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Abstract 24 

This study examined the association between functional sequence variants (FSVs) of myosin heavy chain 3 (MYH3) 25 

genotypes and collagen content in a Landrace and Jeju native pig (JNP) crossbred population. Four muscles (M. 26 

longissimus dorsi, M. semimembranosus, M. triceps brachii, and M. biceps femoris) were used for the analysis of 27 

meat collagen content, and the same animals were genotyped for the FSVs of the MYH3 gene by using PCR-RFLP 28 

(polymerase chain reaction-restriction fragment length polymorphism). Three FSVs of MYH3 genotypes were 29 

identified and had genotype frequencies of 0.358, 0.551, and 0.091 for QQ, Qq, and qq, respectively. QQ animals 30 

for the FSVs of the MYH3 genotypes showed higher collagen content in their M. longissimus dorsi (p<0.001), M. 31 

semimembranosus (p<0.001), M. triceps brachii (p<0.001), and M. biceps femoris (p<0.001) than qq homozygous 32 

animals. After the validation of this result in other independent populations, the FSVs of MYH3 genotypes can be 33 

a valuable genetic marker for improving collagen content in porcine muscles and can also be applied to increase 34 

the amount of collagen for biomedical purposes. 35 

 36 

Keywords (3 to 6): collagen content, genotype, muscle, pig, MYH3 37 
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1. Introduction 38 

Native pig breeds are very important for the conservation and sustainable improvement of valuable economic 39 

traits in the future [1]. Native pigs in Korea, especially Jeju native pigs (JNP), have been extensively studied for 40 

crossbreeding with commercial pig breeds such as Landrace and Duroc and for quantitative trait locus (QTL) and 41 

genome-wide association study (GWAS) for identifying genetic markers of economic traits. The coat color of JNP 42 

is black, and the feed efficiency and growth rate of JNP are low. However, JNP has excellent meat quality 43 

characteristics, such as a solid fat structure, red meat color (a*), and high intramuscular fat (IMF) content, 44 

compared with commercial pig breeds, including Landrace [4]. 45 

Collagen is a major substrate protein in connective tissues such as skin, tendon, bone, and blood vessels in animals 46 

[6, 11]. Collagen is a lightweight protein that exists in epithelial cells and is widely distributed in multicellular 47 

animals such as invertebrates and vertebrates [13]. Collagen can form insoluble fibers with high tensile strength 48 

and has a triple hypochondrobar structure consisting of three identical polypeptide chains. Collagen is also the 49 

most abundant protein in vertebrates and makes up approximately 25% of the total protein in vertebrates [14]. 50 

Collagen comprises approximately 70% of the bones of organisms, approximately 50% of the cartilage connecting 51 

bones with bones in joints, approximately 70% of the dermis under the skin, and most vessels [20]. Collagen 52 

fibers exist in other forms between the perimysium and endomysium and are mainly composed of thick bundles 53 

of collagen in the perimysium and a fine network structure in the endomysium. Fibers depend on the type and 54 

area of collagen in the muscle, and collagen content's quantitative and chemical composition changes over time 55 

[12]. Collagen is classified according to its composition. Type I is the most abundant and strongest type of collagen 56 

found in the human body. It consists of eosinophilic fibers that form tendons, ligaments, organs, and skin. Type I 57 

collagen helps form bones and can be found in the gastrointestinal tract. In addition, collagen plays a major role 58 

in healing wounds, giving skin elasticity, and maintaining tissues. Type II collagen is mainly found in connective 59 

tissues and plays a role in forming cartilage. The health of the joints depends on cartilage composed of Type II 60 

collagen, which helps prevent various arthritis symptoms. Type III collagen is the main component of the reticular 61 

fiber and the extracellular matrix that makes up organs and skin. Collagen is found mainly in the Type I form and 62 

plays a role in skin elasticity and hardness. In addition, collagen forms blood vessels and tissues in the heart, so a 63 

deficiency in Type III collagen increases the risk of vascular rupture and premature death. Type IV collagen plays 64 

an important role in forming the basal lamina found in endothelial cells that form tissues surrounding organs, 65 

muscles, and fats, which cushion and protect tissues in the space between the top and bottom layers of the skin. 66 

