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Abstract
The objectives of this study were to evaluate convolutional neural network models and 
computer vision techniques for the classification of swine posture with high accuracy and to 
use the derived result in the investigation of the effect of dietary fiber level on the behavioral 
characteristics of the pregnant sow under low and high ambient temperatures during the last 
stage of gestation. A total of 27 crossbred sows (Yorkshire × Landrace; average body weight, 
192.2 ± 4.8 kg) were assigned to three treatments in a randomized complete block design 
during the last stage of gestation (days 90 to 114). The sows in group 1 were fed a 3% fiber 
diet under neutral ambient temperature; the sows in group 2 were fed a diet with 3% fiber 
under high ambient temperature (HT); the sows in group 3 were fed a 6% fiber diet under HT. 
Eight popular deep learning-based feature extraction frameworks (DenseNet121, DenseN-
et201, InceptionResNetV2, InceptionV3, MobileNet, VGG16, VGG19, and Xception) used for 
automatic swine posture classification were selected and compared using the swine posture 
image dataset that was constructed under real swine farm conditions. The neural network 
models showed excellent performance on previously unseen data (ability to generalize). The 
DenseNet121 feature extractor achieved the best performance with 99.83% accuracy, and 
both DenseNet201 and MobileNet showed an accuracy of 99.77% for the classification of 
the image dataset. The behavior of sows classified by the DenseNet121 feature extractor 
showed that the HT in our study reduced (p < 0.05) the standing behavior of sows and also 
has a tendency to increase (p = 0.082) lying behavior. High dietary fiber treatment tended to 
increase (p = 0.064) lying and decrease (p < 0.05) the standing behavior of sows, but there 
was no change in sitting under HT conditions.
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INTRODUCTION
Heat stress (HT) has become a frequent and serious problem for swine productivity and welfare 
in the swine industry [1]. Pig thermoregulation relies on heat dissipation through the respiratory 
pathway (gasping) rather than via the sweat glands due to the thick subcutaneous fat, which inhibits 
sensible heat loss [2,3]. Various strategies such as behavioral and metabolic changes are initiated 
to minimize heat generation when it is difficult for pigs to maintain euthermia in response to high 
ambient temperatures [1]. In general, one of the major adaptations for correcting metabolic heat 
production in response to high ambient temperature is reducing voluntary feed intake (VFI), which 
minimizes metabolic heat production [4]. However, in commercial farms, reduction in VFI, induced 
by high ambient temperature, of the pregnant sows may not help maintain euthermia throughout 
the regulation of metabolic heat production owing to the limited VFI for preventing obesity. 
Moreover, limited VFI can trigger certain behaviors induced by hunger, and restrictions on behavior 
due to the stall can increase sow stress as well as heat stress. To prevent this problem, studies have 
been conducted on the level of fiber in sow feed. Dietary fiber is related to the physicochemical 
properties of diets and increases the bulk and water-holding capacity of feed, thereby allowing it to 
expand in the gastrointestinal tract of the sow [5]. Dietary fiber can be used to prevent constipation 
and increase the satiety of sows [5,6]. The satiety of sows is reflected in stereotypic behaviors 
such as non-feeding oral activities and physical activities [7]. Long periods of sitting or standing 
inactive could indicate poor welfare, whereas lying may reflect improved wellbeing [8]. Therefore, 
the assessment of behavioral characteristics is used to evaluate the stress and welfare of sows [5]. 
The productivity and welfare of swine are adversely affected by heat stress, but manual observation 
and classification of animal stress-related behaviors are laborious, invasive, time-consuming, and 
dependent on expert scorers. Automated monitoring and recognition of swine behavior can be a 
more effective way to overcome these hindrances and improve farm animal management compared 
with manual observations.

The classical approaches to pose estimation are based on manual visual observation by the 
farmer, based on behavioral patterns as swine typically show a variety of behavioral responses to 
environmental stimuli and stress. This management method may contribute to improved welfare 
when appropriate measures are taken [9]. However, traditional manual observation methods are 
time- and labor-consuming and rely heavily on the operator. Computational analysis for evaluating 
behavior data is an area of increased research interest because of its importance in health-related 
diagnosis issues and management planning.

