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Abstract 6 
As the population and income levels rise, meat consumption steadily increases annually. However, the 7 

number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. 8 

Information and Communications Technology (ICT) has begun to be applied to reduce labor and production 9 

costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy 10 

diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity 11 

of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from 12 

ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from SiLU 13 

to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to 14 

bicubic to improve performance. The model trained with the original model using the original data achieved 15 

mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and 16 

AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all 17 

three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 18 

89.8% was achieved. 19 

 20 

Keywords: Deep learning, Object-detection algorithm, Pig Sac, Sow, Ultrasound 21 
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Introduction 24 

 25 

As population and income levels continue to rise, there is a corresponding increase in meat consumption. 26 

From 2000 to 2019, the per capita consumption of meat increased by 22.7 kg and an average of 2.96% 27 

annually in Korea [1]. However, during the same period, the number of farms decreased by 376, and the 28 

number of farmers decreased by 1,786,000. The aging population in the farm, with an increase of 24.9% in 29 

individuals aged 65 or older (from 21.7% to 46.6% [2]), has contributed to the decline in the labor force. 30 

The resultant decline in labor force led to a 13.3% decline in meat sufficiency rate, from 78.8% to 65.5% 31 

[1]. In response, the intelligent livestock industry began to incorporate Information and Communications 32 

Technology (ICT) in 2014. ICT helps reduce production costs and labor requirements and improve the 33 

productivity of livestock farmers. As shown in Figure 1, the number of intelligent livestock farms, which 34 

include pig farms, was 23 in 2014 and increased rapidly to 1,073 in 2019 [3]. Equipment such as 35 

temperature sensors, humidity sensors, weight scales, and feed management systems are used in the pig 36 

farms for pregnant sow management. However, to use these devices optimally, it is necessary to diagnose 37 

pregnancy as soon as possible. 38 

There are various methods for diagnosing pregnancy in sows, one of which is measuring urinary and 39 

plasma estrone sulfate concentration [4]. This study aims to diagnose pregnancy on sow by analyzing 40 

estrone sulfate concentration in plasma and urine. Estrone sulfate concentration in urine was corrected for 41 

dilution by creatinine concentration and specific gravity. High performance was achieved in diagnosing 42 

pregnancy through estrone sulfate concentration in plasma and urine. Pregnancy diagnosis in plasma and 43 

urine recorded recall values of 98.8% and 96.4%, respectively. A study investigated the concentrations of 44 

progesterone, estrone, and oestradiol-17β during pregnancy and parturition in sows [5]. When sows were 45 

pregnant, progesterone concentrations initially increased and then stabilized. In the case of estrone, it rose 46 

during the early and middle stages of pregnancy and decreased just before farrowing, while oestradiol-17β 47 

decreased during the early and middle stages of pregnancy and then increased immediately before delivery. 48 

Pregnancy was also diagnosed using ultrasound [6]. Unlike other methods, ultrasound pregnancy diagnosis 49 

is non-invasive and can minimize stress in sows.  Ultrasound images are also mainly used in fetal head and 50 

brain analysis [7-8]. A relatively accurate diagnosis is possible even 20 days after mating. Early pregnancy 51 

diagnosis is beneficial to the farm, as miscarriages in sows can be reduced by providing necessary nutrition 52 

to sows in time [9]. Sow pregnancy must be detected for proper feeding management or antibiotic control 53 

to be implemented. Failure to detect sow pregnancy in time increases the non-productive days of sows and 54 

causes significant damage to farms [10]. 55 

Estimating the number of gestational sacs in pregnant sows is also important when diagnosing pregnancy 56 

through ultrasound imaging. The number of gestational sacs can predict litter size and piglet size in a sow, 57 

and when combined with the sow's parity number and age, this information offers valuable insights for farm 58 
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management [11-12]. Based on these studies, an artificial intelligence system is proposed to detect the 59 

number and location of gestational sacs in ultrasound images of pregnant sows. This system can provide 60 

additional helpful information to pig farmers by identifying the number and location of gestational sacs in 61 

pregnant sows. This system is based on an object-detection-based model, whose accuracy was improved 62 

through various experiments based on the YOLOv7-E6E model [13]. First, the upsampling technique used 63 

in YOLOv7-E6E was modified, and the activation function in the middle of each model was altered. In 64 

addition, a data augmentation method was used to increase the amount of data. 65 

 66 

Materials and Methods 67 

 68 

Dataset  69 

Trained experts collected sow ultrasound data from the National Institute of Animal Science (NIAS) in 70 

