, HSP90 mRNA levels increase in migrating primordial germ cells (PGCs), and reducing HSP90 251 

activity delays cell cycle progression, in turn causing defects and compromising the arrival of PGCs to their 252 

destination, i.e., the area where the gonad develops (73). Because cells spend a longer time in the S/G2/M stages 253 

during low HSP90 activity conditions compared with high HSP90 activity conditions, it might decrease cell 254 

displacement and compromise PGC polarity, thereby preventing cells from rapidly reacting to dynamic changes 255 

(73). High HSP90 levels in the presence of testosterone boost DNA methylation in testicular cells. Testosterone-256 

treated rats with varicoceles exhibit higher HSP90 expression levels in spermatogonia, spermatocytes, round 257 

spermatids, and Sertoli cells than untreated rats with varicoceles. In line with this data, HSP90 has been involved 258 

in the protection and repair of DNA in germ cells and spermatozoa level (74) by promoting protein folding, 259 

preventing protein aggregation (75), tightening and condensing chromatic structure, and facilitating chromatin 260 

remodeling (76). Obesity negatively impacts spermatogenesis, sperm morphology, and sperm count. Increasing 261 

HSP90 expression levels in response to an obesity-induced stress state preserves the nucleotide and protein 262 

contents and cellularity of the testes, ultimately preserving male fertility. A recent study reported high HSP90 263 

expression levels in pachytene spermatocytes and round and elongated spermatids in obese rats (77). In the same 264 

study, researchers also reported a relatively high proportion of HSP90-positive cells among the cells in the 265 

seminiferous tubules and high HSP90 expression levels in the total germ and Sertoli cells (77). 266 

The 105-kDa HSP, also known as HSP105 alpha, is a member of the high molecular mass HSP family. Although 267 

it is constitutively expressed, it may be activated in different mammalian cells, including germ cells, via various 268 

stressors (78). Depending on the cell type and the nature of the disturbance, HSP105 alpha may protect neuronal 269 

cells from apoptosis (79) or promote the death of embryonic cells in response to stress (80). Zhang et al. 270 

investigated changes in HSP105 expression during spermatogenic recovery before and after heat exposure of 271 
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monkey testes (54). They found a marked decrease in the number of spermatids and expression levels of HSP105 272 

from days 3 to 30 following heat treatment. Additionally, once the cells had recovered from the thermal stress, 273 

the HSP105 expression levels returned to the pretreatment levels. Based on these changes due to heat stress, we 274 

hypothesize that either HSP105 expression levels reduced because of heat-induced germ cell death or the germ 275 

cells underwent apoptosis because of the diminished ability of HSP105 to protect spermatids (54). At high 276 

temperatures, nuclear chromatin is condensed in the scrotum, further activating p53 and inducing its translocation 277 

toward the nucleoplasm where it induces cell cycle arrest or cell death (81). Notably, elevated scrotal temperatures 278 

may promote HSP105 binding to p53, thereby retaining p53 in the cytoplasm and preventing it from exerting its 279 

nuclear functions. Therefore, this HSP105-dependent p53 stability may stop p53 from initiating apoptosis (82). 280 

Overall, we infer that HSP105 is involves in the heat-induced death of germ cells. 281 

 282 

Possible supplementation and management measures for preventing heat stress–induced stallion infertility 283 

Combating heat stress in high-temperature climatic conditions is challenging. Research involving the effects of 284 

different antioxidants, neuroendocrine hormones, and traditional herbs in laboratory animals and other livestock 285 

species subjected to heat stress has considerably progressed. However, such studies are scarce in stallions, and 286 

comprehensive studies are warranted to confirm the ability of these remedies to maintain optimum fertility in heat 287 

stress conditions. 288 

Antioxidant compounds, such as vitamin C, reportedly alleviate oxidative stress and reduce the risk of cellular 289 

damage. Particularly, vitamin C is an effective water-soluble antioxidant as it can neutralize reactive oxygen 290 

species (ROS) in the water phase and prevent lipid peroxidation (83). In vitro studies have demonstrated that 291 

prophylactic treatment with vitamin C partially protects Sertoli cells from short-term heat stress in mice. 292 

Supplementation with 20 or 50 μg/ml vitamin C considerably increases the viability of TM4 Sertoli cells under 293 

heat stress conditions. Additionally, pretreatment with vitamin C reduces oxidative stress, increases HSP 294 

expression levels, and prevents microtubule aggregation in Sertoli cells. These effects potentially help mitigate 295 

Sertoli cell apoptosis due to heat stress and restore the protective function of the BTB toward germ cells (84). 296 