Recently, with the rapid development of deep learning, automated and non-intrusive animal 
monitoring systems have drawn attention to the potential of significantly reducing labor 
consumption and improving the collection and classification of behavioral information to support 
management decisions. In a study by Yang [10], the performance of a fully convolutional network 
(FCN) [11] was evaluated to automatically recognize the nursing behaviors of sows. They 
proposed a method that exploits Spatio-temporal relations using FCN and oriented optical flow 
to automatically recognize nursing behaviors from daily behavioral videos of lactating sows [10]. 
Zheng et al. [12] introduced a deep learning detector, with faster regions and a convolutional neural 
network (R-CNN) [13] to automatically identify five postures of sows in loose pens. Chen et al. 
[14] proposed a deep learning method based on convolutional neural networks (CNNs) [15,16] 
and long short-term memory for the early detection of aggressive episodes of pigs.

In this study, we constructed a swine image dataset under real farm conditions. The acquisition 
of real farm images is influenced by conditions and parameters such as variable distances, poor 
resolution, and non-ideal illumination. The quality of images depends on several factors such 
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as shadows, noises, artifacts, and reflections, which hinder data acquisition with reliability and 
robustness for swine posture analysis. Therefore, a computer-aided diagnosis system that can analyze 
real farm condition images may be considered for swine behavioral pattern classification. Therefore, 
the objectives of this study were to evaluate the effect of the automatic classification system of eight 
well established and state-of-the-art artificial intelligence techniques using a swine image dataset 
to predict behaviors by applying an appropriate classifier to the pre-processed data and to apply the 
derived result in investigating the effect of dietary fiber level on the behavioral characteristics of the 
pregnant sow under high ambient temperatures during the last stage of gestation.

MATERIALS AND METHODS
The protocol for the current study was approved by the Institutional Animal Care and Use 
Committee of Kangwon National University, Chuncheon, Korea (KW-170519-1).

Animals and management
The experiment was conducted at a swine farm located at Kangwon National University 
(Chuncheon, Korea). During the last days of gestation (days 90 to 114), a total of 27 crossbred 
sows (Yorkshire × Landrace; average body weight [BW], 192.2 ± 4.8 kg) were assigned to three 
treatment groups, in a randomized complete block design, based on the body weight (kg). Each 
treatment had 10 replicates with one sow. The sows in group 1 were fed diets containing 3% fiber 
(LF) under neutral ambient temperature (NT); the sows in group 2 were fed diets containing 3% 
fiber under HT; and the sows in group 3 were fed diet containing 6% fiber (HF) under HT. Two 
isoenergetic and isonitrogenous diets in a mash were formulated for gestation period (Table 1). 
Diets weighing 2.2 kg were provided to each sow per day at 08:00 and 16:00 until farrowing. The 
sows were given ad libitum access to water throughout the gestation period. They were housed in 
gestation stalls (2,000 × 600 × 1,000 mm) from 90 to 100 d of gestation. At day 100 of gestation, 
the sows were moved into two types of conventional farrowing houses: farrowing house A was an 
open house with facilitated farrowing crates (2,000 × 600 × 1,000 mm); farrowing house B was a 
closed house with facilitated farrowing crates (2,000 × 600 × 1,000 mm) and a cooling pad. The 
average temperatures in the gestation house (days 90 to 100 of gestation), farrowing house A (days 
100 to 114 of gestation), and farrowing house B (days 100 to 114 of gestation) were 29.7 ± 2.4℃, 
28.2 ± 1.1℃, and 21.4 ± 1.8℃, respectively.

Video acquisition
To build image datasets for the behavioral observation of sows, the videos were recorded and 
collected as top-down view images. Cameras were installed above the center of the swine pen 
on the ceiling at a height of 2.20 m, relative to the floor. The lens on the camera pointed directly 
downwards the pen to monitor their activity over time. The videos were recorded in JPEG format 
with 1,920 × 1,080 pixels at 30 fps, between 11:00 am and 1:30 pm during the last gestation 
period in the natural state, without special preparations to enhance the lighting or to improve the 
distinguishability of the animals from the background. Videos were converted to image sequences, 
and the images were used for the development of digital image processing. Only one image per 
second was captured for substantial savings in storage space.

Datasets and labeling
The dataset contained 11,850 images, and the data were split into 7,556 training images, 2,517 
validation images, and 1,776 testing images. The images were categorized into four classes including 
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2,439 images which were created for lying left, 2,650 for laying right, 4,458 for sitting, and 2,277 
for standing. The computations were performed using a Python 3.7 on an Intel(R) Core (TM) 
i7-8700 K CPU @ 3.70 GHz, 16 GB RAM, NVIDIA GeForce RTX 2080 with 8GB RAM 
on a 64-bit Windows 10 operating system. The CNN and long short-term memory (LSTM) 
architectures were implemented in TensorFlow 1.13.1 and Keras 2.2.4, respectively.

