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Abstract
The poultry industry, which produces excellent sources of protein, suffers enormous economic 
damage from diseases. To solve this problem, research is being conducted on the early 
detection of infection according to the behavioral characteristics of poultry. The purpose of 
this study was to evaluate the potential of a non-movement behavior observation method 
to detect sick chickens. Forty 1-day-old Ross 308 males were used in the experiments, and 
an isolator equipped with an Internet Protocol (IP) camera was fabricated for observation. 
The chickens were inoculated with Salmonella enterica serovar Gallinarum A18-GCVP-014, 
the causative agent of fowl typhoid (FT), at 14 days of age, which is a vulnerable period for 
FT infection. The chickens were continuously observed with an IP camera for 2 weeks after 
inoculation, chickens that did not move for more than 30 minutes were detected and marked 
according to the algorithm. FT infection was confirmed based on clinical symptoms, analysis 
of cardiac, spleen and liver lesion scores, pathogen re-isolation, and serological analysis. As 
a result, clinical symptoms were first observed four days after inoculation, and dead chickens 
were observed on day six. Eleven days after inoculation, the number of clinical symptoms 
gradually decreased, indicating a state of recovery. For lesion scores, dead chickens scored 
3.57 and live chickens scored 2.38. Pathogens were re-isolated in 37 out of 40 chickens, and 
hemagglutination test was positive in seven out of 26 chickens. The IP camera applied with 
the algorithm detected about 83% of the chickens that died in advance through non-move-
ment behavior observation. Therefore, observation of non-movement behavior is one of the 
ways to detect infected chickens in advance, and it appears to have potential for the develop-
ment of remote broiler management system.
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INTRODUCTION
Global affluence and population growth are driving food demand and the amount of protein needed 
to survive [1]. As poultry is accepted as a good protein source for humans, poultry production needs to 
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be strengthened in many countries, which will increase the number of high-density poultry farms 
[1,2]. However, there are concerns that intensive production systems may be more susceptible 
to disease outbreaks, as the potential for disease introduction and transmission is determined by 
factors such as the number and density of animals, the number and type of contact between herds, 
and sanitary measures [3–5]. Rapid detection and diagnosis is paramount to avoid an increased risk 
of spread of poultry infectious diseases in these production systems [1,6].

Fowl typhoid (FT) is a poultry systemic disease that causes significant economic losses in many 
countries through increased mortality and morbidity [7–10]. The disease is caused by Salmonella 
enterica serovar Gallinarum, which is distributed worldwide, and is usually characterized by reduced 
feed intake and egg productivity, mainly anemia, leucocytosis and haemorrhages, and death within 
4 days [10,11]. FT has been frequently observed in broilers and causes severe mortality in broiler 
chicks [10]. A study has shown that FT had a mortality rate of 10.5% in broiler chicks in parts of 
Haryana between July 1987 and June 1990 [12]. In particular, in Korea, FT was the most serious 
bacterial disease in poultry in 1992, and it occurred in a total of 983 farms from 2000 to 2008, 
causing economic damage [13]. Clinical signs found in such FT-infected broilers include decreased 
growth rate, loss of appetite and dullness, decreased activity, increased thirst, droopy wings and 
typical loose greenish-yellow diarrhea [10,14,15]

Automation plays an important role in the poultry industry worldwide [16]. Automated systems 
operating through remote monitoring and control systems must store large amounts of data 
obtained through monitoring and enable easy access and real-time decision-making based on the 
recorded data [17]. Such systems can reduce the cost and labor required for livestock production 
and improve livestock production and quality. In addition, it would make it possible to identify 
abnormal behavior and symptoms in livestock and prevent disease outbreaks, thereby minimizing 
economic damage to farms[1,16,18]. Recently, automated systems have been developed based 
on poultry behavior or sounds, such as walking, standing, running, resting, sneezing, abnormal 
vocalizations, feeding sounds, and sound vibration frequencies [1,19–21]. Among them, sound-
based make it difficult to accurately identify infections among thousands of poultry on commercial 
farms [6], but behavioral diagnosis has revealed markedly different postures and mobility between 
healthy and infected poultry [22]. According to several studies, the behavioral clinical symptoms of 
diseases in poultry include dyspnea, coughing, decreased feed and water intake, unstable gait, and 
sudden death, and in particular, decreased activity was reported.

Therefore, in this study, we tried to evaluate the potential of a behavioral characteristic observation 
method for detecting sick chickens. FT was induced by injection of S. Gallinarum into broilers, 
and the observed behavioral characteristic was non-movement behavior, and the applicability of 
developing a remote management system that can detect sick chickens early by monitoring the 
duration and frequency of the behavior was confirmed.

