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Abstract 24 

Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs, characterized by vomiting and 25 

watery diarrhea, and has a major economic burden on the global pork industry. The objective of this 26 

study was to develop a new surface display system for PEDV antigens fused with a cell wall-anchoring 27 

domain, using Lactiplantibacillus plantarum as a host. The B-cell epitopes of the PEDV membrane (M) 28 

protein epitopes, designated as M1, M2, and M3, generated by online prediction tools, were stably 29 

expressed and displayed in Lp. plantarum SK156 and verified by immunofluorescence microscopy. 30 

Stimulation of porcine intestinal epithelial cells (IPEC-J2) with the surface displayed M epitopes resulted 31 

in elevated production of interferon (IFN)-γ and interleukin (IL)-10. To investigate the immunogenicity 32 

of the M epitopes, 30 female BALB/c mice (n = 6 per group) were orally administered Lp. plantarum 33 

displaying M1, M2, or M3 epitopes and wild-type Lp. plantarum, or phosphate buffered saline (PBS). 34 

On days 21 and 35, mice immunized with the M1 epitope showed consistently high levels of antigen-35 

specific secretory immunoglobulin (Ig)-A and serum IgG, demonstrating the induction of both mucosal 36 

and humoral immune responses. However, no changes were observed in the cytokine profiles of the 37 

immunized mice. To the best of our knowledge, this is the first report of PEDV M epitopes on the surface 38 

of lactic acid bacteria (LAB). Our findings highlight the immunogenic potential of the PEDV M protein 39 

and the possibility of further research on the development of a Lactobacillus-based oral vaccine against 40 

PEDV infection. 41 

 42 

Keywords: Surface display, Mucosal vaccine, Lactobacillus, PEDV, Membrane protein 43 
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Introduction 45 

Porcine epidemic diarrhea (PED) is a highly contagious enteric disease characterized by acute 46 

symptoms such as watery diarrhea associated with vomiting and dehydration [1,2]. The most severe 47 

signs have been reported in piglets less than two weeks old, in which diarrhea leads to severe 48 

dehydration and is associated with mortality rates of up to 100% in affected litters [3,4]. PED is mainly 49 

caused by the PEDV, a member of the family Coronaviridae, and is characterized by a positive-sense, 50 

enveloped single-stranded RNA virus [1,4]. PEDV contains a 28 kb positive-sense single-stranded RNA 51 

genome with a 5′ cap and 3′ polyadenylated tail. The PEDV genome encodes structural and non-52 

structural viral proteins, such as spike (S), membrane (M), and nucleocapsid (N) proteins, which are 53 

important for viral infection, replication, and immune response evasion [2,5]. Owing to their ability to 54 

mount a sufficient immune response, these proteins are crucial for the development of effective 55 

vaccines [5]. Live attenuated and inactivated vaccines are the most common immunization methods for 56 

PEDV. In contrast, the use of conserved epitopes of pathogen proteins in subunit vaccine design is 57 

gaining interest because of its immunogenicity, safety, and cost-effectiveness compared to traditional 58 

vaccines [6].  59 

The PEDV M protein, a prevalent component of the viral envelope, is a triple-spanning structural 60 

membrane glycoprotein featuring an exterior short amino-terminal domain and an interior long carboxy-61 

terminal domain [2,7]. This protein interacts with the S and N proteins and plays an important role in 62 

the assembly of viral particles [8,9]. In addition, antibodies targeting the M protein of coronaviruses are 63 

crucial for controlling the course of the disease and inducing protection against the virus [10,11]. 64 

Meanwhile B-cell epitopes have been widely used in the development of antibody-based therapies, 65 

peptide-based vaccines, and immunodiagnostic tools [9,12]. Progress in B-cell epitope mapping and 66 

computational prediction using bioinformatics tools have provided molecular understandings of bio-67 

recognition process and antigen-antibody complex formation, leading to the development of more 68 

accurate algorithms for predicting antigen localization. [13]. Identification of epitopes on the PEDV M 69 

protein is also valuable for elucidating its antigenic properties [9].  70 

Lactic acid bacteria (LAB) have attracted attention not only because they are safe to use but also for 71 

their capability to colonize the intestines, withstand gastric and bile acids, and produce anti-microbial 72 

substances [14–19]. Moreover, LAB are considered attractive candidates for mucosal vaccine delivery 73 

vehicles owing to their intrinsic adjuvanticity, long history of use in dairy and other fermented foods, and 74 
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their inclusion in the Generally Recognized as Safe (GRAS) list [20]. The cell surface display of 75 

heterologous proteins on LAB is a growing research field that shows great potential for a variety of 76 

applications, including the development of live vaccine delivery system, screening peptide libraries, and 77 

developing whole-cell biocatalysts [20–22]. Recent research has shown the promising application of 78 