Table 1. Formula and chemical composition of lactation sow diets (as-fed basis)
Items Control High fiber

Ingredients (%) 100.00 100.0

Corn 68.77 28.97

Wheat 4.00 4.00

Soybean meal 14.06 1.32

Animal fat - 7.53

Wheat bran 5.83 34.53

DDGS 4.00 20.00

Salt 0.50 0.50

TCP 1.36 0.92

Limestone 0.86 1.25

DL-methionine (98%) 0.02 0.03

Lysine (78.8%) 0.08 0.34

Tryptophan (10%) 0.07 0.17

Threonine (98.5%) 0.11 0.08

Choline-Liquid (50%) 0.10 0.10

Vitamin premix1) 0.10 0.10

Mineral premix2) 0.10 0.10

Phytase 0.05 0.05

Chemical composition (%)

Dry matter 87.5 88.4

Crude protein 14.00 14.00

Ether extract 2.77 10.96

Crude fiber 3.00 6.00

Ca 0.82 0.82

P 0.69 0.81

Available P3) 0.38 0.38

Lysine 0.68 0.71

MET + CYS 0.50 0.53

Threonine 0.62 0.56

Tryptophan 0.15 0.16

ME (kcal/kg)3) 3,140 3,140
1)Supplied per kilogram of vitamin premix: 12,000,000 IU vitamin A, 2,400,000 IU vitamin D3, 132,000 IU vitamin E, 1,500 mg 
vitamin K3, 3,000 mg vitamin B1, 11,250 mg vitamin B2, 3,000 mg vitamin B6, 45 mg vitamin B12, 36,000 mg pantothenic acid, 
30,000 mg niacin, 600 mg biotin, 4,000 mg folic acid.
2)Supplied per kilogram of mineral premix: 80,000 mg Fe, 170 mg Co, 8,500 mg Cu, 25,000 mg Mn, 95,000 mg Zn, 140 mg I, 
150 mg Se. 
3)Calculated values.
DDGS, dried distiller’s grains with solubles; TCP, tricalcium phosphate; MET, methionine; CYS, cysteine; ME, metabolizable en-
ergy.
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Definition of the sow behaviors
In this study, four postures were defined for the behavior classification. The sows’ behaviors covered 
in this analysis included lying left, lying right, sitting, and standing. The definitions of the four 
classes of sow postures are shown in Table 2, and their corresponding examples are shown in Fig. 1. 

Architectures
Here, we used four deep learning architectures: InceptionV3, DenseNet, MobileNet, and VGG 
net models. InceptionV3 is the third generation of Google’s Inception CNN and consists of 159 
layers in total. The prominent feature of the inception module is the use of three convolution sizes 
of filters (1 × 1, 3 × 3, and 5 × 5) instead of using one type of kernel, and a bottleneck layer for 
nonlinear dimensionality reduction. Moreover, the presence of a pooling layer is used for dimension 
reduction within the module. DenseNet is one of the recent discoveries in neural networks for 
visual object recognition that, by summation operations, connect each layer to every other layer in 
a feed-forward fashion. DenseNet is able to achieve maximum information flow between layers 
in the network. Feature maps extracted from each layer are reused as inputs for the subsequent 
layers. Compared with the previous image recognition network, it solves the problem of gradient 
disappearance of a deep network, strengthens the propagation of features, encourages feature reuse, 
and reduces model parameters. The MobileNet architecture, designed by the Google research 
team for object recognition on mobile devices, consists of a depth-wise separable convolution and 
1 × 1 point-wise, convolution layer. The performance was evaluated on the ImageNet dataset [17] 
and achieved the same level of accuracy as VGG16 [18] with 32 times fewer parameters and was 
27 times less computationally intensive. Depth-wise convolution uses a single spatial filter for 

Table 2. Definition and description of different sow behaviors recorded in a farrowing crate
Behaviors Classification description

Lying left Resting with her left side in contact with the farrowing crate floor.  

Laying right Resting with her right side in contact with the farrowing crate floor.  

Sitting Sitting on her hip or stretched front legs with caudal end of body contacting the floor.

Standing Upright body position on extended legs with hooves only in contact with the floor.