Melatonin, a hormone produced by the pineal gland (85) and also synthesized in the testes (86), exhibits potent 297 

antioxidant properties. It activates various antioxidant enzymes, scavenges free radicals, and protects against 298 

inflammation in the testes (87). In mice, melatonin injection (20 mg/kg per day) before hyperthermia induction 299 

alleviates reproductive damage by inhibiting the apoptotic JNK and p38 MAPK signaling pathways, thereby 300 

reducing apoptosis and oxidative stress. Melatonin treatment following heat stress improves the histological 301 

indices in the seminiferous epithelium, germ cells, and testes in mice and strengthens the integrity of Sertoli cells 302 

ACCEPTED



13 

 

tight junctions (88). These findings suggest the potential of melatonin for treating subfertility or infertility due to 303 

various testicular hyperthermia factors. 304 

Additionally, traditional medicines can used to alleviate heat stress–induced reproductive harm. Korean red 305 

ginseng (KRG) is a traditional herb commonly used to increase libido and improve male fertility (89). A study 306 

involving rats reported that the administration of KRG extracts during long-term heat stress upregulates the protein 307 

and mRNA levels of antioxidant enzymes (glutathione peroxidase 4, glutathione S-transferase μ5, and 308 

peroxiredoxin 4) in the testes. The administration of KRG at a dose of 100 mg/kg/day counteracts the changes in 309 

these heat stress–induced antioxidant indices in the testes, thereby improving the resistance of the testes to 310 

oxidative stress due to heat and enhancing the physiological functions of the testes. Therefore, KRG provides a 311 

conducive environment for spermatogenesis (90). These findings suggest that KRG is a promising therapeutic 312 

agent against hyperthermia-induced male infertility. Previous study has demonstrated that baicalin, a flavonoid 313 

present in Scutellaria baicalensis, exhibits a range of pharmacological activities (91). These include the ability to 314 

reduce cellular stress and apoptosis (92). Pretreatment with baicalin also reduces the expression of P-JNK, FAS, 315 

FASL, caspase-9, caspase-3, and APAF-1, suggesting that baicalin inhibits the FAS/FASL apoptosis pathway in 316 

Sertoli cells of heat-stressed mice (93). The edible plant Angelica keiskei (Ashitaba keiskei), native to Japan, 317 

contains the active ingredients xanthoangelol and 4-hydroxyderricin, which constitute the primary polyphenol 318 

compounds of the plant and possess antiobesity, hypotensive, and antidiabetic activities alongside other beneficial 319 

properties (94). Supplementation with Ashitaba powder (AP) prevents the reduction in HSPa11 and HSPa2 320 

expression levels due to short-term heat stress in the testicular cells of mice. The HSPa11 and HSPa2 expression 321 

levels in the testes are crucial for fertility. Furthermore, AP may reduce heat stress–induced ROS production by 322 

enhancing the glutathione synthase and heme oxygenase-1 expression levels. The AP-mediated increase in the 323 

activities of HSPs and antioxidant enzymes mitigate the toxic effects of heat stress, including ROS generation 324 

(95). Thus, AP supplementation may help prevent heat stress–induced male infertility. In another study, in 325 

seminiferous tubules, quercetin supplementation decreased the rate of apoptosis of germ cells while maintaining 326 

the interstitial stroma, seminiferous tubule architecture, germinal, and Sertoli cells under heat stress conditions 327 

(96). Study showed, in TM3 Leydig cells exposed to heat stress, zinc supplementation was demonstrated to be a 328 

possible protective factor against apoptosis and decreased testosterone synthesis (97). In conclusion, 329 

supplementation with the abovementioned antistress remedies and implementing management measures should 330 

enable the minimization of the risk of heat stress–induced infertility in stallions. Numerous management measures 331 

can be enforced, such as 1) providing adequate shade to horses, either in the stable or on the track, to reduce their 332 

body temperature; 2) removing the suspensory immediately after exercise to avoid potential heat-induced harm to 333 
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spermatogenic cells; 3) ensuring proper hydration by providing horses with an ample supply of water, particularly 334 

during hot weather conditions, to help maintain hydration levels and prevent heat stress; 4) utilizing cooling 335 

techniques, such as hosing the horses down with cool water or applying ice packs to their necks and chests to 336 

lower their body temperature; 5) adjusting the workload during hot weather conditions by reducing the intensity 337 

and duration of the exercise to prevent heat stress; 6) providing adequate transportation to the horses in well-338 

ventilated trailers with access to water; and 7) closely monitoring the behavior and appearance of horses and being 339 

vigilant for signs of heat stress, such as excessive sweating, increased respiratory rate, and decreased appetite. By 340 

implementing these strategies, it is possible to help prevent heat stress and mitigate its negative effects on stallion 341 

fertility. 342 
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