MATERIALS AND METHODS
Ethical statement
The experimental protocol was reviewed and approved by the Institutional Animal Care 
and Welfare Committee of the National Institute of Animal Science, Rural Development 
Administration, Republic of Korea (2018-297).

Animal challenge
S. Gallinarum A18-GCVP-014 ( Jeonbuk National University, Jeonju, Republic of Korea; Genbank 
accession number: ON416860) stored at −70℃ were streaked on MacConkey medium and grown 
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for 18 h at 37℃. Ten colonies were picked and inoculated into 30 ml of Luria-Bertani (LB) broth 
and incubated for 13–15 hours. After the inoculated strain was grown to optical density (OD)590 = 
1.22 (~1 × 109 Colony forming unit (CFU) /mL), the strain was diluted 10-fold to 1 × 108 CFU/ 
mL by phosphate-buffered saline (PBS).

Experimental design and management of birds 
A total of forty 1-day-old Ross 308 males were used to observe the symptoms and behavior of 
sick chickens. The rearing facility was equipped with a monitoring isolator for broilers ( Jeonbuk 
National University, Jeonju, Republic of Korea) that was used to continuously observe and record 
the behavior of the birds (Fig. 1). The isolator was manufactured to accommodate 40 chicks (2 m × 
2 m) and was equipped with two feeders and eight nipple drinkers. In addition, to keep the chicks 
warm, the floor was covered with 5 cm thick rice hull, and a heat supply was installed to control the 
temperature. The experiment was conducted for 4 weeks, from September 18 to October 15, 2019. 
The temperature was set to 33℃ at the age of 1 day, and was subsequently lowered approximately 
2℃–3℃ every week and finally maintained at approximately 21℃. The diet was a uniform 
industrial diet without antibacterial properties and was provided ad libitum together with unlimited 
drinking water. Continuous photo surveillance was maintained throughout the experiment period.

Challenge inoculum
The pathogen used in this study was S. Gallinarum, which is the causative agent of FT. Pathogen 
inoculation was performed at 14 days of age, a period when chickens are most susceptible to FT 
[23,24]. The route of infection was oral administration using 0.5 mL of the culture with 1.9 × 108 
CFU/mL, a concentration corresponding to lethal dose (LD)20 (lethal dose for 20% mortality) 
[25,26].

Experimental setup
The top-view camera used was a fixed Internet Protocol (IP) camera (AXIS M3066-V Network 
Camera, Axis Communications, Lund, Sweden) installed ~1.7 m above the isolator. The camera’s 
horizontal field of view (HFOV) was set to 132° and the vertical field of view (VFOV) to 96°, 
pointing downwards to capture a top view of the inside of the isolator. The video images were 

Fig. 1. Experimental setup for broiler image data collection.
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captured with a resolution of 1280×960 pixels in the moving picture experts group-4 (MPEG-
4) format at 30 fps for 24 h every day. The recorded video was transmitted and saved to a network 
attached storage server (NAS; Synology, New Taipei City, Taiwan), powered over Ethernet (PoE; 
Advantech, Taipei, Taiwan) connection. An individual marking method using different colors was 
employed to observe the behavioral patterns of each broiler. Forty markers were made by combining 
black, yellow, green, and blue colors, with a width of 6 cm and a length of 4 cm (Fig. 2).

General physical conditions after Salmonella Gallinarum inoculation
The frequency of daily clinical symptom observation and the number of chickens that died were 
investigated to determine whether the infection was caused by S. Gallinarum inoculation. Clinical 
symptoms caused by diseases, such as respiratory distress, drowsiness, diarrhea, weakness, feather 
characteristics, and death were recorded [9]. The symptom was observed twice daily (09:00, 20:00) 
for two weeks after inoculation and changes were recorded.

Gross lesions
Gross lesions were assessed on chickens that died during the observation period and chickens that 
survived the experiment. Chickens that died during the experiment were immediately observed. 
The degree of enlargement of the liver, spleen, and heart or necrotic lesions was evaluated, and 
scores of 0, 1, 2, or 3 were assigned, respectively. A score of 0 indicated no lesions, and a higher score 
indicated more severe lesions [27] (Fig. 3).