LAB as mucosal vaccine delivery vehicles. Hou et al. [23] successfully displayed the PEDV N protein 79 

on the surface of Lactobacillus acidophilus. Several studies have demonstrated the ability of the core 80 

neutralizing epitopes of the PEDV surface displayed proteins on Lb. casei and Lb. johnsonii to elicit 81 

immune response [24–28]. Zang et al. [29] and Li et al. [30] used the S proteins of PEDV and displayed 82 

them in Lb. acidophilus and Lb. casei, respectively.  83 

Although many studies have reported the application of S and N proteins in PEDV, studies exploring 84 

the use of M proteins and their immune properties are limited [5]. Moreover, the immunogenicity of 85 

surface-displayed PEDV M epitopes in LAB has not been investigated. In this study, we predicted the 86 

B-cell epitopes for the PEDV M protein and developed a surface display platform utilizing the epitopes 87 

of the PEDV M protein in Lactiplantibacillus plantarum SK156. Innate responses in porcine intestinal 88 

epithelial cells (IPECs) and immune responses elicited following oral vaccine administration in mice 89 

have also been described. 90 

 91 

Materials and method 92 

Preparation of PEDV M protein and selection of epitopes 93 

Membrane protein sequences of PEDV isolated in Korea (KOR/KNU-141112/2014; GenBank 94 

accession no. ADZ76336), Japan (OKY-1/JPN/2014; GenBank accession no. LC063847), China 95 

(CH/JSX/06; GenBank accession no. EU033967), and Belgium (CV777; GenBank accession no. 96 

AF353511) were accessed from the National Center for Biotechnology Information 97 

(http://www.ncbi.nlm.nih.gov/), and conserved regions were compared using ClustalW on MEGA6 98 

(http://www.megasoftware.net/). Prediction of protein structure was performed using trRosetta web-99 

based tool [31] and evaluated using ProSA-web [32] (Supplementary Figure S1). Prediction of linear B-100 

cell epitopes were performed using three tools: IEDB Bepipred Linear Epitope Prediction 2.0 tool [33] 101 

and SVMTriP [34]. These three tools employ different models, such as the Hidden Markov and Support 102 

Vector Machine models, and consider different amino acid propensities and secondary structures to 103 

predict B-cell epitopes [35]. In the IEDB tool, other epitope properties such as surface accessibility 104 
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(Emini surface accessibility) and antigenic propensity (Kolaskar and Tongaonkar antigenicity), were 105 

also used to select the epitopes. The results from each tool were compared and the most conserved 106 

immunogenic epitopes were chosen for surface display on Lp. plantarum.  107 

 108 

Design of surface display system in Lp. plantarum SK156 109 

Table 1 provides a summary of the bacterial strains and plasmids utilized in this study. Escherichia coli 110 

DH5α was propagated in the Luria-Bertani (LB) broth (Difco, Davenport, IA, USA) supplemented with 111 

ampicillin (100 μg/mL) when applicable under shaking conditions at 37 °C. The lactobacilli strains were 112 

cultivated in the de Mann, Rogosa, and Sharpe (MRS) broth (Difco, Davenport, IA, USA) and grown 113 

without agitation at 37 °C. Erythromycin (3 μg/mL) was added when applicable. 114 

Primers listed in Table 2 were used to amplify the DNA sequences encoding the signal peptide (SP) 115 

and cell wall anchor (CWA) domain of surface layer protein A (SlpA) from Lb. acidophilus 4356 [36]. 116 

Likewise, PEDV epitopes designated as M1, M2, and M3 were amplified from the PEDV strain KVCC-117 

VR0000187 using the primers listed in Table 2. Purified polymerase chain reaction (PCR) products (SP, 118 

CWA, and M epitopes) were used to perform recombinant PCR using the primers listed in Table 2. The 119 

DNA fragments obtained were designated as SP-M1 epitope-CWA (M1), SP-M2 epitope-CWA (M2), 120 

and SP-M3 epitope-CWA (M3) fusion genes. The fusion genes and pULP3 were digested with PstI and 121 

HindIII, respectively, and ligated with T4 DNA ligase (TaKaRa Bio Inc., Shiga, Japan) for bacterial 122 

transformation. E. coli DH5α transformation was done following previous protocol [21]. Lactobacillus 123 

transformation was performed using electroporation as described by Chae et al. [37]. Transformants 124 

were selectively grown using the appropriate media: LB agar with ampicillin (100 µg/mL) or 125 

erythromycin (150 µg/mL) for E. coli, and MRS agar supplemented with erythromycin (3 µg/mL) for Lp. 126 

plantarum strain. The transformants were grown at 37 °C for 12–18 h (E. coli), or 48–72 h (Lp. 127 

plantarum).  128 

 129 

Overexpression in E. coli and western blot 130 

The expression of the PEDV M epitope was determined as previous protocol [21]. Briefly, recombinant 131 

