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Abstract 7 

Most carcass and meat quality traits are moderate to highly heritable, indicating that they can be improved through 8 

selection. Genetic evaluation for these types of traits is performed using performance data obtained from commercial 9 

and progeny testing evaluation. The performance data from commercial farms are available in large volume, however, 10 

some drawbacks have been observed. The drawback of the commercial data is mainly due to sorting of animals based 11 

on live weight prior to slaughter, and this could lead to bias in the genetic evaluation of later measured traits such as 12 

carcass traits. The current study has two components to address the drawback of the commercial data. The first 13 

component of the study aimed to estimate genetic parameters for carcass and meat quality traits in Korean Hanwoo 14 

cattle using a large sample size of industry-based carcass performance records (n=469,002). The second component 15 

of the study aimed to describe the impact of sorting animals into different contemporary groups based on an early 16 

measured trait and then examine the effect on the genetic evaluation of subsequently measured traits. To demonstrate 17 

our objectives, we used real performance data to estimate genetic parameters and simulated data was used to assess 18 

the bias in genetic evaluation. The results of our first study showed that commercial data obtained from 19 

slaughterhouses is a potential source of carcass performance data and useful for genetic evaluation of carcass traits to 20 

improve beef cattle performance. However, we observed some harvesting effect which leads to bias in genetic 21 

evaluation of carcass traits. This is mainly due to the selection of animal based on their body weight before arrival to 22 

slaughterhouse. Overall, the non-random allocation of animals into a contemporary group leads to a biased estimated 23 

breeding value in genetic evaluation, the severity of which increases when the evaluation traits are highly correlated. 24 

Keywords: Hanwoo, carcass traits, heritability, genetic evaluation, commercial data, simulation study. 25 
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1. INTRODUCTION   27 

In South Korea, genetic evaluation was performed with data obtained from progeny testing and commercial data to 28 

improve carcass and meat quality traits of Hanwoo beef cattle (1). Recently, a genetic breeding program has started, 29 

and many studies assess the use of genomics in small sample sizes (1-7). Higher to moderate heritabilities were 30 

reported for most carcass traits and marbling scores (2-5, 7-12). Other traits such as meat and fat colour were moderate 31 

to lower heritable in Hanwoo cattle (2, 3, 5, 7-11). Carcass and meat quality traits have a major influence on the 32 

profitability of beef production but represent a challenge since they are often hard to measure and select for. This is 33 

because carcass traits cannot be recorded on selection candidates and therefore time-consuming progeny tests are often 34 

used to gain selection accuracy. Due to this cost, breeders often look to commercial animals recorded for carcass 35 

performance. Performance records on commercial animals are interesting because  the large number of animals being 36 

harvested, which presents opportunities to improve accuracy at a perceived low cost (13). However, there are often 37 

drawbacks to this commercial data due to the production management strategies. For instance, animals are usually 38 

recruited or sorted into management groups according to their weight, and similarly, they arrive in abattoirs in 39 

homogenized cohorts.  Such selective formation of contemporary groups referred to as ‘harvesting’ could lead to 40 

biased evaluation of genetic merit.  41 

Sources of bias in genetic evaluation have been discussed widely in literature (14). The main sources of bias in animal 42 

breeding are non-random selection of animals for breeding (parental selection), sequential selection, culling of animals 43 

before records, preferential treatment, selective reporting, and misclassification or manipulation of contemporary 44 

groups (15). Regardless of the source of information, genetic evaluation methods can be used to account for non-45 

genetic effects (14). Various methods have been deployed for genetic evaluation in livestock and mixed model 46 

evaluation of single and multiple traits (16-19). For unbiased genetic evaluation, fixed effects, such as a contemporary 47 

group, and covariates such as age, live weight and carcass weight are fitted in the model to account for non-genetic 48 

factors (20). For instance, adjustment of slaughter endpoints such as harvesting age and weight has an impact on 49 

genetic evaluation, Pollott, Guy (21) found that the heritability for daily carcass weight gain was higher with slaughter 50 

at fixed weight (h2 =0.63 ) than at fixed age (h2 = 0.11), indicating that animals can attain similar slaughter weight at 51 

different age. In general, field data are consistently provided by herds in which artificial selection is continuously 52 

occurring and where heavier animals are sent first to slaughterhouses. Consequently, the usual assumption of random 53 

sampling invoked for estimation and prediction (22) is no longer valid in genetic evaluation. The extent of a possible 54 
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bias in genetic evaluation can be evaluated using simulated data instead of field data. The first component of this study 55 

aimed to estimate genetic parameters for carcass and meat quality traits in Korean Hanwoo cattle using industry-based 56 

carcass performance records. Following, we aimed to assess the impact of sorting animals based on early measured 57 

traits on the genetic evaluation of subsequently measured traits using simulated data. 58 