Bacterial re-isolation
To determine whether the observed lesions were caused by inoculation with S. Gallinarum, a part 

Fig. 2. Individual markers of broilers.
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of the liver was collected. The liver slices obtained were diluted with buffered peptone water (BPW; 
Difco, Franklin Lakes, NJ, USA) at a ratio of 1:9. Thereafter, Rappaport-Vassiliadis (RV; Sigma-
Aldrich, St. Louis, MO, USA) broth was used for the specific selection and culture of Salmonella 
species, and the diluted sample and RV broth were mixed to obtain a ratio of 1:99. The culture 
medium mixed with RV broth was incubated at 40℃ for 24 h, followed by streaking on xylose 
lysine tergitol 4 (XLT4; Difco) agar plates. The XLT4 agar plate was cultured in an incubator at 
37℃ for 20 h, and 16s rRNA sequencing was subsequently performed to identify the isolated strain 
[28].

Serology
To determine the serotype of the FT causing strain, serum was collected from all living individuals 
at the end of the experiment. The collected serum was first screened using a slide agglutination test. 
Subsequently, the serotype was confirmed by a micro-aggregation (MA) test using the antigen of S. 
Gallinarum.

Rapid serum plate agglutination test
The serum plate agglutination (SPA) test was used to confirm S. Gallinarum infection in the 
broilers. For this, 20 μL of chicken sera and 20 μL of crystal violet-stained antigen were placed on 
a glass slide and mixed appropriately with a toothpick. A reaction that appeared within 2 min was 
confirmed, and if positive, granules were formed slowly within 2 min. If negative, granules did not 
form within 2 min, which means that there was no antibody against S. Gallinarum infection [29].

Micro-aggregation test
The MA test was conducted on broiler serum samples tested positive using the SPA test. The 
titers of anti-S. Gallinarum IgG in serum samples were measured using an enzyme-linked 
immunosorbent assay (ELISA), as described previously, with some modifications [30]. Briefly, 96-

Fig. 3. Photographs of gross lesions in broilers with different scores.
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well plates were coated, washed, and blocked as follows: plates were coated overnight at 4℃ with 
100 ng of S. Typhimurium ultrasonic antigen in 100 μL of coating buffer (0.016 M Na2CO3, 0.034 
M NaHCO3 [pH 9.6]), followed by removal of the coating solution, washing twice with 350 μL 
of washing buffer (PBS + 0.05% Tween 20), and blocking for 2 h at 37℃ with 200 μL of blocking 
buffer (washing buffer + 2% bovine serum albumin [BSA]). Serum samples (100 μL) were diluted 
in dilution buffer (PBS + 2% BSA) at 1:400 and incubated in the wells for 1 h at 37℃, with 100 μL 
of dilution buffer used as a negative control. Then, 100 μL of 1:8,000 horseradish peroxidase (HRP) 
rabbit anti-mouse-IgG gamma conjugate and HRP-conjugated goat anti-chicken IgG (H+L) 
(KPL, Gaithersburg, MD, USA) or 1:10,000 HRP-conjugated goat anti-chicken IgA antibody 
and HRP-conjugated goat anti-chicken IgM antibody (Bethyl Laboratories, Montgomery, TX, 
USA) in dilution buffer was added to the wells and incubated for 1 h at 37℃. Subsequently, 100 
μL of the 3,3’,5,5’-Tetramethylbenzidine (TMB) substrate was transferred to the wells and allowed 
to react for 1 h at room temperature. Subsequently, 50 μL of stop solution (4.5 N H2SO4) was 
added to terminate the reaction. The OD 450 was measured immediately using an ELISA plate 
reader (PerkinElmer, Waltham, MA, USA). All samples were independently run in triplicate, and 
logarithmic antibody titers were calculated for further analysis.

Detection of behavioral characteristics of sick birds by Internet Protocol camera 
algorithm
The image data analysis was performed through images of broilers inoculated with FT pathogens 
using a top-view camera. In order to detect a broiler, the chicken area must be accurately recognized, 
so a model was developed that finds the chicken area in the image through Convolutional Neural 

Fig. 4. Internet protocol camera's sick chicken detection process through non-movement behavior. (A) original image; (B) object segmentation; (C) 
morphological corrosion operation and background removal; (D) motion analysis; (E) trace performance.
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Networks (CNN), a deep learning system (Fig. 4). After that, continuous observation was made 
through an IP camera to which a system for identifying broilers was applied, and objects were 
displayed in various colors depending on the time they did not move. The non-moving object 
was determined to have not moved when more than 95% of the total pixels of each object were 
maintained by comparing the images continuously taken by the IP camera with the previous 
photographed images. Also, if the appearance of the broiler detected in the next image did not 
match the previous image, the generated mark was removed and set up in a way that it was 
observed again. 