E. coli BL21 (DE3) cells carrying the M epitope genes (optical density [O.D.600] = 0.6) were 132 

overexpressed by adding 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and incubated at 25 °C 133 

for 6 h. Then, the cells were centrifuged at 10,000 × g for 10 min and resuspended in Tris-Cl buffer (50 134 
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mM Tris, pH 8.0). Cells were lysed using a probe-tipped sonicator (Vibra-Cell; Sonics Newtown, CT, 135 

USA) set at 30% amplitude 15 times for 10 s each with 10-s interval on ice. The suspension was 136 

centrifuged at 13,000 × g for 20 min and the pellet was collected and washed twice with lysis buffer. 137 

The pellets were solubilized in 8 M urea. Protein purification was performed using Ni-NTA agarose-138 

packed columns (Qiagen, Hilden, Germany). For western blotting, the purified proteins were separated 139 

on a 12% polyacrylamide gel. Proteins were subsequently transferred to nitrocellulose membranes. 140 

(Bio-Rad, Boulder, CO. USA). After blotting, the membrane was washed with 1× Tris-buffered saline 141 

containing 0.1% Tween 20 (TBST) and blocked with 5% bovine serum albumin (BSA; R&D Systems, 142 

Minneapolis, MN, USA) in TBST for 1 h at room temperature. Monoclonal anti-His antibody (1:20,000 143 

dilution in TBST with 5% BSA) was added and incubated overnight at 4 °C. The membrane was washed 144 

with TBST before incubation with horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG 145 

(1:20,000 dilution in TBST with 5% BSA) (Thermo Scientific, Waltham, MA, USA) for 1 h at room 146 

temperature. Proteins were detected using the SuperSignal West Pico Chemiluminescent Substrate kit 147 

(Thermo Scientific, Waltham, MA, USA) and observed using ChemiDoc XRS+ and Image Lab software 148 

(Bio-Rad, Minneapolis, MN, USA). 149 

 150 

Expression of PEDV M epitopes on the surface of Lp. plantarum SK156 151 

Recombinant Lp. plantarum SK156 was incubated overnight in MRS broth with erythromycin (3 µg/mL). 152 

The immunofluorescence assay was performed according to Hwang et al [38]. Briefly, cells were 153 

incubated and grown at 37 °C for 12 h and then harvested by centrifugation. Subsequently, the cells 154 

were washed with chilled PBS (pH 7.4) and reconstituted in an equivalent volume of the same buffer. 155 

Multi-well glass slides were prepared, and 10 μL poly L-lysine solution (0.1% w/v; Sigma-Aldrich, St. 156 

Louis, MO, USA) was added to each well. The mixtures were incubated for 1 h and the liquid was 157 

aspirated off. The cells were washed once with sterile distilled water and air dried. The cells were treated 158 

and rinsed with PBS containing 0.1% (v/v) Tween-20 (PBST, pH 7.4), then blocked with 2% (w/v) BSA 159 

in PBST buffer for 30 min at room temperature. The solution was then aspirated off and 10 μL of diluted 160 

(1:200) primary antibody (anti-HisTag antibody; R&D Systems, Minneapolis, MN, USA) dissolved in 2% 161 

BSA with PBST buffer was added. The slide was incubated overnight at 4 °C and washed with PBST. 162 

Subsequently, the cells were incubated with secondary antibody in PBST (NorthernLights Anti-mouse 163 

IgG-NL557; R&D Systems, Minneapolis, MN, USA) with 2% BSA for 1 h at room temperature in the 164 
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dark. The secondary antibody solution was decanted and washed thrice with PBST for 5 min each in 165 

the dark. Finally, the bacterial cells were reconstituted in a mounting solution. The cells were viewed 166 

under a fluorescence microscope (ProgRes C10 plus with Intensilight C-HGFI; Nikon, Tokyo, Japan) 167 

equipped with a 570 nm filter. 168 

 169 

Immune response in IPEC-J2 cells 170 

Porcine intestinal epithelial cell line (IPEC-J2) was grown using Dulbecco’s modified Eagle medium 171 

(DMEM; Gibco, Grand Island, NY, USA) in a humidified atmosphere with 5% CO2 at 37 °C [39]. The 172 

IPEC-J2 cells were seeded in 24-well plates and allowed to reach at least 90% confluence. Cell 173 

concentration was determined using 0.4% trypan blue viability staining. The wild-type and recombinant 174 

Lp. plantarum SK156 displaying M epitopes on its surface were prepared at approximately 2.5 × 107 175 

