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Abstract

Livestock species experience several stresses, particularly weaning, transportation, overpro-
duction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most
stressors, which is encountered in livestock production systems throughout the world, espe-
cially in the tropical regions and is likely to be intensified due to global rise in environmental
temperature. The gut has emerged as one of the major target organs affected by HS. The
alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to
animals with greater colonization of pathogenic microbiota groups. HS also induces several
changes in the gut including damages of microstructures of the mucosal epithelia, increased
oxidative insults, reduced immunity, and increased permeability of the gut to toxins and patho-
gens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes
and translocation of antigens to the blood circulations, which ultimately may cause systematic
inflammations and immune responses. Moreover, digestion of nutrients in the guts may be im-
paired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption
and injury to the mucosal structure and altered expressions of the nutrient transport proteins
and genes. The systematic hormonal changes due to HS along with alterations in immune and
inflammatory responses often cause reduced feed intake and production performance in live-
stock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant
biological phenomena occurring in the body, but the exact mechanisms how functional commu-
nications occur between the microbiota and HS responses are yet to be elucidated. This review
aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-anti-
oxidant balance mechanism, immunity, and barrier integrity in the gut, and production perfor-
mance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to
explain the mechanisms how these biological responses are affected by HS.
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INTRODUCTION

Livestock commonly encounters a number of biotic and abiotic stressors in their life time such
as heat and cold, overcrowding, transportation, weaning, infection, overproduction, diseases, and
fear. Heat stress (HS) is considered as one of the most significant stressors in all types of animal
production systems, especially in the tropical parts of the world [1,2]. Moreover, a threat in global
rise of environmental temperature has compelled research for better understanding of HS response
mechanisms of animals and its mitigation. High environmental temperatures adversely affect the
well-being, production and welfare of animals [3,4]. Overall, production performances of all types
of livestock species including poultry are adversely affected by HS due to decreased feed intake
with reduced nutrient utilization and feed efficiency resulting in considerable economic losses
[5,6]. A wide array of patho-physiological changes, such as immune dysregulation and increases in
production of oxidants causing lipid peroxidation of cell membranes and cellular oxidative stress
occur due to HS, resulting in greater susceptibility to infectious diseases and increased mortality
rate in farm animals [1,2].

The gastrointestinal tract is particularly vulnerable to HS-induced alterations, including
impairment of intestinal development, gut barrier dysfunction, improper immune responses,
and imbalance of the oxidative-anti-oxidative mechanisms [1,7]. These alterations permit the
translocation of antigens, toxins, and pathogens present in the lumen of intestine through the
tight junction (T]) barrier and further stimulate the immune system via toll-like receptor (TLR)
signaling, cytokines, and heat shock proteins (HSP), eventually causing alterations in intestinal
mucosal microstructures, initiation of inflammation and injury [1,8,9].

A growing number of evidence suggests a strong relationship between the complex and diverse
gut microbial communities and health/disease including normal physiological and behavioral
changes, immune functions and stress responses of animals and humans [10]. Different types of
stress responses including HS can change the composition of gastrointestinal microbiota [10,11].
'The gut microbiota has recently been considered as a key factor of adaption and immune response
to stressors including HS in the body [10]. HS in animal production systems can cause alterations
in the normal microbial communities and epithelial structures in the intestine, which may lead
to greater colononization of pathogenic and undesirable microbiota [12]. There are many reviews
focusing biochemical, cellular and metabolic changes that occur during thermal stress [13],
production performance and welfare [2,14,15] along with HS mitigation strategies [3,4]. This
review mainly focuses on the effect of HS on gut microbiota composition and intestinal health
including mucosal morphology, barrier and nutrient transport functions, immunity and antioxidant
status in the intestine with some discussion on the production performance and dietary HS
mitigation strategies in livestock and poultry.

MICROBIOTA CHANGES IN THE GUT BY HEAT STRESS

The gastrointestinal tracts of animals harbors a complex microbiota comprising of commensal
microbiota (bacteria, fungi, protozoa, archaea, and viruses) that is dominated by bacteria [16]. An
optimal gut microbiome composition is essential for proper nutrient digestion and absorption, feed
utilization efficiency, animal performances, immunity development, pathogen exclusions, gut barrier
function, health, behavior, and welfare of animals [16,17]. Gut microbiota can also influence the
growth and production by producing extra nutrients through the fermentation of plant fibers that
the animals cannot digest themselves [18]. The gut microbiota is influenced by several interacting

factors, particularly feed composition, water quality, stressors including hyperthermia, farm
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management, feed additive use, and bio-security [16]. Also, the diversity of the gut microbiota is
largely influenced by the age of the animals, breed, and location in the digestive tract [16]. In the
following sections, effects of HS on the alpha- and beta-diversity of gut microbiota in different
animals are discussed along with the mechanisms of their alterations.

Effect of heat stress on alpha-diversity

The effect of HS on the alpha-diversity is variable depending upon the species, duration, intensity
of exposure, and segments of the gut (Table 1). High temperature (21°C vs. 31C from 28 to 42
days) significantly affected the alpha-diversity in ileum with greater number of observed species,
Chao 1 and whole-tree phylogenetic diversity, but the Shannon, Simpson, and Pielou indices were
not altered, indicating that HS increased the microbiota species richness in the ileum of broiler
chickens [19]. In feces of pigs, HS (25C vs. 29°C for 21 days) also increased species richness,
but the Shannon index was similar [20]. Relatedly, species richness was greater in hot climatic
conditions than in the temperate climatic conditions in feces of pigs [20]. In other studies, HS did
not show alterations of alpha-diversity such as Shannon index of the gut microbiota in cecum of
laying hens [21], cecum of broiler chickens except phylogenetic diversity [22], ileum and jejunum
of ducks [23], feces of pigs [24,25] to a large extent. There is limited information on alpha-diversity
in ruminants as affected by HS. In Holstein heifers, different environmental temperatures (20 C,
28°C, and 33C) and humidity (60% and 80%) did not alter the operational taxonomic unit (OTU)
numbers and Shannon diversity in the ruminal fluid [26]. In Hanwoo steers, HS (15C vs. 35C)
did not alter alpha-diversity indices such as OTU richness, Shannon index, Simpson index, Chaol,
and phylogenetic diversity of ruminal bacteria or archaea [27]. It seems that HS has a smaller effect
on the alpha-diversity of microbiota except species richness in the gut of livestock species.

Effect of heat stress on microbiota communities based on principal coordinate
analysis

Although alpha-diversity of gut microbiota is minimally affected by HS, gut microbiota at the
community level is usually influenced by HS, especially due to changes of the microbiota at the
lower taxonomic levels such as family and genus levels. The principal coordinate analysis based on
beta-diversity of the overall microbial community composition suggests that microbiota in ileum
[19] and cecum [22] of broiler chickens of HS groups formed a distinct cluster separated from the
control group. In pigs, heat challenge at 25°C vs.29C for 21 days from 23 to 26 weeks of age [20]
and 25C vs. 35C for one day [25] also resulted in two distinct microbiota communities. But, HS
effect has differential impacts on the microbiota communities in the different segments of guts. For
example, microbial communities in the jejunum formed separate clusters of HS vs. thermoneutral
conditions, but not in the ileum and cecum of ducks [23]. Moreover, the microbial community
changes with the duration of heat exposure. No difference in the gut microbiota community
was evident between HS and thermoneutral condition on day 1 and 3 of heat exposure as the
communities did not form separate clusters, while a tendency toward change in the communities
occurred on day 7 and a distinct cluster was formed on day 28 in the cecum of broiler chickens
[28]. In Hanwoo steers, HS (15°C vs. 35C) caused a change in microbial community composition
in the rumen on day 6 of heat exposure [27]. Although microbial communities may be associated
with decreased feed intake, but HS-induced changes in bacterial communities was independent
of reduced feed intake because there was no difference in microbial communities in pair-feeding
(when feed intake level in the thermoneutral condition was controlled to the intake level of HS
group) and thermoneutral animals [25]. From the above discussion, it is clear that heat challenge
usually changes overall microbial community composition independent of feed intake, but impacts
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may differ in different gut segments depending upon duration of exposure.
Effect of heat stress on beta-diversity

Poultry

'The modern poultry genotypes are more susceptible to HS due to marked growth rate along with
greater metabolic activity [1]. An earlier study with the use of a culture technique showed that the
number of Enterobacteriaceae was decreased, whereas Streprococcus and Staphylococcus numbers were
increased by HS in the small intestine of chickens [29]. Microbial community composition in the
ileum and cecum of chickens was also altered by heat exposure to 30°C for 24 h [12]. Moreover,
ileal tissues from chickens subject to 30°C for 24 h increased ex-vivo attachment of Salmonella
compared with chickens kept at 23°C [12]. Similarly, HS (33°C for 10 h vs. 22°C) lowered the
viable numbers of beneficial Lactobacillus and Bifidobacterium, but increased viable numbers of
coliforms and Clostridium in the small intestine of broiler chickens [7]. In the ileum and ceca of
laying hens, the pathogenic E. co/i number decreased, whereas lactobacillus decreased due to HS
(26C vs.33°C for 20 days) on both day 10 and 20 in the ileum and ceca of laying hens [30]. The
culture dependent study clearly showed that HS increased pathogenic bacterial populations and
decreased beneficial microbiota in the gut.

More recently, culture-independent study has been used to assess the impacts of HS on the gut
microbiome of farm animals. Exposure of heat has shown variable effects on the abundances of gut
microbiota at the phylum level. In laying hens, the abundances of Firmicutes (54.7%), Bacteroidetes
(26.1%), Fusobacteria (7.05%) and Proteobacteria (6.57%) in feces dominated the phylum level
in the thermoneutral conditions (21C to 28°C and 36% to 45% relative humidity), which were
altered in HS conditions [31]. In HS conditions (25C to 34C and 56% to 79% humidity), the
abundances of phylum Firmicutes (45.9%) also dominated, followed by Bacteroidetes (43.1%),
Proteobacteria (3.70%), and Euryarchaeota (2.03%) in feces [31]. But, this study suggested that HS
increased the relative abundance of Bacteroidetes, whereas the abundance of Firmicutes, Fusobacteria,
and Profeobacteria reduced in the feces of layer chickens [31]. Similarly, the relative abundances of
Firmicutes (45.4% vs. 12.0%) reduced, whereas phylum Proteobacteria (39.0% vs. 72.7%) markedly
increased in the jejunum of heat stressed-ducks (32°C for 8 h/day for 21 days) compared with the
ducks in the thermoneutral (25C) condition [23]. In contrast, HS (21°C vs. 31C for 2 weeks)
increased relative abundance of Firmicutes (92.2% vs. 85.6%), and decreased relative abundance of
Proteobacteria (1.93% vs. 7.39%) and Bacteroidetes (2.58% vs. 5.07%) in the ileum of broiler chickens
[19]. In another study with laying chickens, HS increased Bacteroidetes, but had no effect on other
predominant phyla in cecum [32]. At the phylum level, no changes in the abundances have also
been reported. For instance, Bacteroidetes (49.9%, 54.8%, and 46.0%) and Firmicutes (18.7%, 17.4%,
and 16.0%) were dominant in the cecal samples of thermoneutral and HS and pair-feeding laying
hens, which were not significantly different among the groups [21].