Fig. 5 shows the overall algorithm for the creation and removal of markers by observing non-
movement behavior duration and movement of broilers using top-view camera. It was observed for 
14 days after S. Gallinarum inoculation, it was set to display the following three colors according to 
the duration from the moment when non-movement of each individual was detected: yellow color, 
not moving for 5 minutes; orange color, not moving for 15 minutes; red color, not moving for more 
than 30 minutes. Based on the results detected by the IP camera, the detection accuracy of infected 
chickens through non-movement behavior was analyzed.

Fig. 5. Overall flow chart of the broiler chicken non-movement behavior algorithm through internet 
protocol camera.
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RESULTS
Mortality and clinical symptoms
The daily mortality and clinical symptoms observed following S. Gallinarum inoculation are 
presented in Fig. 6. Mortality due to infection started to appear from the 6th day after inoculation, 
and the highest number of five deaths per day was observed on the 7th day. Fourteen chickens died 
during the experimental period. The first clinical symptoms were observed on the 4th day after 
inoculation, and the highest number was observed on the 10th day (72.4%). From the 11th day 
onwards, the number of symptomatic individuals decreased and the birds showed signs of recovery.

Gross lesion scores
The gross lesion scores of broilers are presented in Table 1. The average liver lesion score was 2.00 
for dead chickens and 1.04 for live chickens, and for the spleen the lesion score was found to be 
1.21 for dead chickens and 0.23 for live chickens. From this, it was judged that the chickens that 
died during the experiment had suffered from multiple issues, including more severe damage to 
the liver and spleen due to S. Gallinarum infection. However, the heart was shown to be severely 
affected, even in live chickens. Overall, dead chickens scored 3.57 for liver, spleen, and heart lesions, 
whereas live chickens scored 2.38.

Bacterial re-isolation
Table 2 shows the results of re-isolation of S. Gallinarum from the livers of dead and live broilers. S. 
Gallinarum was isolated from the livers of all dead broilers. However, in live broilers, the pathogen 
was isolated in only 23 of 26 isolates. Of the three broilers in which no pathogen was detected, two 
had liver lesions and one was asymptomatic. Overall, pathogen re-isolated from the liver showed a 
detection rate of 92.5% based on 37 detections out of 40 broilers.

Serological tests
Table 3 shows the results of the serological analysis of broilers that survived after two weeks of 

Fig. 6. Mortality and clinical symptoms in broilers due to fowl typhoid.
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Table 1. Gross lesion score according to the occurrence of fowl typhoid 
Liver Spleen Heart Total

Dead birds

11) 3 1 0 4

2 1 3 0 4

3 2 1 0 3

6 2 2 1 5

10 1 1 1 3

17 3 0 0 3

23 2 2 0 4

25 1 1 1 3

26 2 1 0 3

27 3 0 0 3

29 2 1 0 3

33 1 2 2 5

39 2 1 0 3

40 3 1 0 4

Live birds

4 1 0 1 2

5 1 0 0 1

7 1 0 1 2

8 2 0 2 4

9 0 0 1 1

11 1 0 2 3

12 1 0 1 2

13 1 1 0 2

14 1 2 1 4

15 2 1 3 6

16 1 0 3 4

18 2 0 0 2

19 0 0 1 1

20 1 1 1 3

21 1 1 0 2

22 2 0 1 3

24 1 0 0 1

28 1 0 3 4

30 1 0 2 3

31 0 0 0 0

32 1 0 0 1

34 0 0 3 3

35 1 0 3 4

36 1 0 0 1

37 1 0 0 1

38 1 0 1 2
1)Bird’s individual number.
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Table 2. Detection of S. Gallinarum in infected broilers liver
Items Re-isolation

Dead birds

11) +

2 +

3 +

6 +

10 +

17 +

23 +

25 +

26 +

27 +

29 +

33 +

39 +

40 +

Live birds

4 +

5 +

7 +

8 +

9 +

11 +

12 +

13 +

14 +

15 -

16 +

18 +

19 +

20 +

21 +

22 +

24 +

28 +

30 +

31 -

32 +

34 +

35 +

36 -

37 +

38 +
1)Bird’s individual number. 
+, detected; −, not detected.



https://doi.org/10.5187/jast.2022.e105 https://www.ejast.org  |  451

Kim et al.