The basal plate is necessary for the function of various nerves and blood vessels, so it constitutes most of the 67 

digestive organs and respiratory surfaces in the body. Type V collagen is needed to make up the cell surface as 68 

well as female placental tissue and hair strands [9, 10]. 69 

Collagen protein, a byproduct of meat production, is an important ingredient in food products such as casings. In 70 

addition, collagen is used in the production of cosmetics and is widely used as a healing aid following plastic 71 

surgery, bone reconstruction, and various dental and orthopedic surgeries. Collagen is used for cosmetic purposes 72 

to treat wrinkles and skin aging, as well as in vaccines and vitamins [15]. In addition, collagen has attracted 73 

attention from pharmaceutical and biomaterial-based packaging industries, as it can be used to encapsulate and 74 

form edible films [6]. Commercial collagen used for biomedical applications is extracted mainly from the skin of 75 
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pigs and cattle. However, the outbreak of prion diseases, such as bovine spongiform encephalopathy, has resulted 76 

in anxiety among users of collagen derived from cattle. Interest in safer sources of collagen, such as pigs, has 77 

greatly increased [16].  78 

Recently, we reported evidence that a 6-bp deletion (XM_013981330.2: g.−1805_−1810del) in 5 -́regulatory 79 

region of MYH3 is the first functional sequence variant for red meat color (a∗) and IMF in domestic pigs [4]. We 80 

firstly mapped a 488.1-kb critical region in porcine chromosome 12 that influences both a* and IMF by a combined 81 

linkage-linkage disequilibrium analysis in two independent F2 intercross between Korean native pigs (KNPs) and 82 

Western commercial breeds (i.e., Landrace and Duroc). In this critical region, only the MYH3 gene, encoding 83 

myosin heavy chain isoform 3, was found to be discriminatingly overexpressed in the skeletal muscle of KNPs 84 

than in that of Landrace pigs. Subsequently, the MYH3 gene was verified as a causal gene for the two traits using 85 

transgenic mice, and then detected the 6-bp deletion (XM_013981330.2: g.−1805_−1810del) variant in the 5 -́86 

promoter region of the MYH3 gene for which Q allele carriers showed significantly higher values of a* and IMF 87 

than q allele carriers. Additionally, we demonstrated that this 6-bp deletion variant could abrogate the binding of 88 

the regulatory myogenic regulatory factors (MRFs, i.e., MYF5, MYOD, MYOG and MRF4) and act as a 89 

significantly weaker repressor, leading to increased expression of the MYH3 gene in the skeletal muscle. 90 

Biological mechanism regarding myosin heavy chain and collagen has not well been known. Recently, Coelho et 91 

al. reported that interaction of discoidin domain receptor 1 (DDR1) with myosin motors can contribute to collagen 92 

remodeling [3]. However, biological relationship between the functional sequence variant (FSV) of MYH3 93 

possessing the domain of myosin motors and collagen content needs to be further investigated. Therefore, the aim 94 

of this study was to examine the association between FSVs located in the 5 -́upstreme region of the MYH3 gene 95 

and collagen content in crossbred JNP and Landrace pigs. 96 
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2. Materials and Methods 97 

 98 

2.1. Ethical approval 99 

All experimental procedures were conducted according to national and institutional guidelines and approved by 100 

the Ethical Committee of the National Institute of Animal Science, Republic of Korea (Approval number: 2017-101 

241). 102 

2.2. Animals 103 

A total of 187 animals of the F4 resource population (103 male and 84 female) were established by crossing F3 104 

animals derived from intercrossing JNP and Landrace pigs. Animals were raised at the experimental farm of the 105 

National Institute of Animal Science, Jeju, Republic of Korea. They were fed ad libitum, and males were not 106 

castrated. All F4 experimental animals were slaughtered in the same commercial slaughterhouse (Jeju Livestock 107 

Cooperative, Korea). The range of slaughter age of the pigs used for collagen content analysis was 180-200 days. 108 