CFU/mL and re-suspended in DMEM. Bacterial cells were incubated with IPEC-J2 cells for 2 h. Later, 176 

cell culture supernatant was collected and stored at -70 °C until assayed.  177 

 178 

Oral immunization with surface displayed PEDV M epitopes in mice 179 

The Institutional Animal Ethics Committee of Dankook University in Korea approved all animal 180 

experimental procedures (DKU-16-038). Thirty (30) female, specific pathogen-free BALB/c mice (8-181 

weeks old) were purchased (Raonbio, Yongin, Korea) and adapted to the laboratory environment for 1 182 

week (Figure 4A). The animal room had a 12-h light-dark cycle and kept at 22–25 °C with 45–50% 183 

relative humidity. Mice were given unrestricted access to a standard pellet diet (Envigo, Indianapolis, 184 

IN, USA) and sterilized distilled water. After acclimatization, the mice were randomly divided into five 185 

groups (six mice per group, three mice per cage). Immunization was performed by oral gavage (0.1 mL) 186 

containing PBS only (pH 7.4, control), wild-type Lp. plantarum SK156 without M epitopes in PBS 187 

(SK156), and 2×109 Lp. plantarum SK156 cells expressing PEDV M epitopes (M1, M2, or M3). Oral 188 

immunization was performed for three consecutive days, on days 0–2, 14–16 (first booster), and 28–189 

30 (second booster). Blood samples were collected from the tail vein on days 0 (pre-immune), 21, and 190 

35. Serum samples from freshly collected blood were prepared by allowing the blood to clot for 15 min 191 

at room temperature undisturbed, then centrifuged at 2,000 × g for 10 min at 4 °C. Feces (200 mg) 192 

were collected from the anus of the mice, then suspended in 400 μL of PBS with 0.01 M EDTA–Na2. 193 
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The feces suspension was incubated overnight at 4 °C, then centrifuged. The pellet was discarded, and 194 

the supernatants were stored at −70 °C.  195 

 196 

Detection of cytokines and antigen-specific antibodies with enzyme-linked immunosorbent 197 

assay 198 

The levels of cytokines, including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-199 

10 in cell culture supernatant, and IL-4, IL-6, and IL-10 in mice sera was detected with enzyme-linked 200 

immunosorbent assay (ELISA) kits as per manufacturer’s instructions (R&D Systems, Minneapolis, MN, 201 

USA). A standard curve was created to calculate cytokine concentrations using seven step 2-fold 202 

dilutions. The antibody response was evaluated by measuring the production of secretory 203 

immunoglobulin (Ig)-A and IgG following our previous protocol [38]. Briefly, wells of a 96-well plate were 204 

coated with 100 µL recombinant PEDV M epitopes expressed in E. coli (3 µg/mL final concentration) 205 

and incubated overnight at 4 °C. The plates were then blocked with 3% BSA at 37 °C for 1 h. After 206 

washing with PBST, 100 µL of immunized mice serum (1:200 diluted) was added to the wells then 207 

incubated for 1 h at 37 °C. HRP-conjugated goat anti-mouse IgA or IgG antibody (dilution 1:10000 at 208 

37 °C, Invitrogen Corporation, Carlsbad, CA, USA) was used to detect titers of IgA and IgG followed by 209 

the addition of 3, 3’, 5, 5’-tetramethylbenzidine (TMB). Sulfuric acid (0.5 N) was added to each well to 210 

stop the reaction. The plate was immediately measured using an ELISA plate reader (SpectraMax M2e; 211 

Molecular Devices, San Jose, CA, USA) at an O.D. of 450 nm.  212 

 213 

Statistical analysis 214 

Assays were performed in triplicate. All results are reported as mean ± standard deviation (SD). 215 

Statistical significance was calculated using one-way ANOVA followed with Tukey’s post-hoc test or 216 

Kruskal-Wallis followed with Dunn’s post-hoc test in GraphPad Prism (v.8.4.2), whichever is appropriate.  217 

Statistical significance was achieved for all analyses with a p-value less than 0.05. 218 

 219 

Results 220 

Epitope selection and surface display of PEDV M epitopes in Lp. plantarum SK156 221 

Alignment of M proteins from different PEDV strains showed that the M protein from PEDV strains from 222 