Cheonan. This study was approved by the Institutional Animal Care and Use Committee (IACUC) of Rural 71 

Development Administration (approval No. NIAS-2021-538). Data were collected with MyLab™ 72 

OmegaVET (Esaote), and an AC2541 (Esaote) probe with in a frequency range of 1.0Mhz to 8.0Mhz was 73 

used. Data were collected in the GEN-M (4.0Mhz-6.0Mhz range frequency) format, often used in pig farms. 74 

Data collected by experts between days 23 and 28 post-mating from 103 gestational sows with visible 75 

gestational sacs were collected by experts. 4,143 lossless and uncompressed BMP format images were 76 

extracted to minimize data loss. Trained experts verified the extracted images and annotated the location of 77 

the gestational sacs in each image as bounding boxes. 78 

The 4,143 images were divided into training, validation, and testing sets by randomly splitting them using 79 

an approximately standard 6:2:2 ratio, ensuring no data duplication in each dataset. This resulted in 2,484; 80 

828; and 831 images in training, validation, and testing sets, respectively. 81 

 82 

 Deep-Learning Object-Detection Algorithm 83 

This study aimed to detect and count gestational sacs in ultrasound images using the YOLOv7-E6E 84 

model [11]. The YOLOv7-E6E model is a fast and accurate method that combines location detection and 85 

object recognition. The performance of the model improved by applying four techniques. The first was 86 

extended efficient layer aggregation networks (E-ELAN) for efficient learning when training deep-network 87 

models. E-ELAN controls and constructs the gradient path relatively efficiently through extend, shuffle, 88 

and merge operations. The second is the compound scaling method for model scaling. The compound 89 

scaling method enables fast processing speed by changing the ratio of the input channel to the output 90 

channel, reducing hardware usage. The third is a method that improves accuracy without increasing 91 

inference costs. A planned re-parameterized convolution was proposed, which showed that the residual 92 

connection reduced the performance when the parameter was in the transformed layer. RepConv without 93 
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identity connection (RepConvN) was used to solve this problem. RepConvN is the algorithm used in deep 94 

supervision. The lead head is in charge of the final output, and the aux head is an algorithm that assists 95 

learning. This algorithm dynamically adjusts and use acceptable labels from the lead head and coarse labels 96 

from the aux head. The last method is mosaic augmentation. The concept of mosaic is straightforward: it 97 

involves merging four images into one. This is achieved by resizing each of the four images, stitching them 98 

together, and randomly selecting a cutout from the resulting composite to create the final mosaic image. As 99 

a result,  the objects in the merged image appear at a smaller scale than the original image. This kind of 100 

augmentation is beneficial in improving the detection of small objects in images. Performing the mosaic 101 

augmentation with the YOLOv7-E6E algorithm poses a challenge in handling the bounding boxes for the 102 

final image. Although resizing and relocating the bounding boxes is a manageable task, it can be tedious to 103 

determine the appropriate positioning for the boxes after stitching the images together and creating the 104 

cutout. In Figure 2, an image is created by mosaic augmentation, and the bounding box marked is the part 105 

where the gestational sac is located. This method enabled stable learning even in with small batch size in 106 

batch normalization. 107 

 108 

The system focused on the structures used in the backbone and head in the YOLOv7-E6E model. First, 109 

the model Applied ReOrg to reshape the initial model and the convolution block in the backbone for 110 

preprocessing. Then, the process illustrated by the structure in Figure 3 (a) was repeated five times. In the 111 

head, after passing through the SPPCSPC layer in which SPP (Spatial Pyramid Pooling) and CSP (Cross-112 