Fig. 1. Representation of swine posture categorization in four classes.
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each input feature map, and pointwise convolution (1 × 1) is applied to cross-channel patterns. 
The VGG network architecture is the CNN model introduced by Simonyan and Zisserman [18] 
for the ILSVRC-2014 challenge. This network is characterized by its simplicity, using only 3 × 3 
convolutional layers stacked on top of each other in increasing depth. Reducing the volume size is 
handled by max pooling. Two fully connected layers, each with 4,096 nodes, are then followed by a 
softmax classifier.

Evaluation criteria
To estimate the prediction performance of individual models, four commonly used evaluation 
metrics were applied: accuracy, sensitivity, specificity, and F1-score. Sensitivity is the measure of 
swine posture labels that are correctly classified and expressed in the form as:

where true positive (TP) is the number of images that are correctly predicted and false-negative 
(FN) is the number of images that are incorrectly predicted.

Specificity is the measure of swine posture labels that are successfully classified and is expressed as:

 

where true negative (TN) is the number of negative images that are correctly predicted and false 
positive (FP) is the number of negative images that are incorrectly predicted. 

Accuracy is used to show the number of correctly classified swine postures divided by the total 
number of swine postures and is defined as:

 

F1-score, known as F-measure, is defined as the weighted average of precision and recall and is 
obtained by

 

Statistical analysis
The percentage of the number of image results classified by architectures from individual sows was 
pulled and was considered the experimental unit in all statistical analyses to compare sow behavior 
classification. Analysis of variance (ANOVA) was performed using the SAS program (SAS 2012; 
SAS Institute, Cary, NC, USA), and the differences among the treatments were determined using 
Tukey’s test. Probability values less than 0.05 were considered significant. 

RESULTS AND DISCUSSION 
Loss and accuracy comparison
Total loss and accuracy are two indicators routinely used to evaluate the fitting effect and the 
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convergence of training and validation processes when using deep learning methods. A learning 
curve can be used to visualize a cumulative evaluation of a classifier’s learning performance over 
time (epochs) when using training and validation datasets. It noticeably signifies how well fitted 
(under-fit or over-fit) a particular classifier or any machine learning model is during the model 
training phase. 

A comparative assessment was conducted to determine the training behavior of different models. 
Fig. 2 illustrates the learning curves (loss and accuracy plots) for the eight individual networks that 
were evaluated using training and hold-out validation datasets. The results from the training and 
validation loss for various classifiers ensured the learning and generalization ability of the classifiers 
on training and hold-out validation datasets. Fig. 2 shows that all eight individual algorithm models 
converged in the training and validation processes of the rock structure classification. Additionally, a 
minimum loss value signifies the best results, which means that the training and validation datasets 
were learned by the classifier with fewer errors (Figs. 2a, b). In contrast, a maximum accuracy value 

Fig. 2. Loss function and accuracy curves of individual architectures. a) DenseNet121, b) DenseNet201, c) 
InceptionResNetV2, d) InceptionV3, e) MobileNet, f) VGG16, g) VGG19, and h) Xception.
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signifies the best results, indicating more learning ability by the classifier model. This kind of dual 
learning curve helps in evaluating and selecting a suitable classifier model with an optimized loss 
and maximum classification accuracy in both the training and validation sets. Fig. 3 illustrates the 
relationship between the prediction accuracy and the total loss, which shows that the training and 
validation loss remains very close, indicating that the model is not overfitting to the training data. 
These graphs illustrate the deep architectures of how and what happened during these phases.

Fig. 3. Confusion matrix of swine behavior image classification. a) DenseNet121, b) DenseNet201, c) InceptionResNetV2, d) InceptionV3, e) MobileNet, f) 
VGG16, g) VGG19, and h) Xception.
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Behavior classification by deep convolutional neural network (CNN) architectures
Deep feature extraction based on transfer learning started by investigating the effect of eight 
different deep CNN architectures in extracting deep features from input images and achieving 
optimal prediction on the unseen test data. The swine posture dataset was trained on eight different 
CNN architectures, including DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, 
MobileNet, VGG16, VGG19, and Xception, individually. DenseNet121 significantly outperformed 
the other individual architectures on the provided dataset with an accuracy of 99.83%, a sensitivity 
of 100%, a specificity of 100%, and an F1_score of 99.83% (Table 3). Compared with the remaining 
network models, the DenseNet201and MobileNet architectures individually provided better 
performance classification with accuracies of 99.77% and 99.77%, respectively. However, VGG16 is 
the only model that obtained the lowest accuracy of 99.54% (Table 3). The VGG16 also had poor 
performance (99.55%) on the F1-score. Therefore, the DenseNet family and MobileNet CNN 
architectures achieve high performance in terms of accuracy in the detection and classification of 
swine posture as compared to the other five architectures. It also shows that the DenseNet family 
network model can extract more distinguishing features with better robustness and generalization 
than the other models.