2. MATERIALS AND METHODS 59 

2.1. Commercial data 60 

All phenotypic and pedigree data used in the present study were obtained from the Republic of South Korea. 61 

Individuals without a record of sire or dam were discarded from the data. After filtering the raw data, 469,002 Hanwoo 62 

cattle from 3,464 distinct farms were used in the analysis. The pedigree file comprised 1.23 million ancestors over 13 63 

generations, including 646 sires and 390,166 dams in the analysis. The animals were born between the year of 2008 64 

and 2014, and slaughtered between the ages of 28 and 35 months. All studied traits were recorded between the years 65 

2010 and 2016.  66 

2.1.1. Modelling of fixed effects 67 

 A preliminary analyses of variance was performed using the linear model in R (R-Core-Team, 2018) to identify the 68 

most appropriate fixed effects (contemporary groups) to be used in the subsequent analyses for all studied traits. The 69 

most significant factor was the interaction between herd (3,646 herds), birth-year (7-levels), and birth-season (4-70 

levels), which were combined to form the contemporary group.  The final dataset consisted of 469,002 animals from 71 

31,403 contemporary groups (Table 1). A contemporary group of herd-year-season (HYS) with less than five records 72 

was omitted from the analysis. The distribution of animals across various ages and herds, as well as animals born in 73 

each year, and season, are shown in Figure 1. The description of population structure, as well as the distribution of 74 

animals across age, herd, birth year, and season are summarized in Table 1 and Figure 1. [Insert Table 1 and Figure 75 

1] 76 

2.1.2. Carcass traits 77 

All individuals were slaughtered at various ages (28-35 months), and phenotypic measurements were taken on the 78 

chilled carcass. Phenotypic data on carcass traits included carcass weight (CWT), eye muscle area (EMA), backfat 79 

thickness (BFT), bodyweight at slaughter (BW), and meat-index (MI). EMA and BFT were measured at the 12th and 80 

13th rib junction after a 24-h chill, and cold CWT measurement was taken at that time. The fasted live body weight 81 

(BW) in kilogram was taken prior to transport to the abattoirs. Only 52% of animals in the dataset had bodyweight 82 
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records at slaughter. The meat index (MI) represents the retail cut percent, which is predicted from a linear index of 83 

carcass weight (kg), eye muscle area (cm2), and backfat thickness (mm). MI=68.184-[0.625 * BFT] + [0.130 * EMA]-84 

[0.024 * CWT] + 3.23  85 

2.1.3. Meat quality traits 86 

Meat quality traits included marbling score (MS), meat colour (MC), fat colour (FC), and meat texture (MT) which 87 

were each graded at the time when carcass traits were measured. Marbling score was recorded based on visual 88 

inspection by trained technicians using the Beef Marbling Standard (BMS) for grading the carcass. The BMS system 89 

classifies the meat from 1 to 9 scale of marbling, with a 2% intramuscular fat content difference between each point 90 

score (23). Similarly, trained technicians graded the other three traits (MC, FC, and MT) manually. Meat colour was 91 

assessed and graded from very light red (grade 1) to dark red (grade 7). Similarly, the FC was assessed and graded 92 

from polar white (grade 1) to creamy yellow (grade 6). The texture of the meat was evaluated on a scale from very 93 

fine (grade 1) to coarse (grade 3). [Insert Table 2] 94 

2.1.4. Statistical model 95 

Variance components and heritabilities were estimated with a series of univariate animal models. For each trait, the 96 

model included the contemporary group (as defined above) fitted as a fixed effect and age fitted as a linear covariate 97 

in the model. Genetic and phenotypic correlations were estimated using a bivariate model with similar fixed and 98 

random effects as the univariate model. ASReml version 4.1 software (24) was used for the entire data analysis. Prior 99 

to the main analysis, we performed a model comparison between a model with and without maternal (permanent 100 

environmental) effect. Based on the Akaike information criterion (AIC) value, the model without maternal effect best 101 

fitted the data (25).  The model was represented as:  102 

y =  Xb +  Zu +  e                                                   (1) 103 

where X is an incidence matrix for observations y. Age as a linear covariate and contemporary groups (HYS) as a 104 

fixed effect in vector b, Z is an incidence matrix for random animal additive genetic values in u, and e represents 105 

random environmental effects. u and e  were assumed to be distributed as u|σa
2  ∼  N(0, Aσa