Stage Partial connections) are combined, the processes illustrated by the structures in Figures 3 (b), 3(c), 113 

and 3 (d) were repeated three, three, and two times, respectively. Finally, IAuxDetect, which detects object 114 

layers, was used. In Figure 3, Conv means a convolution block, DownC means a convolution for 115 

downsampling, Shortcut means a layer for residual connection, and Concat means a layer that concatenates 116 

multiple feature maps created through convolution. 117 

 118 

Multi-Activation Function Method 119 

The activation function is used to transform the model input into output, and a non-linear function is 120 

mainly used. The activation function can alleviate the vanishing gradient problem in the deep-learning 121 

models, and model configuration can be relatively complex [14]. There are various activation functions, 122 

and SiLU, SeLU, ELU, Leaky_ReLU, Mish, and ReLU were used in this study [15-20]. Yolov7-E6E which 123 

is used in this study has an activation function in the convolution block, and SiLU was used. 124 

The system combined several activation functions to increase performance in the object-detection model. 125 

Iandola et al. [21] improved accuracy and speed using ReLU and PReLU activation functions. Wu et al. 126 

[22] improved accuracy and speed using a combination of ReLU and Leaky ReLU activation functions. 127 

Based on previous studies, the system proposed the following method. 128 
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SiLU and Mish are nonlinear activation functions that add nonlinearity to the neural network. There is a 129 

big difference in that SiLU is defined as sigmoid, and Mish is defined as tanh. These differences lead to 130 

differences in convergence speed and computational complexity. In general, Mish has a faster convergence 131 

speed and higher computational complexity. So, the activation function at the back of the convolution block 132 

repeated in the backbone and head of the YOLOv7-E6E model was replaced by Mish.  The backbone was 133 

modified as shown in Figure 4 (a), and the head was modified as shown in Figure 4 (b), (c), (d) to improve 134 

performance. 135 

 136 

Up Sampling Method 137 

In the YOLOv7-E6E model used in this study, upsampling was performed three times at the head. 138 

Upsampling is a layer that upsamples feature maps according to a stride multiple. In YOLOv7-E6E, the 139 

stride multiple is fixed at two; the width and height are doubled through this layer. Upsampling techniques 140 

include nearest, bilinear, and bicubic. Nearest is a method of copying the value of the nearest-neighbor 141 

pixel. Bilinear is a method of calculating values by performing linear interpolation on each of the two axes 142 

using four neighboring pixel values, whereas bicubic calculates a value using a 3rd-order polynomial as an 143 

interpolation function using 16 neighboring pixel values [23]. 144 

In the YOLOv7-E6E model, the nearest technique was used for all three upsampling. However, nearest 145 

is a method of simply copying values; thus, detailed information on the feature map may be lost. Therefore, 146 

in this study, the performance was improved by applying a bicubic technique, which has a slightly high 147 

computational cost but has low loss and can improve the quality of the feature map. 148 

 149 

Augmentation Method 150 

In this study, data were augmented using Google’s AutoAugment augmentation technique to improve 151 

model performance using a small amount of data [24]. AutoAugment is a reinforcement learning algorithm 152 

that automatically searches for improved data augmentation policies. It applies several augmentation 153 

techniques in pairs. When a model is trained by applying various augmentation techniques on CIFAR-10, 154 

ImageNet, and SVHN datasets, 25 pairs of combinations with the highest performance are disclosed [25-155 

27]. There are 16 augmentation techniques used in AutoAugment: Cutout and Sample Pairing augmentation 156 

techniques and Rotate / Shear X, Y / Translate X, Y to rotate, twist, or move the image; Auto Contrast, 157 

Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, and Sharpness techniques that adjust the 158 

image contrast and brightness while the position is fixed. 159 

The CIFAR-10 dataset consists of 32x32 images and is a public dataset with ten classes (Cat, Dog, Frog, 160 

Horse, Airplane, Ship, Deer, Bird, Car, and Truck). The ImageNet dataset consists of 1,000 classes of 161 

images of various sizes, and the SHVN dataset is a numerical dataset collected from Google street view. 162 
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In this study, images were augmented according to the ImageNet augmentation policy. The ImageNet 163 

augmentation policy was tuned to a large and diverse dataset. Therefore, unlike the CIFAR-10 or the SVHN 164 

augmentation policy, the ImageNet augmentation policy is well generalized. Therefore, the ImageNet 165 

augmentation policy expects to perform well in gestational sac detection. The augmented images are shown 166 

in Figure 5. They were multiplied 25 times the original amount. The number of images in the training set 167 

increased from 2,484 to 62,000, and that of the validation set increased from 828 to 20,700. 168 