Confusion matrix 
In multi-class classification tasks, most of the evaluation metrics are computed based on a “confusion 
matrix”. The confusion matrices can be used to precisely sum up the performance of the proposed 
classification model. In addition to the comparison of accuracy and loss, for a more detailed analysis, 
the quantitative results for eight individual architectures were compared in the form of confusion 
matrices (Fig. 3). The confusion matrix demonstrates the performance of the classifier in terms of 
the number of swine posture images that have been correctly classified as well as the misclassified 
cases for each class. Densenet121 was able to correctly classify 1,773 images out of 1,776 images 
and hence provided a better classification of swine posture than the others. In conclusion, 
DenseNet121 is the best learner, and its counterpart, DenseNet201, and MobileNet, are the 
second-best learners. It is clear that these three architectures surpass other architecture models in 
terms of accuracy, sensitivity, specificity, and F1_score, which implies that these models are able to 
extract more discriminatory features from the swine posture images, resulting in a higher detection 
rate (Table 3). In swine posture image classification on the test set, however, Vgg16 incorrectly 
recognized eight images, in which seven images of “sitting” were misclassified as “lying right”. In the 
confusion matrix of swine behavior classification using different deep CNN models, the values on 

Table 3. Classification results from pre-trained deep CNN models

Method
Model performance indicators

Accuracy (%) Sensitivity Specificity F1_score
DenseNet1211) 99.83 100 100 99.83

DenseNet2012) 99.77 100 100 99.77

InceptionResNetV2 99.71 100 100 99.71

InceptionV3 99.71 100 100 99.71

MobileNet2) 99.77 100 100 99.77

VGG16 99.54 100 100 99.55

VGG19 99.71 100 100 99.71

Xception 99.71 100 100 99.71
1)The best result.
2)Represents the second-best result of the respective category.
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the main diagonal represent all correctly classified instances. The row under each confusion matrix 
shows the rate of accuracy achieved for each predicted class and misclass predictions.

Sow behavior
The processed results of behavior classification using the Densenet121 model are shown in Table 
4. When comparing the ambient temperature (neutral vs. high) with the same dietary treatment 
(CF 3%), the frequency of standing of the sows in the HT treatment group was higher (p < 0.05) 
than that of sows in the NT treatment group and the frequency of lying behavior of sows tended to 
increase (p = 0.082) under the HT. However, the ambient temperature did not significantly affect 
the frequency of sitting and lying on the right. 

Under the HT, the increase in dietary fiber significantly decreased (p < 0.05) the frequency of 
standing of the sows and tended to increase (p = 0.064) the lying behavior, whereas the frequency 
of sitting was not affected by the dietary treatment. Comparing the NT + LF and HT + HF 
treatments, the frequency of lying of sows in HT + HF treatment was higher (p < 0.05) than that of 
sows in HT + HF treatment. However, the frequency of standing of sows in HT + HF treatment 
was lower than that of sows in NE + LF treatment. 

In this study, the behavioral analysis was performed during the last stage of the gestation of 
sows, and the frequency of lying behavior in all treatments occupied a larger proportion of time 
as compared to that of sitting and standing. Zhang et al. [19] evaluated the behavior in sows of 
different parities and the welfare of sows in intensive farming systems and reported that the lying 
behavior increased in the latter stages of pregnancy and decreased before farrowing. Improving the 
confined environment would improve the comfort of sows and reduce physiological and mental 
stress [20]. Sitting or standing for long periods of time indicates poor welfare, whereas lying reflects 
improved well-being [8]. However, considering the increase in lying behavior of sows under HT 
conditions as a parameter would be controversial as it may not adequately reflect the welfare of 
sows. The HT in our study reduced the standing behavior of sows and had the tendency to increase 
lying behavior. Our results were contrary to previous reports on the sow’s comfort under HT 
conditions. The sows’ behavioral changes at HT were decreased and sows spent most of their time 
lying due to the heat increment resulting from their movement [21]. However, HT and metabolic 
heat increment of sows increase with the presence of some facility (floor or crate) in contact with 
sow’s skin. This increases the sow’s temperature regulation characteristics (emitting metabolic heat 
through the skin) so that the frequency of posture change increases due to the instinct to find a 
cool place [22]. These conflicting results disprove the need for more research into investigating sow 