'The contrasting reports on the abundances of microbiota at the phylum level are not clear, but
the variations may arise due to duration and intensity of exposure and feed intake changes caused
by HS. For instance, in a study with broiler chickens, the relative abundances of Firmicutes (58.5%
vs. 68.5%) and Tenericutes (0.1% vs. 0.74%) increased, whereas the abundances of Bacteroidetes
(33.2% vs. 22.5%) reduced in the cecal content of HS group (34C to 38°C) compared with the
control group (24C to 26C) on day 7 [28]. The relative abundance of Firmicutes (71.7% vs.
62.5%) and Proteobacteria (4.03% vs. 3.01%) increased, whereas Bacteroidetes (23.6% vs. 32.8%)
and Gyanobacteria (0.1% vs. 0.52%) reduced in the ceca of HS group on day 14 [28]. However, HS
did not cause any changes in the gut microbiota communities at the phylum level on day 1, 3, and
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28 [28]. The changes in abundances of bacteria at the phyla levels, particularly for Firmicutes and
Bacteroidetes may not be considered to have its practical inferences for health benefits and diseases
unless their compositional changes are studied at the lower taxa levels such as genus and species
[33].

Compared with the phylum level, as expected, gut microbiota communities are markedly
influenced by HS at the lower taxa levels, particularly at the lower family and genus levels and a
number of orders, classes, families and genera are changed. At the order level, relative abundance
of the Lactobacillales (25.0% vs. 12.9%) was greater and relative abundance of Clostridiales (66.9%
vs. 72.7%), Enterobacteriales (1.56% vs. 7.30%), and Bacterioidales (2.55% vs.5.07%) was lower in
the ileum of the HS group. At the genus level, the relative abundances of Faecalibacterium, Rothia,
Alistipes, Clostridium XIVb, Streptophyta, Azospirillum, and Oscillibacter were greater, whereas that
of Coprococcus and Streptococcus were lower in heat-stressed broiler chickens [19]. Also at the genus
level, the abundance of Bacteroides on day 7 (26% vs. 18%), 14 (5% vs. 14%), and 28 (10% vs. 5%),
Faecalibacterium on day 1 (8% vs. 5%) and 7 (12% vs. 9%), and Oscillospira on day 1 (12% vs. 8%)
and 3 (11% vs. 9%) decreased after HS in broiler chickens [28]. In laying hens, more than 40 genera
were altered due to HS. Bacteroides (13.6% vs. 19.8%) and Alistipes (5.99% vs. 9.91%) abundance
under Bacteroidetes phylum increased in heat-stressed layers [31]. Conversely, Fusobacterium (6.73%
vs. 0.49%) belonging to phylum Fusobacteria (13.6% vs. 19.8%), Clostridium (9.22% vs. 7.82%),
Ruminococcaceae (4.29% vs. 1.99%), Lactobacillus (3.44% vs. 1.98%), and Turicibacter (2.46% vs.
0.30%) under Firmicutes were less abundant in HS conditions [31]. Among the less abundant
genera (< 3%), Bifidobacterium, Cloacibacillus, and Synergistes in the heat-stressed layers (0.20%,
0.21%, and 0.10%, respectively) increased compared with those in the control layers (0.12%,
0.072%, and 0.038%, respectively) and Dorea abundance (0.35% vs. 0.30%) was decreased by HS
[31].

In ducks, the relative abundances of class Bacilli, Lactobacillales order, Lactobacillaceae family,
and Lactobacillus genus reduced, whereas phylum Proecbacteria (39.0% vs. 72.7%), order
Pseudomonadales, family Moraxellaceae and genus Acinetobacter markedly increased in the jejunum
of heat stressed-ducks (32°C for 8 h/day for 21 days) compared with the ducks in the control
temperature (25C) condition [23]. In the ceca, the relative abundance of Rickettsiales was more
prevalent, while the relative abundances of class Negativicutes and order Selenomonadales markedly
reduced in heat stressed-ducks compared with the controlled-ducks [23]. In the ileum, there were
no significant changes of microbiota abundances in ducks due to HS [23]. This study suggested
that the most impacts of HS may occur in the jejunum section of gut of ducks [23]. In another
study with laying hens, Bacteroidales (49.9%, 54.8%, and 46.0%) and Clostridiales (12.7%, 12.2%,
and 10.0%) were dominant in the cecal samples of thermoneutral, HS and pair-feeding laying hens,
which were not significantly different among the groups [21]. At the genus level, abundances of
15 genera were different between thermoneutral and HS groups, notably Bacteroides, Lactobacillus,
Ruminococcaceae UCG_005, and Prevotellaceae Ga6A1 group were greater in the thermoneutral
group, whereas Gallibacterium, Escherichia, Shigella, Barnesiella, Anacerosporobacter, Spbaeroc/mem,
Odoribacter, Clostridium sensu stricto 1, and Rikenellaceae RC9 gut group increased in the HS group
[21]. Among these 15 genera, feed intake was significantly related with the relative abundances
of 10 genera, which indicates that reduction in feed intake in the HS group may be one of the
factors of HS-induced microbiome changes [21]. The reasons for the differences in abundances of
microbiota at taxonomic levels among the studies are not clearly known, but may be attributed to
the differences in feed composition, species, location in the gut, and intensity and duration of HS
[31].
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Swine

In Landrace x Large White crossbred sows, HS (18 C—22C) vs. (28'C-32C) conditions applied
from 85 days of gestation to farrowing altered beta-diversity [24]. Particularly, HS increased the
relative abundances of genera and OTUs related to Clostridiales and Halomonas, but reduced the
relative abundances of genera and OTUs related to Bacteroidales and Streptococcus [24]. Similarly,
Large White x Créole pigs subject to HS (25C vs. 29°C for 21 days) from 23 to 26 weeks of age
had more OTU abundances in the families related to Prevotellaceae (41% of the OTU) and the
Lachnospiraceae (17%), whereas Clostridiaceae 1 (24% of OTU), Erysipelotrichaecae (5% of the OTU)
and Peptostreptococcaceae (2.3% of the OTU) were less abundant in feces of HS conditions [20]. Also,
the total number of OTU was more abundant in hot environment (under tropical climate or after
a heat exposure) in the feces of pigs [20]. The metabolic pathway associated with steroid hormone
biosynthesis was less-represented and the G protein-coupled receptor was over-represented under
HS conditions [20]. Even, acute HS (25°C vs. 35°C for one day) changed the composition and
diversity of fecal microbial community by decreasing the abundances of Bacteroidetes phylum and
it lower taxa of class Bacteroidia, order Bacteroidales, and family Prevotellaceae, and increasing the
abundances of phylum Proteobacteria and its class Proteobacteria, order Pseudomonadales, family
Moraxellaceae and genus Acinetobacter in feces of pigs [25]. These changes were independent of feed
intake reduction due to HS as pair-feeding group only decreased the abundances of Bacteroidales
and Prevotellaceae compared with the thermoneutral group [25]. Like poultry [28], duration (7 days
vs. 14 days) of HS redistributed the microbiota phylum composition in pigs [34].

Ruminants

There is relatively limited research investigating HS on gut microbiota composition in ruminants.
In an earlier study with Holstein heifers exposed to different environmental temperatures (20C,
28C and 33C) and humidity (60% and 80%),16S rDNA sequence library composition was
different between 20C and 33°C at 80% humidity, but not at 60% humidity [26] suggesting that
environmental temperature along with humidity has more impact in this study. In the phylum
level, Firmicutes, Bacteroidetes, Proteobacteria, and Spirochetes in ruminal fluid were not changed
at different temperatures and humidity levels [26]. In the same study, the quantification of the
bacterial composition using oligonucleotide probes, the relative abundances of the Fibrobacter
genus decreased, whereas that of Clostridium coccoides-Eubacterium rectale group, and Streptococcus
genus increased due to increasing temperature [35]. In lactating cows, the relative abundance
of fecal Firmicutes was lower and that of fecal Bacteroidetes was higher in the HS (temperature
humidity index of 80.5 vs. 66.0) conditions [36]. A recent study applying Ilumina MiSeq platform
reported that HS (15°C vs. 35°C for 3 or 6 days) lowered the relative abundances of Proteobacteria,
Chloroflexi (on day 6), and Planctomycetes (on day 3) among 15 phyla [27]. The relative abundances
of the family Prevotellaceae, genera Prevotella and YRC22 (increased) under phylum Bacteroidetes;
Ruminococcaceae family (decreased), Lactobacillaceae family, Lactobacillus genus (increased) under
phylum Bacteroidetes: Succinivibrionaceae, Moraxellaceae families, Ruminobacter genus (increased),
Desulfovibrionaceae (decreased) under Proteobacteria phylum, Anaerolineaceae and Pirellulaceae
families (decreased) were impacted by HS [27]. Ruminal archaeal populations at the phylum
Euryarchaeota, tamilies Methanobacteriaceae, Methanomassiliicoccaceae, genera Methanobrevibacter,
Methanosphaera, and vadinCA11 were not altered by HS [27]. Overall, these studies indicated that
HS can change a few bacterial taxa in the rumen.

Implications of gut microbiota changes due to heat stress
The alteration of abundances some of the above discussed bacteria due to HS might have
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implications on the development of diseases and nutrient harvest from feeds. For example,
Escherichia, Clostridium, and Shigella can produce @ -toxin and are associated with the development
of enteric necrotic colitis [37]. Increased abundances of Fusobacteria spp. could be detrimental
as it may perform as a proinflammatory factor promoting tumorigenesis in the intestine [38].
Lactobacillus can lower lumen pH in the intestine, creating an environment that is unfavorable
for potential pathogens [39]. The members of Bifidobacterium provide health benefits to the host,
including prevention of gut disorders, immunomodulation [40] and protection from pathogenic
bacteria [41]. The higher relative prevalence of Proteobacteria is considered as an indication of
intestinal microbial dysfunction [42]. Cloacibacillus spp. are potential pathogens related to intestinal
infections and bacteremia [43]. The members of Clostridium XIVDb are frequently observed in
ulcerative enteritis of poultry [44]. On the other hand, lower abundance of Coprococcus spp. has
been associated with irritable bowel syndrome, including bloating, gut discomfort, and colonic
hypersensitivity in humans [45]. Dorea population reduced in alcohol-related diseases [46]. The
abundances of Faecalibacterium decreases in gut inflammation, and this bacterium is important
in maintaining gut health because of its anti-inflammatory activity within the intestine [47,48].
Oscillospira and Faecalibacterium genera that are butyrate producers and are reduced in gut disorders,
were also decreased by HS [49,50]. Lachnospiraceae members can produce butyric acid, which may
promote the development of epithelial cells and gut health [51,52]. The effects of HS on these
taxa may be associated with poor gut health and production performance of animals, but this

assumption needs additional direct evidence [21].