Korea (KOR/KNU-141112/2014) has 98.67% and 97.35% similarity to the PEDV strains from Belgium 223 
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and China, and Japan, respectively (Supplementary Figure S2). Conserved regions among these M 224 

proteins were considered for B cell epitope prediction. Using Bepipred 2.0 and SVMTrip, several 225 

sequences from the M protein of KOR/KNU-141112/2014 strain were predicted. Surface accessibility 226 

and epitope antigenicity were also determined to further select candidate epitopes for the surface 227 

display experiment. Among the predicted sequences, three candidates were selected and designated 228 

as M1 (WIMWYVNSIRLWRRTHSWW), M2 (ETDALLTTSVMGRQVRIPVL), and M3 229 

(RSVNASSGTGWAFYVRSKHGDYSA) (Figure 1). The cell surface display vector using SP and CWA 230 

of the SlpA of Lb. acidophilus ATCC 4356 as an anchor was constructed by introducing the genes 231 

encoding M1, M2, and M3 into the plasmid pULP3, as shown in Figure 2A, and then transforming Lp. 232 

plantarum SK156 via electroporation. To confirm the expression of fusion genes containing M epitopes, 233 

proteins were overexpressed in E. coli and western blotting was performed. As shown in Figure 2B, 234 

SP-M epitope-CWA fusion proteins with a combined size of approximately 20 kDa were successfully 235 

expressed in E. coli and detected by western blotting. An immunofluorescence assay was performed 236 

to determine the cellular localization of M epitopes in the Lactobacillus host. Figure 2C shows the 237 

successful expression and display of all the three M epitopes on the surface of Lp. plantarum SK156. 238 

In contrast, wild-type Lp. plantarum SK156 did not exhibit fluorescence, confirming the absence of 239 

epitopes of interest on its surface. In addition, brighter fluorescence was observed in Lp. plantarum 240 

SK156 expressing the M2 epitope compared with the M1 and M3 epitopes, suggesting that the 241 

expression efficiency might differ according to the gene of interest. 242 

 243 

Immunogenicity of surface-displayed M epitopes in IPEC-J2 cells  244 

Production of pro-inflammatory and anti-inflammatory cytokines following co-incubation of recombinant 245 

Lp. plantarum displaying M epitopes with IPEC-J2 cells was used to assess the type of immune 246 

response elicited by the antigen (Figure 3). Co-incubation of Lp. plantarum displaying M epitopes had 247 

no notable effect of the production of TNF-α, regardless of the epitopes. In contrast, Lp. plantarum 248 

displaying the M1 epitope induced high level production of IFN-γ (p < 0.05), whereas M2 or M3 epitopes 249 

had no significant effect when compared to the control or the wild-type strain. Interestingly, cells co-250 

incubated with Lp. plantarum displaying M epitopes showed a significant increase in IL-10 production 251 

compared to cells co-incubated with the control or wild-type Lp. plantarum (p < 0.05). This indicates 252 
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that Lp. plantarum displaying the M1 phenotype is immunogenic and can elicit both pro- and anti-253 

inflammatory immune responses.  254 

 255 

Immunogenicity of surface-displayed M epitopes in mice 256 

The immunogenicity of the PEDV M epitope surface displayed on Lp. plantarum SK156 in BALB/c mice 257 

was determined by oral immunization (Figure 4A). The production of antigen-specific antibodies upon 258 

immunization was evaluated by ELISA (Figure 4B and 4C). On day 21, M1 and M2 showed elevated 259 

production of fecal sIgA (p < 0.05). On day 35, mice immunized with Lp. plantarum displaying M1, M2, 260 

and M3 epitopes exhibited higher production of sIgA than that of the control and wild-type groups (p < 261 

0.05). In contrast, the mice immunized with Lp. plantarum, indicated that M1 had higher serum IgG 262 

levels (p < 0.05) than that of the other groups. On day 35, the M1 and M2 groups had higher serum IgG 263 

levels than the control of wild-type group (p < 0.5). These results showed that epitope M1 was consistent 264 

with mounting significant fecal sIgA and IgG production starting on day 21 and increasing until day 35 265 

post-immunization. 266 

Changes in serum cytokine levels of orally administered recombinant Lp. plantarum SK156 expressing 267 

M epitopes were analyzed using ELISA (Figure 4D-F). Although marginal changes were observed, 268 

serum IL-4, IL-6, and IL-10 concentrations were not affected by oral immunization with the surface-269 

displayed M epitopes (p > 0.05).  270 

 271 

Discussion 272 

PEDV can be transmitted directly through ingestion of contaminated feces or vomit, or indirectly via 273 

inhalation of aerosolized PEDV particles [1,2]. Infection is initiated in the mucosal lining of the nasal 274 

cavity, where dendritic cells transfer PEDV particles to CD3+ T cells [1,40]. CD3+ T cells carrying viral 275 

particles travel to the intestine through the bloodstream [40]. Thereafter, PEDV invades and multiplies 276 

in the intestinal mucosa, such as the villous epithelial cells in the small intestine and jejunum, as well 277 

as the surface epithelial cells in the cecum and colon [1,2,41]. For the viral attachment and entry into 278 

target cells, the S protein recognizes porcine aminopeptidase N (pAPN), a cellular receptor ubiquitous 279 

in small intestinal enterocytes, kidneys, and liver cells [42]. Upon infection, villous epithelial cells are 280 

destroyed, damaging the intestine and resulting in acute diarrhea and fatalities in piglets [41]. Current 281 

vaccination strategies include the use of whole virions, either live-attenuated or inactivated. Subunit 282 
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vaccines using viral proteins are potential alternatives to whole-virus vaccines. Alternatively, sows can 283 

be artificially infected to induce lactogenic immunity if PED vaccines are unavailable [43]. The fate of 284 

immunization is also dependent on the route of vaccination; oral vaccination is known to induce 285 

enhanced mucosal immunity against enteric viruses compared with systemic injections [44–46]. 286 