2 ),  e|σe
2  ∼  N(0, Iσe

2 ), 106 

respectively where σa
2  is the additive genetic variance and  σe

2 is the residual. Where A is a numerator relationship 107 

matrix for all animals using 13 generations and  I is an identity matrix.  108 

ACCEPTED



7 

2.2. Simulated data 109 

A stochastic simulation was used to study how the genetic evaluation of the carcass traits was affected when the 110 

animals were sorted based on early age performance traits such as yearling weight. A beef cattle population was 111 

simulated with the input parameters described in Table 3, using R (26). The simulated base population consisted of 112 

100 sires and 2,000 dams, which were assumed unrelated and not in-bred. The mating ratio of sire to dam was 1 to 20. 113 

A total of 4,000 progeny were produced in a single generation. All progenies had an early age measurement (EM) for 114 

yearly body weight and were subsequently measured for carcass traits later in the production cycle (Late measurement 115 

(LM)). All progenies were split into 10 contemporary groups (CG), each with 400 animals. The CGs were generated 116 

using two alternatives to sort the progeny; 1) based on the early trait measurement (EM), 2) randomly assigned to the 117 

CG. The simulated data was consisted of ten replications for each scenario. In each scenario, the genetic evaluation 118 

was performed on carcass traits (LM). To examine the range of possibilities for EM and LM traits, a variety of 119 

heritability and correlation values were used for data simulation (Table 3). [Insert Table 3] 120 

2.2.1. Model and data analysis 121 

Linear mixed models were used to estimate the breeding values and variance components (16) implemented in 122 

ASReml version 4.1 (24) using the model described in equation 1. The fixed effect (CG) was fitted only to the LM 123 

trait in the sorted scenario. The bias in the variance of the estimated breeding values was measured through the 124 

regression coefficient (slope) of the true breeding values of 100 base sires on their estimated breeding values (EBV) 125 

in each replication. The estimated bias in EBV was the mean of the 10 replications.  126 

3. RESULTS  127 

3.1. Commercial data 128 

Variance components and heritabilities for the studied traits are shown in Table 4. In the current study, the estimated 129 

heritabilities for carcass traits ranged from 0.37 for EMA to 0.45 for MI. However, meat quality traits showed low to 130 

high heritability and the estimates ranged from 0.004 for FC to 0.55 for MS. The phenotypic and genetic correlations 131 

between studied traits are shown in Table 5. The genetic and phenotypic correlations within carcass traits varied from 132 

0.05 to -0.94, and 0.03 to -0.94, respectively. Similarly, the genetic and phenotypic correlations within meat quality 133 

traits ranged from 0.42 to -0.94, and 0.04 to -0.61, respectively. The genetic correlations between carcass and meat 134 

quality traits varied from low (0.04) to medium (0.44). All correlations were estimated with small standard errors 135 

ranging from 0.00 to 0.08. [Insert Tables 4 and 5] 136 
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3.2. Simulated data 137 

3.2.1. The impact of sorting animals in genetic evaluation 138 

As expected, the random allocation of animals to CG was unbiased; however, bias was observed when animals were 139 

sorted into CG based on EM traits.  The degree of bias varied depending on the heritability and the correlations 140 

between EM and LM traits. 141 

3.2.2. The impact of correlations between traits with the same heritability 142 

As indicated in Figure 2 A, the EBV was biased (overestimated) when the genetic and residual correlations between 143 

the simulated traits were -0.8 and 0.8 respectively. Slight underestimated EBV was observed when the genetic and 144 

residual correlation between the EM and LM traits was higher (0.8). These results indicated that the bias was higher 145 

for the sorting scenario when the correlation between the two studied traits was higher. But slightly biased EBV was 146 

observed when the genetic and residual correlation was lower (-0.2 and 0.2) (Figure 2 A). The result showed that 147 

changes in genetic and residual correlations affected the magnitude of bias in the EBV. The current results showed 148 

that the EBV was highly biased when the correlation between the sorting (EM) and the subsequent evaluation (LM) 149 

trait was higher, and sorting bias was lesser when the correlation between the two traits was weaker. At higher genetic 150 

(0.8) and residual (-0.8) correlations, considerably overestimated EBV with a bias of 0.54 was observed (Figure 2 D). 151 