Metabolites and metabolic profile changes in gut by heat stress

The changes in microbiota composition by HS may also change the metabolites in the digest or
feces and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways at the lower
levels like bacterial taxa. Usually, S does not cause major changes of major KEGG pathways at
first and second levels in the fecal microbiota of control and heat-stressed layer hens [31]. A few
KEGG pathways at the third level are changed by HS. For example, cysteine and methionine
metabolism and benzoate degradation pathways increased, but pathways related to retinol
metabolism, phenylpropanoid biosynthesis, type II diabetes mellitus, and mitogen-activated protein
kinase signaling tended to decrease by HS [31]. In HS conditions, the concentrations of total short-
chain fatty acids, propionate, butyrate, fumarate, malate, lactate, succinate, 3 -alanine and niacin,
aspartate, and ethanolamine were lower, whereas concentrations of fructose and azelaic acid were
greater [24]. The changes in HS-induced microbiota were correlated with metabolites, suggesting
that the shift in HS-induced microbiota likely changed intestinal metabolism [24].

In lactating cows, fecal Firmicute abundance reduced fecal Bacteroidetes abundance increased in
the HS (temperature humidity index of 80.5 vs. 66.0) conditions [36]. The KEGG pathway analysis
of microbial function showed that heat sensitive cows in HS environment up-regulated expression
of the pathways associated with diseases, including infectious and immune system disease, cancer,
genetic information processing (degradation, folding, and sorting), and environmental adaptation
[36]. High microbial diversity (Simpson or Shannon diversity) had negative correlation with
plasma cortisol, interleukin 1 beta (IL1B), and tumor necrosis factor alpha (TNFA) levels [36]. In
growing-finishing pigs, HS altered about 35 most enrichment pathways at the third level of KEGG
hierarchy, including carbon fixation pathways in prokaryotes, activation of secretion system, other
ion coupled transporters, and pyruvate metabolism pathways [25]. Nutrient metabolism pathways
such as amino acid, starch and sucrose metabolism, peptidases, and pathways involved in DNA
replication and repair were depressed by HS [25]. These changes in metabolic pathways by HS
also reflected in the metabolites in feces such as decreased concentrations of total short-chain fatty
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acids, acetic acid, propionic acid, butyric acid, valeric acid, and isovaleric acid. These alterations were
independent of feed intake reduction except for acetic acid concentration that was also reduced
by reduced feed intake in the pair-feeding group compared with the thermoneutral group [25].
In dairy goats, hippurate and other phenylalanine derivative compounds in urine increased in HS
(15C t0 20C vs.30C to 37C) condition, which has been suggested due to overgrowth of harmful
bacteria in the gut [53]. The above discussion suggests that HS has marked influences on the
KEGG pathways, mainly at the lower levels, due to changes in bacterial composition that resulted
in metabolite profile in digesta.

Mechanisms of microbiota changes

The drivers of taxonomic perturbation in the gut microbial community composition due to HS are
not clearly recognized. Feed intake is reduced during high temperature exposure, which might cause
the alterations of microbiota in the gut. But studies have shown that acute HS-induced microbiota
community changes may occur independent of feed intake in animals, for example, in the feces of
pigs [25]. In a long term study with laying hens, HS (21C vs.29°C to 35°C for 28 days), however,
did not separate the microbial community structure in the cecum of pair-feeding group from that
of HS group, but there was a distinct separation between the pair-feeding and thermoneutral
groups, suggesting that a shift in microbial community of cecum in HS condition may be related to
reduced feed intake [21]. Nonetheless, some of the beta-diversity in this study did not relate to feed
intake. This means other factors besides feed intake may contribute to the microbiota changes in
the HS groups.

Gastrointestinal microbiota is likely governed through bidirectional crosstalk of microbiota-gut-
brain axis during homeostatic as well as stress conditions. The microbiota-gut-brain axis has been
considered a dynamic matrix of tissues and organs consisting of brain, glands, gastrointestinal tract,
immune cells and gut microbiota, which regulates homeostasis by communicating in a complex
multidirectional manner [10]. Under homeostatic conditions, microbiota regulates the release
of cytokines and chemokines from mucosal immune cells by modulating the differentiation of
immune cell subsets, which in turn maintains local levels of bacteria in the gut [54]. It has been
reported that polysaccharide A of Bacteroides fragilis can stimulate regulatory T cells, which have an
anti-inflammatory effect and diminish immune responses; whereas segmented filamentous bacteria
can persuade T helper 17, which are pro-inflammatory [54]. Gut microbiota, thus, influencing local
immune responses can also synthesize neurotransmitters and microbial products and influence the
release of hormones and neuropeptides from enteroendocrine cells [10,55,56]. The microbial by-
products, cytokines, chemokines, and endocrine messengers can infiltrate the blood and lymphatic
systems, or persuade neural messages through the vagal and spinal afferent neurons to influence
the local and centrally-mediated responses, including regulation of hypothalamus-pituitary-
adrenal (HPA) axis activity [10,55,56]. Heat exposure can impair these mechanisms of homeostasis
and consequently influence gut microbiota composition through release of stress hormones and
neurotransmitters that alter gut physiology [10,57]. In broiler chickens, HS increased serum
corticosterone levels and systematic inflammatory cytokines (e.g., TNFA and IL2), and lowered
immunity [58-60]. This indicates that HS activates HPA axis and increases corticosterone levels,
which in turn may decrease the immune system activity in the intestine, leading to changes
in microbiota composition. Exposure of heat increases core body temperature including rectal
temperature in pigs [61,62] and poultry [63]. Bacterial populations are sensitive to temperature
changes and consequently the increase temperature in the gut digesta may also contribute to
the changes in the microbiota composition due to HS. Overall, the precise mechanisms how

microbiota composition is modified by HS and how altered microbiome orchestrates a response
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communication between the microbiota and hosts are yet to be elucidated. A better understanding
of the functions of gut microbiota in fundamental physiological and pathophysiological responses
would be helpful to ameliorate the HS-related adverse effects in animals.

GUT HEALTH

HS causes a range of adverse effects on intestinal morphology, mucosal immunity, integrity,
digestive enzyme secretions, antioxidant status, and HSP expressions in different domestic animals,

which have been summarized in Table 2 from different studies.

Heat stress on morphological changes in the gut

Intestinal villi perform a number of functions, such as secretion, absorption, and immunity. Proper
villus structures are required for optimum functions. The villi are broader and tongue shaped in the
duodenum and jejunum, which become finger shaped in the ileum. Usually, length and surface area
of villi are greater at the beginning of small intestine, reducing gradually to reach a minimum in the
ileum close to the ileo-cecal junction [64]. Shorter villus length reduces surface area for nutrient
absorption. The crypts can be considered as the villus factory, which replenish damaged tissues with
newer ones [64]. Exposure of heat to livestock species is detrimental to the intestinal morphology
including villus architecture, crypt depth, and mucosal layer thickness.

Various histopathological changes in the gut occur due to HS in animals. The intestinal villi
structures of HS-laying hens were damaged with extensive desquamation, mainly at the tip and
exposed lamina propria, compared to the normal intestinal villi in the control group [30,65].
Sloughing of epithelial cells of tips and sides of villus, vacuolization, and desquamation of epithelial
mucosa with denuded lamina propria were noted under HS (21°C vs. 35°C) for short period (from
09:00 to 13:00 and 21°C from 13:00 to 09:00) for 30 days in layer chickens [66]. Also, HS has been
shown to cause mild acute multifocal lympho-plasmocytic type enteritis and moderate infiltrates
with foci of heterophils in intestinal lamina propria in broiler chickens [58,59,65,67]. This mild
enteritis worsen when there is pathogenic infection in gut, e.g., Sa/monella during the HS conditions
in chickens [67]. In cows, HS (15 C vs. 28 C) has been shown to increase the number of infiltrating
cells in sub-mucosa of jejunum but not in mucosa [68]. In pigs, HS (23°C vs.407C) for 5 h/day for
10 days resulted in increased mitochondria numbers with shortened internal cristae and organelle
debris within lysosomes in jejunal epithelium and caused desquamation at tips of intestinal villi
and exposed lamina propria in jejunum within 3 days of HS; however the recovery of the intestinal
mucosal damage initiated in 6 days of HS [69,70]. Moreover, microarray analysis revealed that 110
genes were down-regulated and 93 genes were up-regulated, which were associated with pathways
in unfolded protein and regulation of cell migration, antioxidant mechanism, translation initiation,
and cell proliferation [70].

Detrimental alterations of the microstructures of the intestinal mucosa caused by HS are
common features in different livestock species depending upon duration and intensity of heat
exposure. In broiler chickens, HS decreased villus surface area, villus height, epithelium cell area,
and relative intestinal weight. Heat exposure (37C for 8 h for 15 days) damaged the jejunal and
ileal villus structures with shorter intestinal villi, deeper crypts, and a reduced villus height to crypt
depth (V/C) ratio along with decreased numbers of goblet cells and lymphocytes compared with
the thermoneutral (24C) condition in chickens [71]. Shorter villus, deeper crypt depth, and lower
ratio of V/C ratio in jejunum were observed due to HS (33°C for 10 hvs. 22C) in broiler chickens
[7]. The villi height and V/C of ileum and ceca were decreased by HS in laying hens compared with
the control laying hens [30]. However, very short-term (24 h) HS (24°C vs. 30C) to birds reduced
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Table 2. Effect of heat stress on mucosal morphology, antioxidant status, integrity, immunity, and production performance in the gut of farm
animals

Reference Animal TN vs. HS conditions with RH Major effect in comparison with TN versus HS conditions
[130] 21-day old male TN (21°C) vs. HS (32°C) with e HS decreased BW, ADG and increased FCR
broiler chickens 64% RH for 14 days e HS decreased villus length, villus surface area, epithelium cell area, and relative
weight of intestine.
[66] Lohmann LSL-clas- TN (217C, RH 62%) vs. HS (35°C, e HS decreased duodenal, jejunal and ileal villus height, crypt depth and absorptive

sic layer cockerels ~ 64% RH, from 09:00 to 13:00 epithelial cell area.
and rest of the time at 21°C o Sloughing of epithelial cells of tips and sides of villus, vacuolization, and desqua-

for 30 days mation of mucosal epithelia with denuded lamina propria.
[63] 26-day-old broiler TN (20C, 24 h/day) vs. HS e HS reduced BW, ADG and increased FCR. Feed intake increased in the acute
chickens (307, 24 h/day and 35T for4  HS condition.
h/day and then 20°C for 18 h) e Increased lipopolysaccharide, corticosterone, TNFA, and IL2 in blood, and a
for 10 days higher prevalence of Salmonella spp. in livers and meat.
[12] Male Ross 308 TN (23°C) vs. HS (30C) for24 h e lleal tissue had fewer bands on HS than TN.
broiler chickens o Crypt depth reduced but no effect on villus height and VCR after 24 h of HS.
[131] Male Wenchang TN (25.7C, 7910 88% RH) vs. e Small intestinal mucosal epithelial cells dispersed outwards, indicative of compro-
chickens HS (40.5TC, 52.4% RH 2 h/ mised structural integrity.
day) for 15 days e Mucosal epithelia were detached with ruptured small intestinal villi and exposed

lamina propria.
e HS reduced in villus length, mucosa thickness, intestinal wall thickness, and crypt
depth in all three segments.