Regardless of the strategy employed, immunization for PEDV should provide protection against the 287 

virus.  288 

The M protein plays an integral role in the viral life cycle. During the viral life cycle, M protein interacts 289 

with other structural proteins and is a key protein in the assembly of viral particles and virion budding 290 

[47,48]. The M protein also regulates PEDV replication by interacting with various host factors, such as 291 

eukaryotic translation initiation factor 3 subunit L (eIF3L), peptidyl-prolyl isomerase D (PPID), and S100 292 

calcium-binding protein A11 (S100A11) [47,49]. The M protein also contributes to the antiviral defense 293 

evasion mechanism of PEDV. The host response upon detection of viral particles includes the activation 294 

of type I or III IFNs, which act as the first line of defense against viral infection by blocking viral replication 295 

and facilitating viral clearance [50]. Porcine enteric viruses, including PEDV, have developed 296 

mechanisms to evade and counteract host antiviral responses [51]. The M protein suppresses the 297 

production of IFNs, especially IFN-β, thereby interfering with the interferon regulatory factor 3 (IRF3) 298 

signaling pathway [2,5,41]. M protein also exhibits antagonistic activity towards IFN regulatory factor 7 299 

(IRF7), which affects type I IFN production [52]. In addition, the M protein hampers the host immune 300 

response by inducing cell cycle arrest at the S phase via the cyclin A pathway [53]. Despite its role in 301 

PEDV infection, no subunit vaccine has been developed using the M protein. Nevertheless, because of 302 

its conservation among different PEDV strains, M protein is a promising candidate for the development 303 

of various detection techniques in diagnostic settings [54,55]. Furthermore, the predicted B-cell epitopes 304 

of the PEDV M protein have potential applications in the development of epitope-based vaccines [9,10]. 305 

Thus, in this study, three putative B-cell linear epitopes of the PEDV M protein were selected. Using a 306 

SP and CWA protein (slpA) from Lb. acidophilus ATCC 4356 [36], M epitopes were displayed on Lp. 307 

plantarum SK156. The surface expression and display of M epitopes were evaluated. 308 

Immunofluorescence microscopy confirmed successful surface localization of the PEDV M epitopes on 309 

Lp. plantarum, verifying the anchorage of the proteins to the cell wall. Hwang et al. [38] successfully 310 

displayed SARS-CoV-2 membrane protein epitopes on the surface of Lp. plantarum SK156. In addition, 311 

the intensity of immunofluorescence on the cell surface showed that the expression levels of PEDV M 312 
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epitopes exhibited discrepancies among epitopes, suggesting the possibility of differences in 313 

expression levels. These results are in line with observations made when the PEDV epitope was 314 

displayed in yeast cells [56]. To the best of our knowledge, this is the first report of PEDV M protein 315 

epitopes being successfully displayed on the surface of LAB. 316 

To verify whether the expressed putative epitopes were immunoreactive, the cytokine production in 317 

IPEC-J2 cells was measured. PEDV epitopes based on M genes induced higher secretion of IFN-γ than 318 

that in the control. In addition, IPEC-J2 co-incubated with epitope M1 secreted elevated levels of IL-10. 319 

IFN-γ is a proinflammatory cytokine known for its important function in both innate and adaptive 320 

immunity against intracellular infections and tumor suppresion [57]. IFN-γ enhances antigen processing 321 

and presentation, increases leukocyte trafficking, triggers an anti-viral milieu, improves anti-microbial 322 

functions, and influences cell growth and cell death. [57–59]. During viral infections, IFN-γ interferes 323 

with viral replication and interacts with the viral receptor, resulting in the suppression of virus replication 324 

[57,60,61]. It also has been shown that production of IFN-γ after immunization is associated with better 325 

immune response against viral infections [62]. Recently, Liu et al. [63] reported that surface-displayed 326 

porcine IFN-λ3 in Lp. plantarum inhibits PEDV infection in IPEC-J2 cells. This suggests that a stronger 327 