However, less biased EBV was observed when the residual correlations were lower (Figure 2 D). Overall, 152 

overestimated, and underestimated breeding values were observed at the combination of high genetic and residual 153 

correlations (Figure 2 D). With similar genetic and residual correlations, a slight increment of bias was observed when 154 

the heritabilities of both simulated traits changed from high (0.5) to low (0.2).  155 

3.2.3. The impact of correlations with different heritability 156 

We assessed the bias generated by sorting animals in the genetic evaluation using traits with different heritabilities 157 

(high-low and low-high). In the randomly sampled scenario, the regression coefficients (slopes) in all alternatives 158 

were equal to one and no change of bias was observed with changing of input parameters including heritability of the 159 

traits (results not shown). However, we observed different magnitudes of bias with the changing of input parameters 160 

between the two studied traits when animals were sorted into various CG depending on the EM trait (yearly weight). 161 

Highly biased estimated breeding values of 0.15 (±0.01) and 0.20 (±0.02) were observed when genetic and residual 162 

correlations were 0.8 and -0.8, respectively (Figure 2, B). These highly biased EBV (overestimated) were observed 163 

when the heritability of the LM trait (evaluation trait) was low (0.2). However, relatively less biased EBV were 164 
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observed when the heritability of the LM trait was higher (Figure 2, C). The highly biased EBV with low heritability 165 

of LM trait indicated that at constant genetic and residual correlations, genetic evaluation is further affected by the 166 

heritability of the evaluation (LM) trait than the sorting (EM) trait. Relatively less biased EBV was observed at low 167 

correlations with both high and low heritability of the evaluation (LM) trait (Figure 2, B & C). The low genetic and 168 

residual correlations may be responsible for the less biased EBV even though the heritability of the LM trait varied. 169 

Overall, with the low heritability (0.2) of the LM trait, the EBV was highly biased (overestimated), however, when 170 

the heritability of the LM trait was higher (0.5) the EBV was less biased. In addition, the bias of EBV was less when 171 

the difference between the genetic and residual correlations was lower whereas highly biased EBV was observed when 172 

the difference between the two correlations was bigger. Overall, our results indicate that the magnitude of the sorting 173 

bias depends on the genetic architecture of the two traits. [Insert Figure 2] 174 

4. DISCUSSIONS 175 

4.1. Commercial data 176 

The estimated heritability for carcass weight was 0.44±0.01, which is higher than most other reports in Hanwoo where 177 

the reported estimates ranged from 0.25 to 0.39 (9, 11, 27, 28). The main reason for the difference is the weights of 178 

the animals used in the current study were obtained from commercial farm and had higher weight.  Similarly, the 179 

heritability of EMA in the current study was higher (0.37±0.01) than estimates in previous reports which ranged from 180 

0.27 to 0.36 (8, 11). The estimated heritability for BFT in the current study (0.44±0.01) is very close to previous 181 

reports on Hanwoo cattle ranging from 0.44 to 0.45 (2, 9, 11). However, the MI trait showed high heritability compared 182 

to previous findings (0.26) reported by Do, Park (8) in Hanwoo cattle. This is because the MI trait in the current study 183 

was predicted from carcass traits such as carcass weight which were obtained from commercial data. In Hanwoo cattle, 184 

previously reported heritabilities for meat quality traits ranged from 0 for FC to 0.65 MS (2, 8, 9, 11, 27, 28).  185 

 Slight variations have been observed between current and previous estimated heritabilities in Hanwoo beef cattle. 186 

These inconsistencies mainly have arisen from the data type used in each report. Most of the previous reports used 187 

small data set obtained from well-deigned progeny testing experiments that showed low variation compared to the 188 

data used in the current study obtained from slaughterhouses. Compared to previous reports, the data used in the 189 

current study is larger (half a million animals) and were obtained from more than three thousand farms in the Republic 190 

of South Korea. Types of information such as pedigree and/or genomic data used in the analysis may lead to different 191 

values of parameter estimates. Some traits such as marbling score had different heritability estimates in different 192 
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breeds because the traits have shown different genetic variation in different populations. For instance, the currently 193 

estimated heritability for MS was  0.55 and it is higher than the estimated in other beef cattle breeds reported by Davis 194 

and Simmen (29) (0.27±0.17), Ríos-Utrera, Cundiff (30) (0.40±0.09) and Nephawe, Cundiff (31) 0.46±0.06 in Angus 195 

and  US purebred and composite steers respectively.  196 

In the current study, CWT showed moderate and positive genetic (0.51) correlation with EMA, which is lower than 197 

the previous estimates ranged from 0.63 to 0.80 in Hanwoo cattle (8, 9, 28). In agreement with the current results, 198 