[97] Male Wenchang Ambient temperature vs. HS e HS declined BW, ADG, and feed intake, but no effect on FCR.
chickens (40.57C, 52.4% RH for 2 h) for e HS decreased villus length, crypt depth, mucosa thickness, and intestinal wall
15 days thickness in duodenum and ileum, and goblet cells in duodenum and jejunum.
[76] Male Arbor Acres TN (20C) vs. HS (32TC-33T e HS decreased ADG, ADFI, and FCR.
plus broiler chick- 8 h/day) for 42 days e HS increased jejunal mucosal MDA content, and lowered SOD activity in ileal
ens mucosa at 42 day.
e HS reduced villi height and VCR in jejunum and ileum, and increased jejunal
crypt depth.
e HS decreased mRNA abundance of CLDN3 in jejunum, but not in ileum at 21
days.

e HS reduced mRNA levels of jejunal MUC2 and OCLN, and ileal MUC2, ZO1,
OCLN, and CLDN3 at 42 days.

[132] Castrated crossbred TN (227C) vs. HS (30C) and o HS reduced villus height and crypt depth, but no effect on VCR.
male pigs 55% RH for 21 days e HS increased plasma D-lactate concentration and lowered alkaline phosphatase
activity in intestinal mucosa.
o HS upregulated HSPH1, HSPB1, HSPA5, and HSPA1A.

[90] White Leghorn hens TN (20°C-22C, 50%-60% RH) e HS decreased egg weight, eggshell thickness, eggshell percentage, and eggshell
(350-day- old) vs. HS (30°C-33TC, 70%-80% density.
RH for 24 h) for 28 days e HS decreased calcium binding protein (calbindin) in ileum, cecum, and colon.
[61] 1-week post-weaned TN (28C)vs. HS (38C for6 h/ e TER reduced in ileum.
crossbred gilts day and rest 18 h/day at 32°C) e FITC-d and FITC-LPS flux increased in ileum.
with 40%-60% RH for 3 days e HSP70 protein increased in ileum.
[89] Male broiler chickens TN (20°C, 50% RH) vs. HS (30C, e HS and pair-feeding reduced BW gain.
(28 days old) 70% RH) vs. pair-feeding like e Only HS lowered plasma thyroid hormones and increased corticosterone than TN
HS in TN for 14 days and pair feeding groups.

e HS reduced fresh weight and length of jejunum compared to TN and pair-feeding.

e No change in proximal end of jejunum, but villus length reduced on HS, followed
by pair feeding and then TN.

e HS increased the activity and expression of apical SGLT1 by approximately 50%,
with no effects in the pair-feeding group.

[77] 21-day-old mixed TN (20C) vs. HS (27.8TC) with e HS decreased BW, ADG, ADFI, and feed efficiency. Breast meat quality was not
Cobb broiler 53.0% RH for 14 days (21 to affected by HS.
chickens 35 days of age) o HS decreased jejunal TER values.

o No effect on serum LPS concentration.
e HS had no effect on jejunal gene expressions of OCLN, ZO1, CLDN1, and JAM2.

[84] Male broiler chickens TN (217C) vs. HS (0, 2, 3,5and e In jejunal mucosa, HS decreased level of lactic acid dehydrogenase in 3, 5 and
10 h at 36°C for a day 10 h, but no change of GPx.
o In jejunum, SOD increased after 2 h of HS, but T-AOC tended to increase with
HS time and peaked at 10 h after HS.
e HS increased T-AOC and MDA content after 10 h in jejunum.
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Table 2. Continued

Reference Animal TN vs. HS conditions with RH Major effect in comparison with TN versus HS conditions
[68] German Holstein Pair-feeding (015 C, 63% RH) o Villus height and crypt depth of jejunum was not affected.
cows vs. HS (287, 52% RH)for4 e HS increased number of infiltrating cells in submucosa of jejunum but not in
days mucosa.
e HSincreased ZO1 and tended to increase CLDNT mRNA abundance in jejunum.
e HS tended to lower ZO1 protein abundance, but CLDN1 protein was similar in
jejunum.
o No significant differences for MLCK, ZO2, and OCLN mRNA abundances.
e No effect on TNFA, IL6, IL10, CXCL5, and haptoglobin mRNA levels, but IL4
mRNA expression tended to be higher in jejunum of HS animals.
o No effect on IL1B and IL4 protein levels in jejunum.
e HS tended to increase catalase mMRNA expression, but mRNA abundances of
SOD1 and GPx1 were similar.
e No effect on catalase and lysozyme activities, but HS increased alkaline phos-
phatase activity in jejunal mucosa.
[133] Crossbred pigs 50% TN (21C-23C, 30.2% RHfor6 e Jejunum and ileum villus height was reduced in gradual cooling pigs compared to
male and 50% h) vs. HS (39.3TC, 15.9% RH rapid cooling and TN pigs.
female for 3 h followed by rapid cool- e Jejunum and ileum VCR reduced in gradual cooling pigs.
ing to TN or gradual cooling e On day 4, FITC-d permeability was higher than on day 0.
in3htoTN) e Jejunal CLDN1 gene expression was higher on day 0 than on day 4, but lleal
CLDN1 gene expression was lower for gradual cooling than for TN on day 2, and
was higher for gradual cooling than for rapid cooling and TN on day 4.
e Increased ZO1 gene expression in gradual cooling pigs.
[134] Male Arbor Acres TN (23 C) vs. cyclic HS (28°C- e HS lower ADFI, ADG, and feed conversion ratio.
broilers from 28 to 35C-28T for 12 h daily) for e HS reduced villus height and VCR in duodenum and jejunum on day 28.
42 days 21 days e HS increased serum D-lactic acid concentration on day 28.
e HSincreased serum TNFA, IL6 levels and tended to increase pro-inflammatory
cytokine IL1pB, but decreased anti-inflammatory cytokine IL10 levels.
[69] 2-month-old male TN (23°C) vs. HS (40°C, 5 h/day e HS decreased villus height in duodenum and jejunum on day 3.
Chinese mini pigs for 10 days) o Crypt depth in duodenum and jejunum was shallower, but illeal crypt depth was
similar.
e HS increased VCR on day 3, but no effect on day 6 in duodenum. HS increased
VCR on day 1 in jejunum, and no effect in ileum.
e HS increased mitochondria numbers with shortened internal cristae in jejunal
epithelium.
e HS decreased protein expression of EGF in jejunum.
e Desquamation found at tips of intestinal villi, and exposed lamina propria in jejunum.
[71] 28 day old female TN (24 C for 24 h/day) vs. HS e HS reduced intestinal villi and VCR, deepened crypt depth.
Xuefeng black- (37°C for 8 h/day; remaining e HS decreased numbers of goblet cells and lymphocytes in intestine.
boned chickens 16 h/day at 24°C) for 15days e HS increased mRNA and protein levelss of HSP70, HSP90 and NF-kB, and
decreased EGF in jejunal mucosa.
[94] Female growing pigs TN (20C) vs. HS (35T during e HSincreased Intestinal HSP70 mRNA abundance.
09:00-17:00 h and 28°C for e Increased FITC-d permeability and decreased TER.
rest of the day) at 38% RH for e Decreased GPx activity.
2 days
[22] Arbor Acres male N (22 C, 24 h/day) and HS e HS decreased villus height in duodenum and ileum but not in jejunum, increased
broiler chickens (32T, 10 h/day) for 14 days crypt depth and decreased VCR in all intestinal segments.
e HS increased MDA content in small intestine.
[62] Crossbred gilts (50 TN (217, 47% RH) vs. HS (30C, e HS decreased ADFI. ADG and final BW, but no effect on feed efficiency.
kg BW) 35% RH for 10 h/day) for 21
days
[135] Male Cobb 500 broil- 32°C-27°C vs. 37C-33T, e HS decreased villus length, crypt depth and VCR.
ers birds decreased 2°C/week until e Decreased body weight in HS birds
reaching 33°C in third week;
for 5 h/day from 29 to 42 day
of age
[78] Crossbred pigs TN (217, 35%-50% RH) vs. HS HS decreased feed intake and body weight.

(357, 24%-43% RH) for 24 h

Rectal temperature increased.

HS decreased TER and increased FITC-d permeability in ileum and colon.

HS increased protein expression of casein kinase Il a (trend) and MLCK in ileum.
No effect on protein expression of CLDN1, but CLDN3 and OCLN protein up-reg-
ulated.

Active glucose and glutamine (trend) transport increased in ileum and glucose
level in blood.

HS increased GLUT2 protein expression (trend) and increased Na'/K'-ATPase
activity, but no effect on SGLT1 protein abundance in ileum.

HS decreased sucrase and maltase activities, but no effect on ileal mucosal
aminopeptidase N activity.

HS increased ileal HIF1A and HSP70 protein expression.

No differences in IL1B and IL8 concentrations, but myeloperoxidase activity
increased in ileum.

Protein expression of ileal mast cell tryptase increased.
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Table 2. Continued

Reference Animal TN vs. HS conditions with RH Major effect in comparison with TN versus HS conditions
[72] Crossbred gilts (43~ TN (207C, 35%-50% RH) vs. e HS decreased TER, increased FITC-LPS permeability in jejunum, and increased
kg BW) HS (35C, 20%-35% RH) vs. endotoxin in plasma.
pair-feeding in TN conditions e Villus height and VCR decreased linear and quadratic pattern) on day 1, 3, and 7.
(PFTN) for 7 days Crypt depth increased for the first 3 days of HS, and afterward decreased at day
7 compared with day 0 TN.

On day 7, HS tended to increase FITC-LPS permeability compared with PFTN.

Jejunal 4-HNE level (oxidative stress marker) and Na'/K*-ATPase activity in-

creased within first 24 h of HS.

In jejunum, no effect on IL8.

Myeloperoxidase activity (neutrophil infiltration marker) increased in jejunum on

day3and7.

Intestinal lysozyme and alkaline phosphatase activity decreased.

e Gene expressions of OCLN, CLDN3, and ZO1 increased on day 7 compared with
day 0, 1, and 3 of HS.

e Jejunal HSP27 up-regulated on day 1 and 3 compared with day 0 and 7. HIF1A
level numerically peaked at day 3 of HS and down regulated by day 7.

e Gene expression of MLCK in jejunum increased.

[98] Crossbred gilts (63.8 TN (21°C, 70% RH for 6 h) vs.
kg BW) HS (37°C, 40% RH for 2, 4,
and 6 h)

e HS reduced feed intake and increased rectal temperature.

e |leum TER decreased but no change in colon TER.

o Increased ileal FITC-d permeability but not colon FITC-d permeability.

e Reduced lleum villus length and VCR, but not crypt depth.

o Increased villi tip autolysis at 4 h and 6 h.

e MUC2 protein expression increased at 6 h, but not at 2 and 4 h.

e Increased protein expression of HSP70 in ileum and colon. HIF 1A protein expres-
sion was not affected in ileum, but increased (trend) in colon.

e Increased gene expressions of HSP27, HSP70 and HSP90, but no effect on
HSF1 expression in ileum.

o Increased (linear trend) CLDN3 and MUC2 gene expression in ileum.

o No effect on ileal gene expressions of OCLN, MLCK, GLUT2, sodium-glucose
transporter 1, Na'/K'-ATPase, TGFB1, IL1B, and IL6.