IFN-γ response could correlate with higher survival rates in PEDV-infected pigs, similar to what has 328 

been observed in other diseases [58,60,62,64].In contrast, IL-10 is an anti-inflammatory cytokine, with 329 

key immunoregulatory function during viral and microbial infections [65]. IL-10 counteracts the 330 

excessive inflammation caused by Th1 and CD8+ T cell activities and acts as a signal for 331 

hyperinflammation [65,66]. IL-10 plays a crucial role in maintaining a balance between pro-inflammatory 332 

and anti-inflammatory immune responses, that is, the efficient eradication of pathogens and avoidance 333 

of harmful immune responses to infections [66]. Thus, a balance induction of both IFN-γ and IL-10 is 334 

necessary for a more effective immunization.  335 

Vaccination aims to stimulate the generation of neutralizing antibodies. Several studies have highlighted 336 

the importance of humoral and mucosal responses to PEDV vaccination [44,45,67,68]. In the current 337 

study, we observed high levels of PEDV-specific sIgA and IgG in mice immunized with PEDV M 338 

epitopes on days 21 and 35, most notably epitope M1. Secretory IgA is an essential effector molecule 339 

that neutralizes exogenous antigens [20]. It is produced mostly in the intestinal mucosa, but has been 340 

found to be also dominant in the colostrum and milk [46]. IgG plays an important role in systemic viral 341 

clearance and is found in the serum and colostrum [46]. Through the gut-mammary axis, PEDV-specific 342 
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sIgA produced during immunization can be passed from the sow to the piglets via the sow’s milk, 343 

supporting the piglet’s immunity against PEDV (also known as lactogenic immunity) [44,46]. Lactogenic 344 

immunity is important for inhibiting PEDV replication in the intestines and preventing clinical diseases 345 

in piglets. In addition, induction of higher levels of IgA and IgG has been correlated with proper 346 

production of neutralizing antibodies [67,69,70]. Although most studies have focused on the S protein 347 

of PEDV, the results of the present study are consistent with these data. Oral or intranasal inoculation 348 

with recombinant Lb. casei expressing PEDV S protein in pregnant sows and mice results in high levels 349 

of IgA and IgG [23]. Li et al. [30] have demonstrated that Lb. casei expressing PEDV S protein induced 350 

higher levels of IgA and IgG production in mice. In another study, mice that were orally administered 351 

PEDV S1 and S2 protein-expressing Lb. acidophilus had high levels of anti-PEDV-specific IgG and IgA 352 

antibodies [29]. Immunization with Lb. johnsonii carrying core-neutralizing epitopes of the S protein 353 

resulted in high levels of IgA and IgG in pregnant sows and maternal milk, indicating that immunity can 354 

be transferred to piglets [25]. This indicates that, similar to other studies, Lp. plantarum expressing the 355 

PEDV M epitope effectively induces the production of sufficient protective antibodies against PEDV 356 

infection.  357 

However, we observed negligible changes in the cytokine profiles of the mice immunized with Lp. 358 

plantarum expressing the PEDV M epitopes. This is contradictory to the IPEC-J2 results in this study, 359 

where high IFN-γ and IL-10 levels were observed. In other studies using PEDV-S protein, immunization 360 

led to higher levels of IL-4, IL-6, and IL-10 [25,29,30]. Several factors can be attributed to the 361 

observations in this study, such as the type of vaccine or epitope used, dose, timing of measurement, 362 

and the specific cytokines being measured [71]. Thus, further careful examination of the effects of 363 

immunization using surface-displayed PEDV M epitopes on cellular immune responses is necessary.  364 

 365 

Conclusions 366 

In this study, a surface display system for the heterologous expression of PEDV M epitopes on Lp. 367 

plantarum was constructed and the display of the M epitopes was successfully demonstrated. Moreover, 368 

Lp. plantarum displaying the M1 epitope elicited elevated production of IFN-γ and IL-10 in IPEC-J2 cells 369 

and high levels of antigen-specific antibodies in mice. The results of the present study highlight the 370 

application of surface display in lactobacilli as a potential antigen delivery vector, and the capability of 371 

the PEDV M protein as an immunogen to develop candidate vaccines for PEDV. Understanding the 372 
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protective capability of this response during a challenge is an interesting approach for future research. 373 
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TABLES 598 

Table 1. List of strains and plasmids used in this study. 599 

Strain or plasmid Features or sequence Source or reference 

Strains   

Lactiplantibacillus 

plantarum SK156 

Host for transformation, erythromycin 

resistance- negative 
[72] 

Lactobacillus acidophilus 

ATCC 4356 
Source of surface layer protein A [36] 

Escherichia coli DH5 Host for transformation TaKaRa Bio (Japan) 