A deep-learning model was proposed to detect the gestational sac from ultrasound images of pregnant 169 

sows. Three methods were applied to improve its performance. The flowchart of our system is shown in 170 

Figure 6. 171 

 172 

Results and Discussion 173 

 174 

 Evaluation Metrics 175 

In this study, mean average precision (mAP) was used as an indicator for comparing the performance of 176 

deep-learning models. It is an evaluation index mainly used in deep-learning object detection and measures 177 

the similarity between the objects predicted by the object-detection model and the actual object; thus, mAP 178 

evaluates the accuracy of the object-detection model. This metric calculates the precision-recall (PR)-curve 179 

using precision and recall and the PR-curve to obtain the average precision (AP). AP is calculated as the 180 

area under the PR-curve. The mAP can be obtained through the average AP of the class [28]. The model 181 

evaluated based on intersection over union (IoU) 0.5. Therefore, only bounding boxes with IoU values 182 

greater than 0.5 were calculated. 183 

 184 

Multi-Activation Function Result 185 

First, the performance with various activation functions was compared. When the activation function of 186 

the convolution block was SiLU, the mAP was 86.3%. When SeLU, ELU, Leaky_ReLU, Mish, and ReLU 187 

were consecutively applied, mAP results of 78.1%, 85.7%, 85.6%, 86.0%, and 85.6%, respectively, were 188 

achieved the performance evaluation results based on activation functions are summarized in Table 1. SiLU 189 

achieved the best result, followed by Mish. The two activation functions of the previously proposed multi-190 

activation function were selected as SiLU and Mish. When the two activation functions were applied, a 191 

mAP of 86.6% was achieved, 0.3% more than that of SiLU alone. 192 

 193 

Up Sampling Result 194 

Following are the results of comparing upsampling techniques. When nearest was used as the three 195 

upsampling techniques at the head of the original model, mAP was 86.3%. When bilinear and bicubic 196 

ACCEPTED



8 

 

interpolation methods were applied, mAP was 86.5% and 86.5%, respectively, an improvement of 0.2% 197 

from the original. The two methods that showed better performance were reconfirmed by applying the 198 

previously proposed multi-activation function technique. The mAP of bilinear and bicubic under the multi-199 

activation function application was 86.6% and 87.2%, respectively, improvements of 0.3% and 0.9% from 200 

the original model. The results of the evaluation of upsampling methods are presented in Table 2. 201 

 202 

AutoAugment Result 203 

Finally, the results present learning and testing augmented images using AutoAugment. Learning and 204 

testing using the original data achieved mAP of 86.3% whereas training and testing the model using 205 

AutoAugment’s ImageNet augmentation policy improved performance by 0.9% to 87.2%. Additionally, 206 

Cifar-10 augmentation policy was applied, and it also improved performance by 0.2% to 86.5%. However, 207 

ImageNet augmentation policy is better than Cifar-10. The evaluation results are summarized in Table 3. 208 

The results showed a significant performance improvement compared to other techniques. More than the 209 

original data was needed to train the deep-learning model. The performance was significantly improved 210 

because it was trained with a 25 times larger dataset than the original data through augmentation. 211 

 212 

Proposed Method Result 213 

When all three methods mentioned above were applied, a mAP of 89.8% was achieved, showing a 214 

performance improvement of 3.5% from the original result, which was 86.3%. Each method improved the 215 

performance by not more than 1.0%, but the improvement was significant when the three methods were 216 

combined. The overall performance of the proposed method is shown in Table 4. 217 