[136] Crossbred gilts (64 ~ TN (217, 70% RH) vs. HS (37°C, e HS reduced feed intake and BW in pigs.
kg BW) 40% RH) vs. PFTN condition e HS up-regulated HSP27, HSP90a, HSP90B, HSP70, and HSP65 in ileum.
for12h e Peroxiredoxin 1 protein (related to oxidative stress) decreased.

e Increased ileal HSP27 and HSP70 gene expression in HS pigs compared with
both TN and PFTN pigs.

o No effect on ileal HSF1 and HIF1A gene expressions.

o |leal HIF2 tended to increase in HS pigs compared to both TN and PFTN pigs.

o No effect on gene expressions of SGLT1, Na'/K'-ATPase, AMP-activated protein
kinase-a, GLUT2, citrate synthase, hexokinase, or catalase.

[99] Crossbred gilts (64 TN (217C, 70% RH) vs. HS e Reduced feed intake in HS compared with TN.
kg BW) (37°C, 40% RH) vs. PFTN o |leum villus height and crypt depth decreased in both PFTN and HS.
(pair-feeding to their HS-CON e PFTN and HS increased dextran flux and reduced TER in ileum compared with
counterparts and exposed to the TN.
TN conditions) for 12 h o |leal MUC?2 protein abundance increased in HS and PFTN condition.
e Colonic TER and dextran flux were similar in HS or PFTN treatments.
e HSP70 protein expression increased in ileum of HS compared with the TN and
PFTN.
o Increased HSP70 protein expression in colon of HS-CON group compared with

e lleum and colonic HIF1A protein expression did not differ.

[59] Broiler chickens TN (21C) vs. low HS (31TC) e HS decreased BW gain and ADFI in both HS, but feed conversion ratio increased

vs. high HS (36C). HS was on high HS.
applied for 10 h/day from 35 e No effect of HS on villus height, crypt depth, VCR, and intraepithelial lymphocyte
days to 42 days numbers in jejunal mucosa.

e Cellularity increased in jejunal lamina propria on low HS.

o Mild multifocal acute enteritis on HS.

° I\/1Icild acutse multifocal lymphoplasmocytic enteritis found in jejunal lamina propria

of low HS.

[65] Male broiler chickens TN (21T 24 h/day) vs. HS (31C e HS decreased feed intake, BW gain, and feed conversion.
for 10 h/day and rest 14 h/day e No effect on villus height, crypt depth, VCR, and intraepithelial lymphocyte num-
at217) bers.
o Multifocal lympho-plasmocytic enteritis in jejunum.
o Moderate infiltrates with foci of heterophils.

[67] Male broiler chickens TN (21T, 24 h/day) vs. positve e HS decreased ADG and ADFI in Salmonella-infected and non-infected birds. HS
Salmonella TN group (21°C, birds infected with Salmonella Enteritidis exhibited an increased feed conversion.
24 h/day) vs. positive Salmo- e No effect on VCR, villus height, crypt depth and intraepithelial lymphocyte num-
nella HS group (31T from 35 bers in any segments of small intestine.
to 41 days from 8:00 am to o HS without Salmonella infection caused mild acute multifocal lympho-plasmocytic

6:00 pm 10 h/day) vs. nega- enteritis and foci of heterophil infiltrates in all segments of small intestine, but HS
tive Salmonella HS group with Salmonella infection increased these changes from mild to moderate.
[137] Cobb 500 male TN (24°C) vs. HS (35C) with 55 e HS decreased body weight, feed intake, and feed efficiency on day 28, 35, and
chickens RH from 21 day to 42 days 2

e Increased serum FITC-d in HS chickens on day 35 and 42.
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Table 2. Continued

Reference Animal TN vs. HS conditions with RH Major effect in comparison with TN versus HS conditions

[138] 28-day old male TN (25C) vs. HS (337C) with e HS reduced villous height and ileal TER.

broiler chickens 40%-55% RH for 8 h/day) for
10 days

[139] Male Cobb 500 broiler TN (26C) vs. HS (34C for8 h e HS decreased feed intake and BW.

chickens daily) for 21 days e HS decreased genes expressions of CLDN3 and OCLN but not CLDN1.
e HS increased genes expressions of HSPA1A, HSPD1, and HSPB1.

[140] 17-day-old Ross broil- TN (25C) vs. HS (39°C) for 8 h/ e HS decreased villus height, epithelial and total villus areas in all small intestine
er chickens day for 4 days segments.

e Decreased villus breadth at the tip and increased crypt depth in jejunum.
o VCR decreased in duodenum and ileum.
e Increased GPx activity and decreased T-AOC capacity.
[141] Ross-708 chicks of ~ Control (35C at day 1 and e HS decreased BW on day 21 and 42.
mixed sex decreased 3C perweekto e HSincreased FCR and decreased, feed intake.
26°C and then maintained e HS reduced villus height, width, surface area, and crypt depth on day 21 and 42.
constant) vs. (35C from day
1t042)
[142] Crossbred gilts (43kg TN (19C, 61% RH) vs. HS e HS reduced feed intake and BW gain.
BW) (367, 50% RH) for 1 or 7 e Colonic TER decreased as HS progressed.
days e Colonic FITC-LPS flux tended to increase from days 1 to 7.
[143] Crossbred gilts (39 kg TN (19°C, 46% RH) vs. HS o Feed intake and body weight decreased.
BW) (32C, 26% RH ) for 24 h

[7] 21-day-old Ross male TN (22C, RH 70%) vs. HS (33°C e Reduced TER value and increased FITC-d permeability in jejunum.

broiler chickens for 10 h/day, RH 70%) from e HS caused shorter villus height, deeper crypt depth, and lower VCR in jejunum.
22-42 days e HS downregulated protein levels of OCLN and ZO1.

[1] 15-day-old Ross broil- TN (22°C-23TC) vs. HS (38C- e In jejunum, HSF-3, HSP70, HSP90, CDH1, CLDN5, ZO1, TLR-4, IL6, and IL8

ers 397 for 8 h and remaining mRNA expression and HSP70 protein expression increased.
time at 22°C-23C) for 5days e Increased all gene expressions in ileum as in jejunum along with HSF1, CLDN1,
and HIFTA mRNA levels.

[144] 21-day-old Arbor 36 for 10 h/day for 20 days e Decreased villus height, increased crypt depth, D-lactic acid concentration and
Acres broiler chick- diamine oxidase activity, and soluble intercellular adhesion molecule-1, TNFA,
ens and IL10 concentrations.

e Reduced ZO1, CLDN1, and OCLN expression levels.
[70] Chinese mini pigs TN (23T) vs. HS (40C, 5 h/day e HS reduced VCR.
for 10 days) e HS increased the number of shortened internal cristae mitochondria, organelle
debris within lysosomes, and altered enterocyte tight junction morphology.
e Up-regulated HSP70, HSP90, and HSP27 mRNA expressions, but down-regulat-
ed EGF and EGF receptor mRNA expression in jejunum.
[93] Cobb male chickens TN (26°C,) vs. HS (36°C from e HS decreased feed intake, BW gain, plasma concentrations of triiodothyronine
08:00 to 18:00 and 26 from and thyroxine; increased FCR.
18:00 to 08:00) e HS decreased intestinal VH, VCR, mucosal ATP level, activities of alkaline phos-
phatase and digestive enzymes.
e HS increased intestinal crypt depth, mucosal AMP and MDA levels, and mRNA
levels of HSP70, caspase 3, heme-oxigenase, xanthine oxidoreductase, and
AMP-activated protein kinase.

[30] Hy-Line Brown com- TN (26°C) vs. HS (33C), with e HS decreased egg production rate, feed intake, and egg weight; increased feed

mercial laying hens ~ 60%-70% for 20 days to egg ratio, broken egg ratio, and mortality.
(40 weeks old) e HS caused typical fractures in villi and exposed lamina propria and reduced villus
height in ileum and cecum.
e Down-regulated expression levels of OCLN, ZO1, and JAM-A in ileum and ce-
cum.
[86] 21-day-old Cobb TN (22°C) vs HS (33C) with e HS lowered final BW, ADG, and feed intake.

male broilers

70% RH for 10 h and remain-
ing time at 22°C for 21 days

HS decreased villus height, VCR, and goblet cell numbers; deepened crypt depth.
Increased numbers of Escherichia coli, Salmonella, and Clostridium, and lowered
Lactobacillus and Bifidobacterium numbers.

Reduced intestinal mucosal CLDN1, OCLN, ZO1, CDH1, and MUC2 mRNA
levels.

TN, thermoneutral; HS, heat stress; RH, relative humidity; BW, body weight; ADG, average daily gain; FCR, feed conversion ratio; TNFA, tumour necrosis factor a; IL, interleukin;
VCR, villus height to crypt depth ratio; ADFI, average daily feed intake; MDA, malondialdehyde; SOD, superoxide dismutase; CLDN, claudins; MUC, mucin; OCLN, occludin; ZO1,
zonula occludens 1; HSP, heat shock protein; TER, transepithelial electrical resistance; FITC-d, fluorescein isothiocyanate—labeled dextran (4.4 kDa); LPS, lipopolysaccharide; PFTN,
pair-fed thermal neutral; SGLT1, sodium-dependent glucose cotransporter 1; GPx, glutathione peroxidase; T-AOC, total antioxidant capacity; MLCK, myosin light chain kinase; EGF,
epidermal growth factor; NF-kB, nuclear factor kappa B; 4-HNE, 4-hydroxynonenal; TGFB1, transforming growth factor beta 1; CDH1, E-cadherin; HIF1A, hypoxia inducible factor 1a;
HSPA1A, heat shock protein family A (HSP70) member 1A; HSPD1, heat shock protein family D (HSP60) member 1, HSPB1, heat shock protein family B (small) member 1; HSF,
heat shock factor; GLUT, facilitative glucose transporter; VH, villus height.
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crypt depth, but had no effect on villus height or V/C ratio in the ileum of broiler chickens, which
has been suggested due to the short duration and greater resistance of ileal mucosal structural
change than other parts of the small intestine [12].

There are a few mechanisms of histopathological and architectural changes in the mucosa
and villi due to HS. With response to HS, blood is increasingly diverted to the skin away from
the splanchnic bed as a result of peripheral vasodilatation and vasoconstriction in the gut, which
consequently cause hypoxic, oxidative and nitrosative stress, and eventually, apoptosis of the
epithelial cells can occur [72]. Heat challenge induces damages of the intestinal mucosa, which may
be also caused by down-regulation of the epidermal growth factors (EGF) in the intestine [69]. In the
mucosa, EGE a mitogen, has been shown to improve epithelial recovery and intestinal morphology
by activating the proliferation and differentiation of enterocytes [73]. Many studies have reported
a decrease in mRNA and protein expression of EGF or EGF receptor in the intestine due to HS
[69-71], which might be responsible for reduction of enterocyte cell growth and consequently villi
length and crypt depth. The mitotic divisions in the crypts contribute to a large extent (60%) for
epithelial cell proliferation, followed by the middle (32%) and apical (8%) regions of villus. Because
of the high proliferative activity of the crypt, it is likely that alterations in cell proliferation would
occur first in the stem cells of crypts rather than in the villus. Shorter villus length caused by HS
occurs due to increased mucosal cell turnover and reduced cell mitosis or size. Deeper crypt due to
HS results from greater number of proliferating stem cells to replenish the damaged villus epithelial
cells and indicates rapid tissue turnover and increased protein and energy requirement in the gut
tissues [64]. Reduced V/C ratio is a crucial indicator of gut morphology alterations as it reflects
in reduced surface area and/or increased stem cell proliferation together. Broiler chickens spend
approximately 12% of their synthesized protein on gastrointestinal tissue turnover [64]. Therefore,
the restructuring of the gut morphology due to HS has remarkable impacts on the gut absorptive
and catabolic function. The changes in gut morphology may be attributed to the direct effect of HS
on the gut epithelia such as hypoxia, reduced antioxidant status and hormone secretion or indirectly
through changes in gut microbiota that regulate mucosal cell differentiations.