Hwang et al. (2008) reported a negative genetic correlation (-0.24) between EMA and BFT in Hanwoo cattle. In the 199 

current study, the estimated phenotypic and genetic correlations between CWT and BFT were 0.27 and 0.05, 200 

respectively; however, with small data set, Do, Park (8) reported a lower genetic correlation of 0.17 and higher 201 

phenotypic correlation of 0.31 between CWT and BFT. The highest  genetic (0.94) and phenotypic (0.93) correlations 202 

were observed between BW at slaughter and CWT in the current study. These two traits are extensively studied in 203 

other breeds and they show high correlation (32). Low genetic correlations of BW with EMA (0.30) and  BFT (0.10) 204 

had been reported by Smith, Domingue (32)  in Brahman cattle, which is in range with the current study. In the current 205 

study, the genetic correlation of MI with CWT was lower and  moderate with EMA while higher (-0.94) with BFT. In 206 

agreement with our current study, high negative genetic (-0.95) and phenotypic (-0.97) correlations between MI and 207 

BFT had been reported in Hanwoo cattle (8). This is because MI trait was predicted from the three traits (CWT, EMA 208 

and BFT), as a result, MI showed a high genetic and phenotypic correlations with CW, EMA and BFT traits.   209 

In the current study, genetic and phenotypic correlations between meat quality traits varied from high to low. 210 

Previously, similar genetic and phenotypic correlations were reported between MS and MT traits in Hanwoo cattle 211 

using pedigree and genomic data (4, 5, 8), however, the phenotypic correlation between MS and MT reported by these 212 

authors were lower compared to current estimates. The high genetic correlation between MS and MT traits suggests 213 

that the traits are highly dependent. Given this strong correlation and the fact that MS has more genetic variation (high 214 

heritability), it is the easiest trait to use to select for high meat quality or both traits can be improved simultaneously. 215 

Compared with the current study, Do, Park (8) reported lower (-0.42 and -0.40) genetic correlations of MS with meat 216 

and fat colour traits, respectively using small sample size data obtained from progeny testing experiments of  Hanwoo 217 

cattle. Slightly higher genetic correlation between colour traits (meat and fat colour) was reported using genomic data 218 

in Hanwoo cattle (4). The genetic correlations of MT with MC and FC traits in the current study were similar to the 219 

previous reports in Hanwoo cattle (4, 8). In the current study, we observed low genetic correlation between carcass 220 
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and meat quality traits. Similarly, several studies reported low genetic and phenotypic correlation estimates between 221 

carcass and meat quality traits in Hanwoo cattle (8, 9, 11, 27).  222 

Overall, the currently estimated genetic parameters laid within the range of previous reports in Hanwoo cattle, however, 223 

slight differences have been observed for some traits. The main reasons for the observed difference are the sample 224 

size used in the study, source of performance data (commercial farms versus well-designed progeny testing 225 

experiments) and type of the information used to estimate the relationship among animals (pedigree versus genomic 226 

data). In addition, various models were used to analyse the data, the random and fixed effects that are fitted in the 227 

model, and the random or non-random allocation of animals into contemporary group leads to different value of 228 

parameter estimation in the genetic evaluation of carcass traits. Furthermore, the scoring or grading system of meat 229 

quality is very subjective across studies and has an impact on the genetic evaluation of such traits. 230 

4.1.1. The use and implication of commercial data in genetic evaluation 231 

The phenotypic data used in the current study was obtained from slaughterhouse and these carcass performance data 232 

were recorded on various age groups of animals ranged between 28 and 35 months. The estimated parameters in the 233 

current study are closer to previously reported estimates obtained from progeny testing experiment. This is indicating 234 

that commercial data obtained from slaughterhouse are useful and can be used to estimate genetic parameters in the 235 

evaluation of carcass traits. The commercial carcass performance data can be available in large amount from 236 

slaughterhouse compared to progeny testing experiment data, but we have observed some drawback in the commercial 237 

data. This is because, in most commercial farms, the desired carcass quantity and quality is specified by abattoirs 238 

based on the weight of animals, which is suitable for slaughter. As a result, most animals have arrived in abattoirs in 239 

homogenized weight which is called harvesting effect. Such selective formation of contemporary groups might lead 240 

to biased evaluation of genetic merit of animals for carcass trait. However, this type of bias in the genetic evaluation 241 

can be controlled using various models depending on the source of the bias. For instance, bias due to sorting of animals 242 

based on weight can be reduced or eliminated using multitrait genetic evaluation methods. The multitrait model can 243 

account for harvesting effect and thus produce more accurate and less biased parameter estimation in genetic 244 

evaluation. 245 

4.1.2. Simulated data 246 

Sorting of animals based on yearling weight potentially affected the genetic evaluation of the latter measured traits. 247 