The YOLOv7-E6E-based algorithm used in this study showed high performance in gestational sac 218 

detection. First, by modifying the activation function to the multi-activation function, the original model 219 

expressed more complex patterns when updating the weights. In addition, when overfitting occurs with one 220 

activation function in a specific situation, it can be solved by using another activation function. Therefore, 221 

the performance is better than that of the original model. Next, the performance was improved by modifying 222 

the upsampling method. It was confirmed that bicubic extracts feature maps with less loss and better quality 223 

than bilinear and nearest and improved performance when extracting feature maps. The best performance 224 

was obtained by combining all three performance improvement methods. In this study, it is demonstrated 225 

that the fusion of the three technologies above has a synergistic effect, significantly improving the model's 226 

overall performance. A Multi-Activation function strategy incorporating multiple complex activation 227 

functions facilitates broadening the model's nonlinearity. Nevertheless, it is easy to overfit the model due 228 

to the complexity of the underlying equations and changes in the parameters. As a result, this tends to bias 229 

the learning process toward the training data, even without proper training. However, overfitting can 230 
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effectively be reduced by the upsampling method and data augmentation techniques. This results in a more 231 

robust and accurate model being generated. 232 

The mAP is an index that confirms how similar precisely the model predicts the size and location of the 233 

bounding box. As mentioned above, the litter size and the size of piglets can be predicted through the size 234 

and position of the gestational sac in the ultrasound image [11-12]. Thus, the improvement in the mAP 235 

performance of the model proposed in this study is of great significance. In addition, it is expected to 236 

improve the productivity of farms by providing meaningful information to farms. 237 

 238 

Conclusion 239 

This study aimed to detect the gestational sac in ultrasound images of sows. Ultrasound images of sows 240 

were collected and annotated by experts. A YOLOv7-E6E model was modified by multi-activation function 241 

and upsampling methods and trained using this dataset. AutoAugment’s ImageNet augmentation policy is 242 

used for small amounts of data to improve the deep-learning model’s performance. Multi-activation 243 

function, changed upsampling method, and image augmentation showed performance improvements of 244 

0.3%, 0.9%, and 0.9%, respectively. When all three methods proposed in this study were applied, there was 245 

a significant performance improvement of 3.5%. 246 

In future research, planning to apply a method further to increase performance is necessary. When an 247 

image is augmented, there is a case in which the characteristics of the object are not reflected in the 248 

augmented image. Therefore, the augmented image may need to be filtered. To improve the performance 249 

by filtering out unsuitable augmented images, which do not reflect the characteristics of the object. In 250 

addition, the ultrasonic device used in this study is a high-end device manufactured for research purposes, 251 

and not a device typically used in farms. However, collecting data with high-end devices is costly and 252 

impractical. Data collected with devices commonly used by farmers may add harsh noise and reduce the 253 

clarity of the image. Therefore, to solve this problem, additional data collected from devices with low 254 

specifications are needed; alternatively, noise generated from devices with low specifications may be added.  255 

 256 
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Tables and Figures 326 

 327 

Table 1. Performance evaluation of activation functions.  328 

Dataset Activation Function mAP 

Original 

SiLU (original) 0.863 

SELU 0.781 

ELU 0.857 

LeakyReLU 0.856 

Mish 0.860 

ReLU 0.856 

Proposed Method 

(SiLU + Mish) 
0.866 
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Table 2. Performance evaluation of upsampling methods. 339 

Dataset Activation Function Upsampling mAP 

Original 

SiLU (original) nearest (original) 0.863 

SiLU (original) bilinear 0.865 

SiLU (original) bicubic 0.865 

Proposed Method 

(SiLU + Mish) 
bilinear 0.866 

Proposed Method 

(SiLU + Mish) 
bicubic 0.872 
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Table 3. Performance evaluation of augment method. 355 

Dataset Upsampling mAP 

Original nearest 0.863 

Cifar-10 

Augmentation 
nearest 0.865 

ImageNet 

Augmentation 
nearest 0.872 
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Table 4. Overall performance evaluation of proposed method. 376 

Dataset Activation Function Upsampling mAP 

Original SiLU (original) nearest 0.863 

ImageNet 

Augmentation 

Proposed Method 

(SiLU + Mish) 
bicubic 0.898 
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Figure 1. Number of intelligent livestock farms by year. 400 
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Figure 2. Example of mosaic augment. 420 
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Figure 3. Original model (YOLOv7-E6E). 435 
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Figure 4. Proposed model (activation function changed). 472 
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Figure 5. Example of augmented data. 508 
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Figure 6. Flowchart of the proposed scheme. 524 
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