Heat stress on tight junction function in the gut
'The 'TJ proteins are considered as gate guards and border protectors formed by zonula occludens
(Z0O), claudins (CLDN), occludin (OCLN), and junctional adhesion molecule (JAM) proteins,
which regulate the passage of molecules through selective paracellular pores, especially preventing
entry of pathogenic bacteria, endotoxins and antigenic compounds [68,74,75]. T] function has
usually been shown to alter due to HS as evidenced from reduced mRNA expressions of 1] genes,
their protein amount along with changes in regulatory proteins in several studies, but the changes
depend upon the duration, intensity and period of heat exposure. The expressions of OCLN;, ZO1,
and JAM-A in the ileum and ceca reduced in heat stressed-hens compared with control hens (26 C
vs. 33°C for 20 days), particularly, at 20 days [30]. In broiler chickens, HS (20C vs. 30°C-33C for
8 h/day) decreased mRNA abundance of CLDN3, but not Z0O1, CLDN2, OCLN, and mucin 2
(MUC2) in jejunum; however, any of these genes was not affected in ileum at 21 days [76]. In the
same study, HS reduced mRNA levels of jejunal MUC2 and OCLN, and ileal MUC2, ZO1, OCLN,
and CLDN3 on day 42 [76]. In contrast, HS (20°C vs. 27.8°C for 14 days) in broiler chickens had
no effect on jejunal gene expressions of OCLN, ZO1, CLDNI, and JAM?2, although it decreased
jejunal transepithelial resistance (TER) values at 35 days of age [77], which might be attributed
to the less intensity of the HS for 14 days, resulting in restoration of the gene expressions. Serum
lipopolysaccharide (LPS) concentrations were also not affected by HS [77].

In cows, HS (pair-feeding 15°C vs. 28°C) for 4 days increased ZOZI and tended to increase
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CLDNI mRNA abundance in jejunum, but tended to lower ZO1 protein abundance in jejunum;
whereas no significant differences were noted for myosin light chain kinase (MLCK), ZO2, and
OCLN mRNA abundances [68]. In pigs, ZOI and CLDN3 mRNA abundance increased after 7
days of heat exposure, but ZOI mRNA abundance was not affected at 3 days [72]. In chickens,
HS (38°C-397C, 8 W/day for 5 days vs. 22°C-23C) up-regulated mRNA levels of CLDN5, ZO1,
and E-cadherin (CDHI) in the jejunum, and the gene expressions were more pronounced in ileum
where mRNA expressions of CLDNI was also up-regulated [1]. These studies may suggest that
when heat exposure lasts for short time, some T] gene expressions may be up-regulated as a result
of protective response related to intestinal mucosal restitution.

Epithelial cells also consist of a peri-junctional actin cytoskeleton, which mediates T]
permeability and is regulated by MLCK [75]. A cyclical effect of HS on T] and MLCK gene
expressions has been reported, which were rapidly up-regulated in acute HS, but then decreased
drastically by day 3 [72]. Similarly, ZO1 protein level also decreased, suggesting TJ disruption in
HS conditions [72]. Heat challenge has also been shown to upregulate OCLN gene expression,
which is an important T] protein for regulating barrier function, and an increased expression may
be an indicative of protective response related to intestinal epithelial restoration.

The TJ gene and protein expressions though sometimes vary depending upon the duration and
intensity of HS and type of genes and proteins, the permeability (increased) and TER (decreased)
values are usually altered. HS decreased jejunal TER and increased paracellular permeability of
fluorescein isothiocyanate dextran 4 kDa (FITC-d) and down-regulated protein levels of OCLN
and ZO1 in jejunum [7]. Pigs exposed to HS conditions (21C vs. 35C) for 24 h decreased TER
in ileum and colon, increased protein expressions of MLCK and casein kinase II @, CLDN3
and OCLN in ileum, while there were no differences in ileal CLDN1 expression [78]. Plasma
endotoxin levels increased 45% in HS crossbred gilts (35 C, 20%-35% humidity) compared with
thermoneutral crossbred gilts (20°C, 35%-50% relative humidity), while jejunal TER decreased
by 30% and intestinal FITC-labeled lipopolysaccharide permeability increased by 2-fold [72].
Furthermore, day 7 HS pigs tended to have increased (41%) lipopolysaccharide permeability
compared with the pair-feeding control [72]. Sows in their gestation period subject to HS (18 C—
227C vs. and HS 28 C-32C) from 85 days of gestation to furrowing had higher serum HSP70,
lipopolysaccharide and lipopolysaccharide-binding protein levels [24]. HS (30°C vs.20C) in broiler
chickens impaired barrier integrity in the intestine, which resulted in greater intestinal permeability
to endotoxin and lipopolysaccharide in serum, translocation of intestinal pathogens (Salmonella
spp.) to liver, spleen and meat, and serum inflammatory cytokine (TNFA and IL2) concentrations
[63,67].

The gastrointestinal tract is highly vulnerable to HS-induced alterations, including changes in
the microbiota composition, dysfunctions of immune response, impairment of intestinal barrier
integrity, imbalance of the oxidative-anti-oxidative mechanism, and alterations of the mucosal
structures and injury [1,7]. These alterations cause to allow the translocation of antigens and
pathogens through the TJ of intestine epithelium and stimulate the innate immune system via
TLR signaling, ultimately leading to intestinal inflammation and injury [1]. Besides, HSP that
are recognized by TLR in many cell types can directly facilitate inflammatory responses [1,9].
The barrier integrity in the intestine can be modulated by different cytokines [1,8], and increased
amounts of pro-inflammatory cytokines, i.e., IL6 and IL8, are found in intestinal epithelial cells
after barrier disruption [1]. It has also been recognized that the upregulation of HSP, particularly
HSP70, confers a protective mechanism by inhibiting the expressions of pro-inflammatory

cytokines [1,9].
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Heat stress on heat shock protein in the gut

HSPs are well-recognized as stress proteins and molecular chaperones that protect the internal cell
environment by participating in protein folding, repair, localization and degradation influencing
essential processes such as cell signaling, transcription, protein synthesis, metabolism, and regulation
of cellular redox conditions and thus regulating cell growth and survival [1,79,80]. The synthesis and
expressions of HISP are stimulated under biotic and abiotic stress stimuli, particularly hyperthermia,
oxidative stress, infections, diseases, and hypoxia, to protect cell proteins from oxidative stress and
other harmful environmental conditions [79,80]. The multifaceted response to stress is mediated
by heat shock factors (HSF) that regulate HSP expressions [1,81]. Stress initiates phosphorylation
and trimerisation of HSF and these HSF trimers bind to the heat shock elements in the promoter
region of HSP genes, mediating HSP gene transcription [1]. Heat exposure has thus been shown
to upregulate mRNA and protein expressions of HSP and HSF in different tissues of animals
including in the intestinal mucosa [24].

In chickens, HS (38'C-39C, 8 h/day for 5 days vs. 22C-23C) up-regulated HSF3, HSP70,
HSP90 mRNA expressions and HSP70 protein expression in the jejunum, and the gene
expressions were more pronounced in ileum where mRNA expressions of HSF1, and hypoxia
inducible factory 1 alpha (HIF1A) were additionally upregulated [1]. In HS-chickens, expression of
HSEF3 gene, an avian-specific HSF family member, upregulated in jejunum and ileum, whereas the
HSF1 mRNA level increased in the ileum [1]. A species- and tissue-specific differences of heat-
induced HSF1, HSF3, and their protein expressions have been reported, which may be associated
with the extent of oxidative damage [81,82].

Up-regulated HSF and activate the major heat inducible proteins such as HSP70 and HSP90.
In HS-chickens, HSP70 and HSP90 mRNA levels up-regulated in both jejunum and ileum,
but the corresponding protein expression significantly increased only for HSP70 in jejunum and
ileum [1]. However, HSP70 and HSP90 mRNA levels were not altered in duodenum and colon,
indicating the differences in the susceptibility of the individual intestinal segment [1]. Even short-
term (2 to 3 days) HS increased gene expression of HSP70, HSP90, and HSFI, as well as induced
TJ proteins, which was independent of adenosine monophosphate-activated protein kinase in
chickens [83]. Pigs exposed to HS conditions (35C vs. 21C) for 24 h increased ileum HSP70
expression [78]. HS also upregulated gene and protein expressions of HSP70 and HSP90 in the
jejunal mucosa of chickens [71]. HSPs, including HSP70, play a major role in the protection of
intestinal mucosal integrity from heat-stress injury by correctly fixing the non-native proteins
together and keeping them functional, inhibiting lipid peroxidation, and improving the antioxidant
capacity, thereby contributing to the cell functions under stress conditions [84,85].

Heat stress on transport function and digestive enzymes in the gut

Heat exposure has been shown to decrease intestinal barrier integrity, and also reduces nutrient
absorption in different studies in growing pigs [78], broilers [1,63,83,86], and laying hens [30],
which may be attributed to the imbalance of the gut microbiome coupled with systemic effects
from dysregulation of neuroendocrine responses, subsequently affecting the intestinal mucosa.
There are conflicting reports of HS on the nutrient transport in livestock. Glucose transport in the
intestine and blood glucose increased due to HS (21°C vs.35°C for 24 h) along with increased Na”/
K'-ATPase activity in the ileum of HS pigs [78]. Protein expression of sodium-dependent glucose
cotransporter 1 (SGLT'1) was not altered; but, HS increased ileal facilitative glucose transporter
2 (GLUT?2) protein expression [78]. In broiler chickens, chronic HS (22C vs. 33°C for 14 days)
increased the gene expressions of GLUZ and peptide transporter 1 (PEPTY) in jejunum [87]. Acute
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HS (24C vs.32°C for 8 h) did not alter the mRNA levels of SGLT77 and amino acid transporters
CATI, r-BAT, y + LAT1, and PEPT1, but decreased the expressions of GLUT2, FABPI1,and CD36
in the jejunum, suggesting that periodic HS may affect glucose and lipid transport, but not amino
acid transport in the jejunum [88]. In chickens, HS (20°C vs. 30C) increased the activity and
expression of apical SGLT'1 in intestine by approximately 50%, but no effects on this transporter
was noted in the pair-feeding, indicating that increased transported activity was not resulted from
decreased feed intake [89]. In leghorn hens, HS (20C-22C, 50 C—60% relative humidity vs.
30C-33C, 70%—-80% relative humidity) for 28 days decreased calcium binding protein (calbindin)
in ileum, cecum, and colon [90]. In the above discussion, it is apparent that gene or protein
expressions of some nutrient transporters are elevated in the intestine under HS, which seems due
to adaptive mechanisms to allow proper nutrient absorption by over expressing the transporters
compensating HS-induced reduction in absorptive surface area caused by reduced villi height and
mucosal damage.