Table 4. Effect of ambient temperature and dietary fiber levels on sow’s behavior frequency (%) 
classified by Densenet121

Items NT + LF HT + LF HT + HF SEM

p-values
NT + LF

vs
HT + LF

HT + LF
vs

HT + HF

NT + LF
vs

HT + HF
% of observation

Lying1) 45.43 49.48 53.80 0.97 0.082 0.069 <0.001

Left lying 22.51 24.69 27.07 0.55 0.079 0.081 <0.001

Right lying 22.93 24.79 26.73 0.47 0.174 0.123 0.002

Standing 13.08 9.26 5.31 0.80 0.009 0.012 <0.001

Sitting 41.48 41.26 40.89 0.41 0.998 0.936 0.909
1)Sum of left and right lying.
NT, neutral ambient temperature; LF, low dietary fiber (3%); HT, high ambient temperature; HF, high dietary fiber (3%).
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behavior under HT.
In our study, the high dietary fiber treatment tended to increase the lying and decrease the 

standing behavior of sows, but there was no change in sitting. In the present study, the ventral 
lying was included in sitting, and ‘lying’ represented only lateral lying (left and right side); thus, 
sitting behavior might not have been affected by the treatments. Changes in the frequency of the 
sows’ behavior regarding the level of dietary fiber can be associated with satiety. Dietary fibers are 
composed of plant polysaccharides and lignin that are not hydrolyzed by endogenous enzymes 
in the gastrointestinal tract, increasing the passage rate and altering the digestion and absorption 
times of nutrients [23]. The dietary fiber increases the concentration of non-esterified fatty acids in 
the blood by supplying a constant concentration of glucose to the pregnant sows for a long time, 
thereby increasing satiety [23]. Our findings reflect the satiety of the sows, and the integrated results 
show its positive effects on sows before farrowing. However, dietary fiber increases the internal body 
temperature due to fermentation in the gut [24]. It is hypothesized that high dietary fiber induces 
additional heat stress in pregnant sows. However, in our study, the sows were fed the same amount 
of feed with adequate nutrients, using restricted feeding, and there was no additional supply other 
than the suggested fiber. Therefore, a possible explanation for our overall behavioral results could be 
the hypothesis that the sows reduced metabolic heat generation by minimizing movement to adapt 
to the HT. Further studies are required to evaluate the occurrence of heat stress and sows’ health 
due to the fermentation of fiber during late stages of pregnancy.

CONCLUSION
In this paper, a comparative study was presented for swine posture classification during the 
last stage of gestation, generating a farm image dataset containing various poses of swine. Pre-
processing methods such as illumination correction, contrast enhancement, and artifact removal 
were used to improve image quality and obtain a better generalization ability. Due to the limitation 
of the behavioral pattern of sows during the late stages of gestation, four behavior patterns—lying 
left, lying right, sitting, and standing—were applied for classification. Various standard evaluation 
metrics such as specificity, sensitivity, accuracy, and F1-score were employed to evaluate the 
obtained results. The diagnostic accuracy of several deep-learning models was tested in this work, 
and it was observed that the DenseNet neural network model gave excellent results regarding the 
accuracy and was superior to other structural models in classification performance, thus achieving 
a more accurate classification of the swine image dataset. The results of this study suggest that the 
application of CNN-based computer-aided diagnostic methods integrated with image processing 
and machine learning methods can reliably classify different behavioral postures under different 
commercial farm conditions and therefore assist in the interpretation of swine behavioral patterns 
and that this has the potential to become a key approach in commercial swine farming. A new 
strategy for the investigation of sow’s behavior was successfully applied in our study to determine 
how ambient temperature and dietary fiber levels affected the behavior of sows during the last 
stage of gestation. The HT in our study reduced the standing behavior of sows and had a tendency 
to increase lying behavior. High dietary fiber tended to increase lying and decrease the standing 
behavior of sows, but there was no change in sitting under HT condition. Therefore, standing 
behavior can be presented as an influential indicator of heat stress in sow welfare.
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