The current study has verified that the non-random evaluation of animals led to a bias in genetic evaluation.  248 
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4.1.3. The impact of sorting in genetic evaluation 249 

The sorting bias observed in the current simulation study has a similar effect to the selection bias described in the 250 

literature (14, 15, 33). The theory of selection bias was established clearly by Pollak, van der Werf (15). They 251 

demonstrated that potential bias was found in the genetic evaluation of the second trait, which was selected based on 252 

the first trait. Similarly, in the current simulation study, when animals were sorted based on the early measured trait, 253 

sorting bias was detected in the subsequent evaluation of the latter measured trait.  Also, Pollak and Quaas (33) 254 

observed a selection bias in the predictors in single-trait analysis and the magnitude of the bias of the EBV depends 255 

on the correlation among studied traits which is in agreement with the current findings. 256 

A recent study by Macedo, Reverter (34) has studied a selection bias in genetic evaluation models. They found a 257 

selection bias in genetic evaluation using data with environmental trends compared to randomly sampled data into 258 

different contemporary groups. Similarly, in the current study, we found biased EBV when animals were non-259 

randomly assigned into various contemporary group. Selection bias has been studied in sheep, Eiríksson and 260 

Sigurdsson (35) demonstrated that a selected group of the lambs was kept for replacement and therefore not measured 261 

for carcass traits, led to bias in the genetic evaluations. The authors demonstrated that the bias was higher for the 262 

selected ram group, indicating that this group consisted of rams that had higher genetic merit for carcass conformation 263 

trait than the rest groups. Similarly, we found biased EBV when animals with higher yearling weight were assigned 264 

into same group. 265 

 266 

4.1.4. The impact of traits’ heritability, genetic and residual correlations in genetic evaluation  267 

In the current simulation study, the structures of input parameters including heritability, genetic and residual 268 

correlations, and the difference between the two correlations influenced the genetic evaluations. The genetic and 269 

phenotypic correlation of traits potentially affects the genetic evaluation of animals in breeding program (15, 33, 36, 270 

37). Our results showed that highly biased EBV was observed when the genetic correlations were higher which 271 

coincided with a report by Author et al (33).  In addition, our result showed that highly biased EBV was observed 272 

when the difference between genetic and residual correlation was higher. Conversely, when the difference between 273 

genetic and residual correlation was smaller, the EBV was less biased and the regression coefficient was closer to one. 274 

In the current simulation study, the bias of the EBV was assessed by allocating unequal heritabilities (high-low and 275 

the vice versa) for the two simulated traits. In this case, the observed bias of the EBV was not the same as a similar 276 
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heritability (high-high and low-low) was assigned to the studied traits. Highly biased EBV was observed when the 277 

heritability of the LM (evaluation) trait was lower. This could be explained as genetic evaluation is more affected by 278 

the heritability of the LM trait than the EM (sorting) trait with the constant genetic and residual correlations. A recent 279 

study showed that allocating wrong heritability for the trait in a genetic evaluation led to a biased EBV in simulation 280 

study (34). These authors established that in pedigree-based predictions, the use of incorrect heritability generates a 281 

strong bias in genetic evaluation using simulation data. Our result showed that different magnitude of bias was 282 

observed with two different heritabilities assigned to the LM (evaluation) trait. However, we have not proven that the 283 

observed bias linked to incorrect heritability that was allocated to the evaluation trait during data simulation. Knowing 284 

the source of bias and then using appropriate models for the genetic evaluation of animals is a key component of the 285 

process to estimate accurate breeding values. For instance, to overcome selection bias in genetic evaluation, 286 

multivariate evaluations methods had been proposed (16). The decision to use a multitrait model versus a single trait 287 

model depends on correlations among the studied traits.  In the first scenario of the current study, the sorting bias that 288 

was observed in the single-trait model was reduced by the bivariate model (results not shown). Similarly, Pollak, van 289 

der Werf (15) showed that the observed bias associated with selection in the univariate model was reduced or 290 

eliminated by multiple traits evaluation methods. 291 

A recent study by Macedo et al (34)   has studied a selection or sorting bias in genetic evaluation models. They found 292 

a selection or sorting bias in genetic evaluation using data with environmental trend compared to a randomly sampled 293 

data into different contemporary groups. Similarly, in the current study, we found biased EBV when animals were 294 

non-randomly assigned into various contemporary group. Selection bias has been studied in sheep, Eiríksson and 295 