During hyperthermia, redistribution of blood away from the splanchnic area to the periphery
occurs in order to maximize radiant heat dissipation from the body [91]. Therefore, thermal
stress may decrease blood flow to the intestine, motility of the digestive system, and secretion
of digestive enzymes [12] which could affect digestion, absorption and metabolism of nutrients
including minerals. High temperature (32°C vs. 20C) reduced digesta passage and the activity of
amylase, trypsin and chymotrysin in the intestinal juice of broiler chickens [92]. Additionally, HS,
independent of reduction of feed intake, elevated Na'/K'-ATPase activity in the intestine, which
was likely due to maintain osmotic homeostasis in the intestine [72]. Ion pumps are involved in
the active transport of ions across the plasma membrane with the hydrolysis of ATP resulting in
depletion of ATP and increased amount of AMP [72,93]. Overall, above discussions may imply
that nutrient transport is a function of changes in the expressions of the nutrient transport system,

digestive enzyme secretion, and microvilli ultrastuctures in the intestine, which are aftected by HS.

Heat stress on oxidative stress in gut mucosa

Heat challenge usually causes oxidative stress such as increased malondialdehyde (MDA) content
and decreased antioxidant enzyme activities, i.e., superoxide dismutase (SOD), glutathione
peroxidase (GPx), and catalase, in the intestine resulting the damages and structural changes of the
mucosa, and reduced barrier integrity. In chickens, chronic cyclic HS (20C vs. 32 C-33C 8 h/day)
for 42 days increased jejunal mucosal MDA content, and lowered SOD activity in ileal mucosa
at 42 day [76]. Cyclic HS (22°C, 24 h/day vs. 327C, 10 h/day) for 2 weeks in chickens increased
MDA content in small intestine [22]. In growing pigs, GPx activity was decreased by HS (28°C
to 35C vs.20C) for 2 days in ileum and jejunum [94] and 4-hydroxynonenal, an oxidative stress
marker, increased within first 24 h of HS [72]. In cattle, HS (28 C, 52% relative humidity vs. 15C,
63% relative humidity with pair-feeding) for 4 days tended to increase catalase mRNA expression,
but mRNA abundances of SODI and GPxI and activities of catalase and lysozyme were similar
[68]. Even, HS for a short period results in oxidative stress in the mucosa. For example, HS at 36 C
for 0,2, 3,5 and 10 h vs. 21°C for one day increased SOD activity after 2 h, but total antioxidant
capacity and MDA content increased after 10 h in jejunum [84]. Gene expression of hypoxia
inducible factor 1, subunit alpha (HIF1A), an oxidative stress marker, upregulated in the ileum of
heat-exposed chickens [1] and pigs [78]. It has also been reported that HIF1A expression tended
to increase at day 3 of HS, but then reached to normal expression level by day 7, probably due to
restoration of this function by protective response of the intestine [72].
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Heat stress on mucosal immunity in gut

HS induces the release of pro-inflammatory cytokines and mediators (e.g., nuclear factor kappa B
(NF-KB) p50 and IL4) in the broiler chickens. In chickens, HS (38°C-39C, 8 h/day for 5 days
vs. 22°C-23C) up-regulated mRNA expressions of 7LR4, IL6, and ILS in the jejunum [1]. In
Holstein cattle, HS (28°C, 52% humidity vs. 15C, 63% humidity in pair-feeding condition) for
4 days had no effect on jejunal mRNA levels of 7NFA4, IL6, IL10, CXC-5, and haptoglobin, and
protein expressions of IL1B and IL4, but IL4 mRNA level tended to be higher in jejunum [68].
Transcription factor NF-KB p50 has a major role in gene regulations induced by inflammatory
cytokines, pathogens and oxidative stress [95]. Generally, IL4 is considered as a crucial cytokine that
control naive T-helper cell differentiation into T-helper 2 effector cells that promote immunity and
inflammation [96].

In poultry, HS (31°C from 35 to 41 days of age) increased serum corticosterone levels and
Salmonella colonization and invasion to crop, cecum, livers and spleen, and lowered plasma IgA
and interferon gamma (IFNG) levels, mRNA expression of IL6, IL12, and TLR2 in spleen and
IL1B, IL10, transforming growth factor beta 1 (7GFBI), TLR2, avian beta defensin (4vBD4)
and AvBDé6 in cecal tonsils of chickens challenged with Sa/monella Enteritidis [60]. This indicates
that HS activates HPA axis and increases corticosterone levels, which may decrease the immune
system activity, resulting in an impairment of the mucosal barrier and inflammation in the intestine,
subsequently increasing susceptibility to the invasion of pathogenic microorganisms [60,65].

HS crossbred gilts (35C vs. 20TC, 35%-50% humidity) had lower alkaline phosphatase and
lysozyme activity (59% and 46%, respectively) over time in HS pigs, while myeloperoxidase activity
(a immune cell marker) was increased in the jejunum on day 3 and 7 [72]. Decreased lysozyme
and alkaline phosphatase activities may due to inflammatory and LPS responses observed during
HS [72]. Compromised lysozyme and alkaline phosphatase activity in mucosa may increase
transmucosal passage of enteric pathogens and toxins, and decrease the protection against LPS-

induced inflammation [72].

Heat stress on the mucus barrier

Mucin layer, composed of gel like mucin substances, covers over the epithelial mucosa. Mucins
are synthesized mainly by gastric foveolar mucous cells and intestinal glandular goblet cells [8,75].
Mucin 2 polypeptide is the major contributor of mucin layer in the GI tract [8]. This mucus layer
in the gut provides physical barrier between luminal content and epithelial cells in the intestine
by restricting large particles from directly contacting the intestinal epithelium, including bacterial
attachment [74,75]. Small molecules such as nutrients can easily diffuse through the mucus layer.
Colonization of gut microbiota can only occur at the outer loose mucus layer, but they are mostly
restricted at the inner adherent mucus layer [74,75]. A defective or thin mucus layer may lead to
susceptibility to pathological changes due to increased adhesion of antigenic bacteria on the mucosa.
HS has been shown to reduce goblet cell numbers in the intestinal mucosa of chickens [86,94,97]
and MUC2 mRNA levels [86]. But a few studies with short duration of heat challenge caused a
linear trend in increased MUC2 gene expression and increased MUC2 protein expression in HS
pigs (21°C vs.37C for 2,4,and 6 h) at 6 h [98] and at 12 h [99] compared with the thermoneutral
pigs. The above studies suggest that HS can affect the physical mucin barrier in the gut leading to

increased invasion of pathogens and vulnerability to mucosa.
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PRODUCTION PERFORMANCE

Feed intake

'The adverse effects of HS on feed intake have been well-recognized in different studies on various
livestock species [100]. Pigs exposed to HS (35C and 24%—-43% relative humidity) for 24 h
showed elevated respiration rates by 2-fold and rectal temperatures by 1.6 C and reduced voluntary
feed intake by 53% relative to the pigs in thermoneutral (21°C and 35%-50% humidity) condition
[78]. Acute HS (35°C) in crossbred pigs for 24 h decreased feed intake compared with the thermo-
neutral (25C) conditions [25]. In laying hens, HS also decreases feed intake, egg production and
weight, eggshell thickness, and increases mortality rate [21,101-104]. HS effects differ due to
genotypes age and group size for the production performance, of which genotype selection may be
useful for selection of breeds for hot temperature conditions [102,103].

'The negative effects of HS on feed intake is one of the reasons responsible for reduced growth
performance in heat-stressed livestock and poultry [105]. During the recovery period, feed intake
and body weight gain in pigs exposed to thermal stress returned to thermoneutral levels; but, pigs
in the pair-feeding group had increased daily feed intake (21%) and weight gain (32%) above
thermoneutral levels [62]. Reasons why appetite during recovery was blunted in HS pigs compared
with the PF pigs are not clearly known. Also, pigs exposed to a 3-h HS period had a progressively
greater feeding behavior relative to the thermoneutral pigs during a 3-h recovery period [106].
Mechanisms of compensatory growth and feed intake are difficult to understand because ability of

animals to recover may depend upon the nature, severity, and duration of nutrient restriction during

HS [107,108].

Production performance and feed efficiency

Broiler birds were exposed to a thermoneutral condition (20C), chronic HS (30°C; 24 h/day)
and acute HS (35C from 09:00 to 13:00 and 20C from 13:00 to 09:00) for 10 days and it was
noted that both HS conditions decreased body weight gain and lowered feed conversion efficiency,
whereas feed intake and mortality rate were greater in the acute HS condition [58]. It indicates that
short-term HS in the day may be detrimental to growth performance. Heat-stressed birds (30°C vs.
207C) increased serum concentrations of corticosterone [58] Heat reduced feed intake (115 vs. 84
g/day), egg production (87.7% vs. 72.4%), and egg weight (63.3 vs. 60.0 g) in laying hens and egg
weight was significantly lower in the HS group than that in the pair-feeding group (feed intake is
similar to the heat-stress group, but in the thermo-neutral condition), suggesting that reduction in
egg weight occurs due to HS independent of feed intake [21]. Feed efficiency (feed:egg ratio) was
not significantly better in the HS group (1.95) compared to thermoneutral group (2.08), whereas it
was non-significantly better in the pair feeding group (1.79) compared to the HS group [21]. The
meta-analysis study demonstrated that feed intake, hen-day egg production, shell strength, and egg
mass were more sensitive to HS than the other variables as these traits reduced by 9.0% to 22.6% in
HS (30C to 357C) compared with thermo-neutrality (15C to 20C), whereas yolk and albumen
proportions or Haugh units are less affected by temperature [103]. In broiler chickens, HS reduced
body weight gain and feed intake, but not feed utilization efficiency [67]. However, feed utilization
efficiency lowered when both HS and Sa/monella Enteritidis infection were combined [67].