Plasmids   

pULP3:SP:GFP:CWA pULP2:PLDH with SP+GFP+CWA fusion gene This study 

pULP3:SP:M1:CWA 
pULP2:PLDH with SP+PEDV M protein epitope 

1+CWA fusion gene 
This study 

pULP3:SP:M2:CWA 
pULP2:PLDH with SP+PEDV M protein epitope 

2+CWA fusion gene 
This study 

pULP3:SP:M3:CWA 
pULP2:PLDH1 with SP+PEDV M protein epitope 

3+CWA fusion gene 
This study 

  600 
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Table 2. List of primers, their sequences, and restriction sites used in this study. 601 

Primers (5’ to 3’) Sequence Restriction site 

SPF-PstI-F 
GCT CGT CTG CAG ATG AAG AAA AAT TTA AGA 

AT 

PstI 

SP-FM1-R GTA CAT AAT CCA TGA TGA ACT TGC GTT  

SP-FM2-R AGC ATC AGT TTC TGA TGA ACT TGC GTT  

SP-FM3-R AGC ATC AGT TTC TGA TGA ACT TGC GTT  

CWA-FM1-F CAT TCA TGG TGG AAG TCA GCT ACT TTG CCA  

CWA-FM2-F 
ATT CCA GTT TTA AAG TCA GCT ACT TTG CCA

  
 

CWA-FM3-F TCA AAC GGT CGT AAG TCA GCT ACT TTG CCA  

CWA-HindIII-R ACC AAG CTT TTA TCT AAA GTT TGC AAC HindIII 

CWAhis-HindIII-R 
ACC AAG CTT TTA GTG GTG GTG GTG GTG GTG 

TCT AAA GTT TGC AAC 

HindIII 

M1sd-F GCA AGT TCA TCA TGG ATT ATG TAC TTC  

M2sd-F GCA AGT TCA TCA GAA ACT GAT GCT TTA  

M3sd-F GCA AGT TCA TCA TTA GGT ACT GTT   

M1sd-R AGT AGC TGA CTT CCA CCA TGA ATG AGT  

M2sd-R AGT AGC TGA CTT TAA AAC TCC AAT ACG  

M3sd-R AGT AGC TGA CTT ACG ACC GTT TGA  

These primers were designed exclusively for this study.     602 
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Figures captions 603 

 604 

Figure 1. 3-D model of PEDV M protein indicating the location of 3 epitopes (A) and nucleotide and 605 

protein sequences of 3 epitopes, highlighted with colors (B).  606 

 607 
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 609 

Figure 2. Vector construction for surface display of PEDV M epitopes in Lactiplantibacillus plantarum 610 

SK156 (A). Detection of PEDV M epitopes (approximate size: 20 kDa) expressed in E. coli using 611 

western blotting (B). Detection of PEDV M epitopes on the surface of Lp. plantarum SK156 using 612 

immunofluorescence microscopy, indicating successful expression and surface localization of the three 613 

epitopes (C). Abbreviations: Ermr, erythromycin resistance gene; Ampr, ampicillin resistance gene; 614 

LDH1; L-lactate dehydrogenase 1; SP, signal peptide; CWA; cell wall-anchoring domain. 615 

 616 

  617 

ACCEPTED



27 

 

 618 

Figure 3. Cytokine levels in porcine intestinal epithelial cells (IPEC-J2) co-incubated with recombinant 619 

Lactiplantibacillus plantarum SK156 expressing PEDV M epitopes. TNF-α (A), IFN-γ (B), and IL-10 (C) 620 

responses in IPEC-J2. Concentrations of TNF-ɑ, IL-10, and IFN-γ in the cell supernatants were 621 

detected using ELISA. Data is reported as mean ± standard deviation (SD). ‘*’ indicates significant 622 

difference compared to the control. ‘#’ indicates significant difference compared to the wild-type Lp. 623 

plantarum. Significant differences were calculated using one-way ANOVA or Kruskal-Wallis with post 624 

hoc test, where p < 0.05 was considered significant.  625 

 626 
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 628 

Figure 4. Schematic diagram for the animal immunization experiment (A). Secretory IgA (B) and serum 629 

IgG (C) responses in mice orally immunized with Lactiplantibacillus plantarum SK156 expressing PEDV 630 

M antigens. Serum IL-4 (D), IL-6 (E), and IL-10 (F) responses in mice orally immunized with Lp. 631 

plantarum SK156 expressing PEDV M antigens. Concentrations of secretory IgA, IgG, IL-4, IL-6, IL-10 632 

were detected using ELISA. Data is reported as mean ± standard deviation (SD). ‘*’ indicates significant 633 

difference compared to the control. ‘#’ indicates significant difference compared to the wild-type Lp. 634 

plantarum. Significant differences were calculated using one-way ANOVA or Kruskal-Wallis with post 635 

hoc test, where p < 0.05 was considered significant. 636 
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