The M. longissimus dorsi, M. semimembranosus, M. triceps brachii and M. biceps femoris from each carcass were 109 

used for the analysis of collagen content [19]. 110 

2.3. DNA extraction 111 

Genomic DNA was isolated from blood and muscle using the sucrose-proteinase K method and used as a template 112 

for polymerase chain reaction (PCR) [18]. The absorbance of the separated DNA was measured using a NanoDrop 113 

ND-1000 spectrophotometer (USA), and then genomic DNA with an A260/A280 ratio of 1.8 or more was used 114 

as a template for PCR. 115 

2.4. Collagen content 116 

The collagen content was analyzed according to the method described by Choi et al. (2016)[5]. After 4 g of ground 117 

meat sample was placed into a triangular flask, 30 mL of a sulfuric acid solution was added. The sample was 118 

covered with a triangular flask in a dry oven for 16 hours before measurement. The hydrolyzable material was put 119 

in a 500 mL flask, diluted with distilled water, and filtered in a 100 mL triangular flask. 5 mL of the filtered 120 

solution was taken and diluted in 100 mL. Then, 2 mL of the final diluent was put in a 10 mL test tube, and 1 mL 121 

of the oxidizing solution was added. In the blank, 2 mL of distilled water and 1 mL of an oxidation solution were 122 

added instead of the diluent. samples were incubated at room temperature for 20 minutes, dissolved in 4-dimethyl-123 

aminobenzaldehyde (60% w/w) in a color reagent (35 mL perchloric acid), mixed with 1 mL of 2-propanol 65 124 

mL), covered with a cap, and immediately heated in a constant-temperature water bath (60 °C) for approximately 125 

15 minutes. The amount of hydroxyproline was measured from the standard curve, and the collagen content (%) 126 

was calculated by multiplying the hydroxyproline content by a constant of 8. 127 

2.5. PCR amplification and polymorphism determination 128 

A set of primers was designed for the detection of the FSVs in the MYH3 gene using available sequence 129 

information (XM_013981330.2). PCR was performed using a Maxime PCR Premix kit, and reactions included 130 

20 µl of reaction mixture including 100 ng of DNA, 0.5 nmol of MYH3 promoter-specific primers (MYH3_1_F, 131 
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5’-TGGTCTTTCCTAATTGGTGACAT-3’, MYH3_1_R, 5’-AGTTTTGAGCAAGGCTTTTGTT-3’) and 132 

distilled water (iNtRON, Korea). PCR conditions were as follows: initial heating was at 95°C for 5 min, followed 133 

by 35 cycles of 30 s for denaturation at 94 °C, 30 s for annealing at 65°C, and 30 s for an extension at 72°C, 134 

followed by a final extension at 72°C for 10 min in a Nexus PCR machine (Eppendorf, Germany). And the 135 

amplicons were digested with the restriction enzyme, HpyCH4IV (NEB, USA). The PCR products were separated 136 

on 2.5% agarose gels (Lonza, Switzerland) and visualized by UV illumination with a BioFACT 100 bp plus DNA 137 

ladder marker (BioFACT, Korea) [4].  138 

2.6. Allelic and genotypic frequencies 139 

The allele frequencies and heterozygosity (he), polymorphic information contents (PIC), and χ2 values (P-values) 140 

for MYH3 FSVs were calculated using the CERVUS 3.0.3 program [7]. 141 

2.7. Association analysis 142 

Putative outliers were deleted based on the ascertainment of normality using a Ryan-Joiner (RJ) evaluation in the 143 

MINITAB program (Minitab Inc., USA). An RJ score ≥ 0.99 was used to ascertain normality. The following 144 

general linear model (GLM) was fitted to the phenotype data to estimate the effect of the FSVs of MYH3 on 145 

collagen content using MINITAB: 146 

Yijk =  +sexi + genotypej + b1Xijk + eijk  147 

where, Yiik is the observed phenotype, μ is the mean value, genotypei represents the FSVs in the MYH3 gene (Q/Q, 148 

Q/q, and q/q), X is the carcass weight as a covariate, b1 is the regression coefficient and eijk is the random residual. 149 

We used Tukey’s multiple comparison method to separate means and set the significance level at p<0.05. The 150 

percent phenotypic variance of a trait explained by the MYH3 FSV was computed by [(VARreduced-151 