Sigurdsson (35) demonstrated that a selected group of the lambs was kept for replacement and therefore not measured 296 

for carcass traits, led to bias in the genetic evaluations. The authors demonstrated that the bias was higher for the 297 

selected ram group, indicating that this group consisted of rams that had higher genetic merit for carcass conformation 298 

trait than the rest groups. Similarly, we found biased EBV when animals with higher yearling weight were assigned 299 

into same group. 300 

 301 

5. CONCLUSIONS 302 

The genetic parameters estimated for carcass and meat quality traits in Hanwoo cattle population indicate the extent 303 

of genetic variability among the studied traits that could be exploited through selection programs. Particularly, carcass 304 
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traits showed high genetic variation in Hanwoo population. On the other hand, results from the current study have 305 

revealed the existence of negative (unfavorable) genetic associations between a carcass and most of meat quality traits. 306 

This implies that long-term selection for carcass traits could negatively affect meat quality traits, which are highly 307 

valuable in Hanwoo cattle. Moderate genetic correlations between EMA and MS suggest that genetic progress for 308 

carcass traits such as EMA may result in more marbled meat. This is important because, marbling is the major price-309 

determining factor in the Korean beef industry. Very low or near-zero correlations between CWT and most of the 310 

meat quality traits, suggest that selection based on CWT may have little or no influence on the performance of meat 311 

quality traits.  In addition, negative genetic and phenotypic correlations between carcass and few meat quality traits 312 

reflect the adverse effects in a single trait selection program. Commercial data obtained from slaughterhouse is a 313 

potential source of carcass performance data and useful for genetic evaluation of carcass traits to improve beef cattle 314 

performance. However, using commercial data could produce biased EBV because in this data, animals are mainly 315 

sorted based on live weight prior to slaughter and this non-random selection of animals to slaughterhouse affects the 316 

genetic evaluation of carcass traits which is obtained from abattoir. Overall, the current simulation study contributed 317 

fundamental information on harvesting effect and how the genetic architecture of studied traits affects the genetic 318 

evaluation of carcass traits. 319 
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 417 
Table 1. Description of the population structure. 418 

Unit Mean Minimum Maximum Total 

Progeny per sire 726 1 7685 - 

Progeny per dam 1.2 1 9 - 

Animals - - - 469,002 

Sires - - - 646 

Dams - - - 390,166 

Number of contemporary group (HYS) - - - 31,403 

Animal per contemporary group (HYS) 15 5 1578 - 

Progeny per sire per contemporary group 2 1 98 - 

 419 
Table 2. Descriptive statistics for carcass and meat quality traits of Hanwoo cattle. 420 

Traits Sample size Mean SD Minimum Maximum CV 

CWT (kg) 469002 432.4 42.8 303 551 0.10 

EMA (cm2) 469002 91.2 9.7 65 116 0.12 

BFT (mm) 469002 13.2 4.5 1 25 0.34 

BW (Kg) 223839 722.7 65 450 979 0.01 

MI (%) 469002 64.6 3.3 52.4 77 0.01 

MS (1-9) 469002 5.7 1.87 1 9 0.33 

MC (1-7) 469002 4.83 0.48 2 7 0.10 

FC (1-6) 469002 2.9 0.29 1 6 0.10 

MT (1-3) 469002 1.2 0.38 1 3 0.32 

CWT = carcass weight, EMA = eye muscle area, BFT = back fat thickness, BW = body weight, MI = meat index, MS 421 
=marbling score, MC = meat colour, FC = fat colours and MT = meat texture, SD = standard deviation and CV = 422 
coefficient of variation. 423 
 424 
  425 
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Table 3. Alternatives of input parameters for the two studied traits. 426 
Heritability 

alternatives 

Genetic correlation 

alternatives  

Residual correlation 

alternatives 

0.5, 0.5 (H-H) -0.8, -0.2, 0.2, 0.8 -0.8, -0.2, 0.2, 0.8 

0.2, 0.2 (L-L) -0.8, -0.2, 0.2, 0.8 -0.8, -0.2, 0.2, 0.8 

0.5, 0.2 (H-L) -0.8, -0.2, 0.2, 0.8 -0.8, -0.2, 0.2, 0.8 

0.2, 0.5 (L-H) -0.8, -0.2, 0.2, 0.8 -0.8, -0.2, 0.2, 0.8 

H =high and L =low 427 
 428 
Table 4. Variance components and heritability for the carcass and meat quality traits in univariate animal model 429 
analysis. 430 