Heat stress damages the integrity and morphology of the intestine, resulting in poor nutrient
absorption and decreased animal performance along with increased intestinal permeability and
pathogen invasion [30,61]. The loss of intestinal barrier function lead to increased translocation
of luminal content (e.g., bacterial endo- and exotoxins, food-borne antigens) resulting in LPS

appearance in portal and systemic circulation [72]. Endotoxin initiates an immune response
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associated with greater circulating inflammatory biomarkers [63,91]. As a result, endotoxemia
and inflammation caused by HS may alter metabolism and nutrient partitioning, consequently
decreased productivity [105]. HS reduces the enzymatic activities (i.e., amylase, lipase and trypsin)
for nutrient digestion in the gut [109]. In heat acclimatized laying hens (42°C for 4 h), the levels of
amylase, but not maltase, decreased compared to those of the control hens both in the intestine and
pancreas and it has been suggested that the pancreas may regulate intestinal amylase activity during
the adaptation of chickens to heat [110]. The overexpression of HSP70 significantly increased the
amylase, lipase, and trypsin activity in the intestine of chickens under HS [85]. Compared with
thermoneutral group, HS changed the serum biochemical parameters and hormones related to
energy metabolism, stress response and immune indicators. Most of these changes in serum profile
were independent of feed intake reduction [25]. Plasma triiodothyronine concentration was reduced
in heat stressed-hens [102]. Egg production performance and eggshell quality were impaired by HS
probably due to the disturbed oxidant and antioxidant balance and HSP homoeostasis. In addition,
HS increases serum corticosterone levels, showing a HPA axis activation [65,67]. These results
suggest that HS reduces feed intake and intestinal integrity and increases permeability of endo-
and exotoxin and inflammation. These events may contribute to reduced performance during HS

conditions [72].

AMELIORATION OF HEAT STRESS

'The common effects of HS are the disturbance of gut microbiome and the oxidative stress caused
by excessive generation of reactive oxygen species and reduced antioxidant defense in cells [1].
Probiotics and prebiotics are known to maintain the gut homeostasis by enhancing the beneficial
bacterial populations and reducing pathogens, and also by improving gut-associated immunity
and gut barrier functions [111]. Therefore, the use of probiotics, prebiotics, and substances with
antioxidant activities, such as selenium, vitamin E, herbs, and different organic acids, including
@ -lipoic acid, have been suggested to include the diets to alleviate HS in different studies (Table 3).

Probiotics, prebiotics and postbiotics

HS elicits alterations of composition, diversity and functionality of gut microbial community along
with dominance of undesirable pathogenic microbiota. Hence, a number of studies have been
employed to ameliorate imbalance of the gut microbiota using probiotic, prebiotic and postbiotic
interventions. Supplementation of probiotic mixture (Bacillus subtilis and Enterococcus faecium)
reduced E. co/i number and increased beneficial Lactobacillus number, which were altered due to
HS in the ileum and ceca of laying hens [30]. Supplementation of probiotics (mixture of Bacillus
subtilis, Bacillus licheniformis, and Lactobacillus plantarum) increased viable counts of Bifidobacterium
and Lactobacillus in the small intestine [7], jejunal villus height, and protein level of OCLN, and
decreased coliforms bacteria in the small intestine [7]. The intestinal villi structure of heat stressed
laying hens were damaged with extensive desquamation, mainly at the tip and exposed lamina
propria, compared to the normal intestinal villi in the control group [30,61]. The supplementing the
probiotic mixture (Bacillus subtilis and Enterococcus faecium) in the heat-stressed hens restored the
villus structure [30].

Supplementation of galacto-oligosaccharides in diets of chickens prevented the HS-related
effects such as upregulated mRNA expressions of HSF3, HSP70, HSP90, CLDN5, Z0O1, CDH],
TLR4, IL6, and IL8 and protein expression of HSP70 in the jejunum, but it did not alter these
effects in ileum [1]. In a study with different postbiotics (produced from Lactobacillus plantarum
strains) fed (3 g/kg diet) to broiler chickens exposed to HS (36C for 3 h from 22 to 42 days),
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postbiotics usually increased cecal total bacteria, Lactobacillus and Bifidobacterium numbers, and
lowered Enterobacteriaceae, E. coli and Salmonella numbers compared to the groups without any
added postbiotics or antibiotic in heat exposed-chickens [112].

Herbs

Different plant bioactive compounds have strong antimicrobial properties [113], which may be
effective against the pathogenic microorganisms that become prevalent during HS condition.
Supplementation of plant bioactive compounds have been shown to improve intestinal integrity,
nutrient transport and antioxidant status, especially in infection and HS conditions in livestock
[75,114]. Supplementation of ginger improved feed intake, egg production and antioxidant status,
which were reduced by HS in layer chickens [101]. Heat challenge elevated HSP70 expression and
cortisol levels in broiler chickens, but supplementation of Zingiber officinale and Zingiber zerumbet
at 20 g/kg diet enhanced HSP70 expression compared with the diet without these additives [115].
Supplementation of epigallocatechin gallate at 200 and 400 mg/kg diet [116] and genistein at 200
to 800 mg/kg diet [117] increased in feed intake and body weight, improved feed efficiency and
carcass traits, and reduced MDA content in serum and liver in heat stressed quails. In Japanese
Silkie fowls exposed to chronic (21 days) HS (24C vs. 35°C), supplementation of clove extract (O
to 600 mg/kg diet) improved daily body weight gain, feed intake and feed efficiency [118]. Soursop
(Annona muricata) juice has been shown to ameliorate the serum oxidative stress in heat stressed
rabbits [119]. Fermented herbal tea residues increased feed intake and reduced serum HSP70
level, SOD and GPx activities in Holstein heifer under HS (temperature humidity index of 79)
conditions [120].

The effects of genistein on MDA content and growth performance were better in the HS
(34C for 8 h/day) condition than the thermoneutral (22°C for 24 h/day) condition [117].
Supplementation of ginger root powder (7.5 g/kg diet) increased body weight and body weight gain
of heat-stressed broiler chickens compared to the control group at 22 day of age, but not at 42 and
49 days of age with higher total antioxidant capacity and lower MDA level in serum [121]. Dietary
supplementation of resveratrol at 400 mg/kg diet improved the villus morphology, increased the
goblet cell and lymphocyte numbers, attenuated the gene and protein overexpressions of HSP70,
HSP90, and NF-KB, and activated the expression of EGF in the jejunal mucosa [71].

Antioxidant minerals

HS increases free radical formation causing oxidative damage to lipids, proteins, and DNA and
impairs immune responses by altering the expression of cytokine profiles and causing the immune
cells more vulnerable to oxidative stress [122]. Selenium, as a part of specific selenoproteins,
increases antioxidant status, thus preventing damages to tissues and important biomolecules [122].
Selenium supplementation in diet improves feed intake, body weight gain, egg production and
quality, feed efficiency, and antioxidant status in heat-stressed poultry [122]. Selenium also enhances
immune responses by changing the production of certain cytokines by immune cells and enhancing
the resistance mechanism of immune cells to oxidative stress [122]. In sheep, HS (28°C—40C vs.
18'C-217C), which reduced feed intake by 13% and caused oxidative stress and supplementation of
selenium (0.24 and 1.2 mg/kg diet) and vitamin E (10 and 100 IU/kg diet) ameliorated oxidative
stress, but did not improve feed intake [123].

In boiler breeders, HS (21°C vs. 32°C) decreased Mn content and SOD activity in the liver and
heart, and increased in MDA level, up-regulated expressions of HSF1, HSF3, and HSP70 mRNA
and protein in heart, liver and muscle [124]. Dietary supplementation of Mn (120 mg/kg diet as
Mn sulfate or Mn proteinate) enhanced the antioxidant capacity and lowered HSP70 expression in
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breast muscle [124]. HS decreased laying rate, egg weight, eggshell strength, thickness and weight,
and increased feed:egg ratio, broken egg rate, misshapen egg rate, rectal temperature, SOD activities
and HSP70 mRNA levels in liver and pancreas, as well as metallothionein level in pancreas of
laying broiler breeders [125]. Organic Zn supplementation increased Zn content in the liver, as well
as metallothionein levels in the liver and pancreas relative to those birds fed the control diet under
HS [125]. Maternal dietary Zn and Mn supplementation as an epigenetic modifier have been
shown to protect the offspring embryonic development against maternal HS via enhancing the
epigenetic-activated antioxidant and anti-apoptotic ability [126,127].

Supplementation of chromium-picolinate (1.60 mg; 12.4% chromium) or chromium-histidinate
(0.788 mg; 25.2% chromium) delivering 200 pg/kg of chromium were effective in alleviating
production performance variables of layer chickens under the HS conditions, but did not alleviate
the deteriorations in egg quality parameters caused by HS [104]. Chromium can reduce cortisol

level in the blood and reverse the immuno-suppression caused by HS [128].

Antioxidant vitamins

Various antioxidant vitamins have been shown to ameliorate the HS-related adverse effects in
animals. Exposure of HS (20°C vs. 35°C during 09:00-17:00 h and 28°C for rest of the day) to pigs
for 2 days resulted in increased intestinal /SP70 mRNA abundance and FITC-d permeability and
decreased TER and GPx activity in the intestine, which were alleviated by dietary supplementation
of both vitamin E (17 to 200 IU/kg diet) and Se (0.2 to 1 mg/kg diet) for 14 days as evident
from the reversal of these variables [94]. In laying quails, HS (34C vs. 227C) increased serum
corticosterone concentration and HSP70 expression, but vitamin C or E supplementation reduced
serum corticosterone level in HS quails [129]. Feed intake and egg production were not influenced
by supplementation of vitamin C and E under thermoneutral conditions (22C), but were greater
due to supplementation of vitamin C or E either singly or in combination in heat-stressed (34C)

quails [129].

Other anti-stress agents

Administration of gamma amino butyric acid (GABA) orally (0.2 mL of 0.5% GABA solution)
alleviated HS-induced reductions in body weight gain, jejunal villus length, crypt depth, and
mucous membrane thickness (33°C for 14 days) in broiler chickens [87]. Supplementation with
GABA decreased GLUT2, peptide transporter 1, and HSP70 mRNA expressions in the jejunal
mucosa, which were overexpressed in HS conditions relative to the thermoneutral condition
[87]. Moreover, GABA supplementation also elevated the triiodothyronine hormone level and
antioxidant status (decreased MDA level and increased GPx activity) in liver of chickens [87].

The role of betaine in heat-stress management has been reviewed [5,6]. Betaine can alleviate
HS-induced changes by protecting intestinal cell proteins and enzymes and regulating water and
electrolyte balance with more stable tissue and cell metabolism due to its osmoregulatory functions.
'Thus, betaine supplementation has shown to improve growth performance, egg production, egg
quality traits and immune indices in HS animals [5,6].

CONCLUSION

The gastrointestinal tract is one of the most vulnerable organs affected by HS. Several physiological
and pathological alterations occurs in the gut including changes in the microbiome composition
with greater establishment of pathogenic microbiota groups, damages of microstructures of the

mucosal epithelium, increased oxidative insults, reduced immunity, and increased permeability
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of the gut. Vulnerability of the intestinal integrity leads to translocation of pathogenic microbes
and antigens to the blood circulations, which ultimately may cause systematic inflammations and
immune response. Moreover, transports and digestion of nutrients in the guts may be impaired
due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to
the mucosal structure and expressions of the nutrient transport proteins and genes. The systematic
hormonal changes due to HS along with alterations in immunity and inflammatory responses often
cause reduced feed intake and production performance in livestock and poultry. It seems that many
physiological alterations in immunity, barrier function and nutrient transport in the intestines may
arise due to imbalances of gut microbiome caused by HS, which may then cause systemic response.
However, the precise mechanisms how microbiota communicates with the host physiological
responses under HS are yet to be elucidated. A better understanding of the role of gastrointestinal
microbiota in physiological and pathophysiological processes in the intestine is required to properly

mitigate the HS-induced adverse effects in animal production system.
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