VARfull)/VARreduced]  100, where VARreduced and VARfull are the variances of residuals of a GLM without and with 152 

genotypes of the MYH3 FSV in the models.  153 

 154 
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3. Results & Discussion 155 

3.1 Distribution of FSV of the MYH3 gene in the Landrace and Jeju native pig 156 

crossbred population 157 

The FSVs in the MYH3 gene were genotyped using PCR-RFLP in the Landrace and JNP crossbred population. 158 

Determination of the genotype of the FSV of the MYH3 gene was conducted by PCR amplification and 159 

subsequent HpyCH4IV digestion. The q/q genotype represents the MYH3 homozygous genotype originating 160 

from Landrace and Duroc pigs; the Q/Q genotype represents the MYH3 homozygous genotype originating 161 

from JNPs. The results indicated that both the Q and q alleles were segregating, and all three genotypes (QQ, 162 

Qq, and qq) were identified for the FSVs of MYH3 (Table 1, Table 2, Figure 2; Q and q are the Landrace and JNP 163 

variants, respectively). 164 

These FSVs in the MYH3 gene had allele frequencies of 0.634 and 0.366 for the Q and q alleles, respectively. This 165 

indicates a higher frequency of the Q allele than the q allele because the favorable Q allele was selected for in this 166 

population. The FSVs in the MYH3 genotype had frequencies of 0.358, 0.551, and 0.091 for QQ, Qq, and qq, 167 

respectively, indicating more heterozygous animals than homozygous animals were observed in this population. 168 

However, the chi-square test results revealed that the FSVs were not in Hardy–Weinberg equilibrium (p<0.05), 169 

indicating that artificial selection was applied to the QQ genotype animals used in this study. These results confirm 170 

our expectations that the selection pressure was applied to obtain more favorable alleles in the population. In 171 

addition, the PIC (polymorphic information content) value was found to be 0.357, suggesting that this population 172 

showed intermediate polymorphism for these FSVs (Table 2). In a previous study to identify this causal variant, 173 

the Q allele is associated with higher redness value (a*), increased IMF contents, higher Type1 muscle fiber area 174 

and increased myoglobin content compared to the q allele in the Landrace x JNP crossbred pig population [4, 8]. 175 

Therefore, we can improve the meat quality of JNP x Landrace crossbred population via the marker-assisted 176 

selection of the FSV of MYH3. 177 

 178 

3.2  Association analysis between FSVs of MYH3 genotypes and collagen content  179 

The MYH3 gene encodes a portion of myosin, a contractile protein, which is especially fundamental to the proper 180 

functioning the Sarboomer of striated/skeletal muscle. MYH3 is also recognized as an embryonic myosin heavy 181 

chain because it was mainly overexpressed in early mammalian development [2] 182 

In this study, collagen content was measured in four muscles (M. longissimus dorsi, M. semimembranosus, M. 183 

triceps brachii and M. biceps femoris) in the Landrace and JNP crossbred population. Before the association test, 184 

a normality test for collagen content was performed using the Ryan-Joiner method [17]. The results showed an RJ 185 

score of 0.990 or higher, indicating that the collagen content data followed a normal distribution and could be 186 

further analyzed (Figure 1). 187 

Through analysis of the association between collagen content and FSVs of the MYH3 gene, we found that 188 

individuals with the QQ genotype had higher collagen content than those with the qq genotype in M. longissimus 189 

dorsi, M. semimembranosus, M. triceps brachii and M. biceps femoris muscles (Table 3, p<0.05, p=2.00×10-16, 190 
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p=6.66×10-16 and p=3.31×10-5, respectively).  191 

Pork collagen has been used since the beginning of artificial skin research, primarily to assist in the treatment of 192 

burns and trauma. When a wound occurs on the skin, a temporary protective film such as a silicon dressing is 193 

attached until the damaged skin recovers. This prevents water leakage from the body, absorbs exudate (liquid 194 

coming out of the blood when there is inflammation), and prevents invasion and infection by bacteria from the 195 

outside. Except for the application of a gel, the dressing is a porous membrane made using a polyurethane 196 

membrane or chitin, a freeze-dried product of pig leather, or the like [16]. However, it is applied in limited 197 

situations and is expensive. When we computed the percent variance of the MYH3 FSV as the effect size, we 198 

found that the MYH3 FSV explained up to 39.7% of phenotypic variance (Table 3). This amount of effect size of 199 