Trait Genetic variance Residual variance Heritability 

Carcass traits    

Carcass weight 701.01(20.8) 909.7 (14.5) 0.44 (0.01) 

Eye muscle area 33.19 (1.15) 56.7 (0.8) 0.37 (0.01) 

Back fat thickness 8.7 (0.26) 11.31 (0.18) 0.44 (0.01) 

Bodyweight 1245.6 (77.5) 2288.6 (54.6) 0.35 (0.02) 

Meat index 4.8(0.14) 5.8(0.09) 0.45(0.01) 

Meat quality traits    

Marbling score 1.90 (0.04) 1.60 (0.03) 0.55 (0.01) 

Meat colour 0.017 (0.00) 0.196 (0.00) 0.08 (0.01) 

Fat colour 0.0003 (0.00) 0.071 (0.00) 0.004 (0.00) 

Meat texture 0.041 (0.00) 0.100 (0.00) 0.29 (0.01) 

 431 
  432 
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Table 5. Phenotypic correlations (below diagonal) and genetic correlations (above diagonal) among studied traits in 433 
bivariate model analysis. 434 

Studied traits CWT EMA BFT BW MI MS MC FC MT 

Carcass traits          

CWT - 0.38 

(0.06) 

0.05 

(0.07) 

0.93 

(0.01) 

-0.18 

(0.07) 

0.13 

(0.00) 

-0.22 

(0.07) 

-0.11 

(0.11) 

-0.16 

(0.07) 

EMA 0.45 

(0.00) 

- -0.24 

(0.07) 

0.31 

(0.07) 

0.45 

(0.06) 

0.39 

(0.01) 

-0.31 

(0.07) 

-0.09 

(0.06) 

-0.44 

(0.06) 

BFT 0.27 

(0.00) 

0.03 

(0.00) 

- -0.06 

(0.07) 

-0.94 

(0.01) 

0.04 

(0.00) 

-0.13 

(0.07) 

0.28 

(0.09) 

0.08 

(0.07) 

BW 0.94 

(0.00) 

0.41 

(0.00) 

0.21 

(0.00) 

- -0.08 

(0.06) 

0.04 

(0.07) 

-0.18 

(0.06) 

-0.10 

(0.11) 

-0.07 

(0.06) 

MI -0.36 

(0.00) 

0.24 

(0.00) 

-0.94 

(0.00) 

-0.30 

(0.00) 

- 0.23 

(0.07) 

0.06 

(0.06) 

-0.25 

(0.10) 

-0.18 

(0.07) 

Quality traits          

MS 0.13 

(0.07) 

0.51 

(0.07) 

-0.11 

(0.07) 

0.08 

(0.00) 

0.07 

(0.00) 

- -0.61 

(0.05) 

-0.57 

(0.08) 

-0.98 

(0.00) 

MC -0.10 

(0.00) 

-0.10 

(0.00) 

-0.12 

(0.00) 

-0.07 

(0.00) 

0.09 

(0.00) 

-0.26 

(0.00) 

- 0.42 

(0.09) 

0.64 

(0.05) 

FC -0.00 

(0.00) 

-0.01 

(0.00) 

0.02 

(0.00) 

-0.00 

(0.00) 

-0.02 

(0.00) 

-0.06 

(0.00) 

0.11 

(0.00) 

- 

 

0.54 

(0.09) 

MT -0.11 

(0.00) 

-0.20 

(0.00) 

-0.05 

(0.00) 

-0.07 

(0.00) 

0.00 

(0.00) 

-0.61 

(0.00) 

0.21 

(0.00) 

0.04 

(0.00) 

- 

 435 
 436 
 437 
  438 

ACCEPTED



22 

 439 

 440 

Figure 1. Distribution of animals across age, birth year, birth season, and herd top panel, and distribution of animals 441 
across contemporary group (HYS), lower panel.  442 
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 443 

 444 
Figure 2. Change in bias due to sorting of animals and impact of the correlations and heritabilities of the EM and LM 445 
traits in genetic evaluation. h2 = heritability, HH = high-high (0.5), HL = high-low (0.5, 0.2), LH = low-high (0.2, 0.5), 446 
LL = low-low (0.2, 0.2), re = residual correlations, used genetic correlations on the X-axis and bias on the Y-axis. 447 
 448 
 449 
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