MYH3 FSV can be regarded as a good indication that this FSV could be used in the MAS for improving collagen 200 

content in this JNP x Landrace crossbred population. With the fixation of QQ animals, the collagen content in 201 

pork can be improved, meaning that consumers can have better quality pork and that the pork industry can benefit 202 

from increasing the value of nonpreferred pork collagen, which can be used for medical purposes. However, it is 203 

necessary to conduct additional experiments in other independent populations to confirm the effect size of MYH3 204 

FSV before executing the MAS for collagen content. Selection for pigs with more collagen may allow this research 205 

to be applied in the biomedical area and provide profits to farmers.  206 

 207 
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 Tables and Figures 276 

Table 1. Descriptive statistics for FSVs of MYH3 genotypes. Muscle collagen content was analyzed in 277 
a crossbred pig population (Landrace×Jeju native pig) 278 

 279 

  280 

 n Mean SE SD Min Med Max 

M. longissimus dorsi 187 1.1212 0.018 0.2465 0.6287 1.0956 1.9746 

M. semimembranosus 187 1.303 0.0204 0.2795 0.7143 1.2614 2.4495 

M. biceps femoris 187 1.4036 0.0172 0.2358 0.7557 1.3941 1.9506 

M. triceps brachii 187 1.3258 0.014 0.1914 0.8317 1.3193 1.7922 

Carcass weight 178 76.973 0.86 11.47 47.2 77.3 119.2 
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 281 

 282 

Figure 1. Tests of normality by the Ryan-Joiner method. The vertical axis represents the scale of 283 
probabilities, and the horizontal axis represents the scale of residual data. (A) M. longissimus dorsi; (B) 284 
M. semimembranosus; (C) M. triceps brachii and (D) M. biceps femoris dorsi. 285 

  286 
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 287 

Figure 2. PCR amplification patterns for the polymorphisms of the FSVs in the porcine MYH3 gene. 288 
Allele Q and q showed on the agarose gel, respectively. M is 100-bp DNA ladder marker. 289 
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Table 2. Genotype frequency, allele frequency, and diversity parameters of the FSVs of the MYH3 290 
variant in a crossbred pig population (Landrace×Jeju native pig) 291 

FSVs of MYH3 genotype 

frequency 
 Allele frequency Diversity parameter* 

QQ 

(67) 

Qq 

(103) 

qq 

(17) 
χ2† Q q Ho He PIC1 

0.358 0.551 0.091 5.7260.01 0.634 0.366 0.551 0.466 0.357 
*, Ho, He, and PIC indicate the values of observed heterozygosity, expected heterozygosity, and 

polymorphic information content, respectively. 
1 A PIC value < 0.25 indicates low polymorphism, 0.25 ≤ PIC value ≤ 0.5 indicates intermediate 

polymorphism, and a PIC value > 0.5 indicates high polymorphism. 
† Hardy-Weinberg equilibrium. Degree of freedom: 1 

 292 
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Table 3. The association between FSVs of the MYH3 genotypes and muscle collagen content in a 293 
crossbred pig population (Landrace×Jeju native pig) 294 

 
Genotype†  

%Var p-value qq 

(17) 
Qq 

(103) 
QQ 

(67) 

M. longissimus dorsi 0.99±0.06a 1.08±0.22a,c 1.17±0.03b,c 
 

4.9 0.015 

M. semimembranosus 0.94±0.05a 1.22±0.02b 1.51±0.03c 
 

39.7 2.00×10-16 

M. biceps femoris 1.09±0.05a 1.35±0.02b 1.54±0.03c 
 

30.4 6.66×10-16 

M. triceps brachii 1.15±0.04a 1.30±0.17b 1.37±0.02c 
 

10.3 3.31×10-5 

† Least Square Means (LSM) ± Standard Error 

*Var is percentage of phenotypic residual variance explained by the MYH3 FSV. 

a~cMeans with a different superscript in the same row significantly differ at p<0.05. 
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