Table 3. Serological analysis according to the occurrence of fowl typhoid
Items SPA MA (2n) ELISA

Dead birds

11) NT NT NT

2 NT NT NT

3 NT NT NT

6 NT NT NT

10 NT NT NT

17 NT NT NT

23 NT NT NT

25 NT NT NT

26 NT NT NT

27 NT NT NT

29 NT NT NT

33 NT NT NT

39 NT NT NT

40 NT NT NT

Live birds

4 + 7 1003

5 - NT NT

7 + 8 ND

8 - NT NT

9 - NT NT

11 - NT NT

12 - NT NT

13 - NT NT

14 + 10 2298

15 + 4 ND

16 - NT NT

18 - NT NT

19 - NT NT

20 + 4 ND

21 - NT NT

22 - NT NT

24 + 3 ND

28 - NT NT

30 - NT NT

31 - NT NT

32 - NT NT

34 + 2 ND

35 - NT NT

36 - NT NT

37 - NT NT

38 - NT NT
1)Bird’s individual number.
SPA, serum plate agglutination; MA, micro-aggregation; ELISA, enzyme-linked immunosorbent assay; NT, not tested; +, posi-
tive; −, negative; ND, not detected.
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experimental monitoring. When SPA analysis was performed, the serum of seven out of 26 broilers 
showed agglutination with S. Gallinarum antigen. Broiler serum samples that tested positive in the 
SPA test were analyzed with the MA test. All tested sera showed agglutination reactions in 96-well 
microplates, and two samples showed high antibody titers in ELISA analysis.

Sick chicken detection through algorithm
Table 4 shows the detection results of dead chickens through the non-movement behavior 
detection algorithm, and was operated normally from the 7th day due to a malfunction of the 
camera. As a result, the IP camera detected 10 of the 14 dead chickens in advance, and 2 of the 4 
chickens that could not be detected due to a problem with the IP camera. Therefore, the detection 
of non-movement behavior chickens showed an accuracy of approximately 83% by pre-detecting 
10 out of 12 dead chickens (excluding 2 chickens due to technical problems). For live chickens, the 
IP camera detected 12 out of 26 chickens (Data not shown). Overall, IP camera detection by the 
algorithm pre-detected dead chickens with relatively high accuracy.

Table 4. Dead chicken detection result using internet protocol camera algorithm after fowl typhoid infection

Items
Dead birds

12) 2 3 6 10 17 23 25 26 27 29 33 39 40
1D 09:00

20:00

2D 09:00

20:00

3D 09:00

20:00

4D 09:00  

20:00

5D 09:00

20:00

6D 09:00 *

20:00 *

7D 09:00 *1) *

20:00 * * * * * *

8D 09:00 * * * * * * * *

20:00 * * * * * * * *

9D 09:00 * * * * * * * * * *

20:00 * * * * * * * * * *

10D 09:00 * * * * * * * * * * *

20:00 * * * * * * * * * * *

11D 09:00 * * * * * * * * * * * *

20:00 * * * * * * * * * * * *

12D 09:00 * * * * * * * * * * * * *

20:00 * * * * * * * * * * * * *

13D 09:00 * * * * * * * * * * * * * *

Detection or not × × × O O O O O × O O O O O

First detection time - - - 7D 11:42 7D 11:43 8D 11:58 7D 17:55 9D 11:55 - 7D 13:34 9D 09:55 7D 15:14 8D 11:01 7D 12:47
1)*: dead. 
2)Bird’s individual number.
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DISCUSSION
The purpose of this study was to develop a technology capable of the early detection of infected 
chickens by inducing FT to observe non-movement behavioral characteristics of disease induced 
broilers. FT, caused by S. Gallinarum, remains an economically important avian septic disease in 
many parts of the world [31]. The FT-infected herds exhibit abnormal behavior and symptoms, 
including high morbidity and mortality, with birds exhibiting moderate to severe depression, low 
feed intake, and diarrhea [32]. Mortality rates range from 10% to 80%, affecting birds of all ages but 
mainly young chickens 2–3 weeks of age [24]. When forty-two 6-day-old specific pathogen free 
(SPF) chickens were inoculated with S. Gallinarum and observed for 7 weeks, 20 chickens died, and 
the total morbidity and mortality were 75.6% [33]. In another study, when 15 4-week-old Brown 
Nick chickens were infected with S. Gallinarum, eleven chickens died within 2 weeks, resulting in a 
73.6% mortality rate [34]. S. Gallinarum infection in chickens results in gray-white necrotic lesions 
in the liver and spleen [35], and significant enlargement of the liver and spleen has been reported 
compared to uninfected chickens [34]. In addition, the lesions appear as a bronze dis-coloration 
of the liver, and several secondary lymphoid follicles appear in the spleen. In the case of the heart, 
there are necrotic foci, multiple white nodules with distorted shapes, and severe degeneration or 
fragmentation of myocardial muscle fibers is observed [36].

After inoculating the 1-day-old Hy-line layers with S. Gallinarum, the infection was confirmed 
by re-isolation. When re-isolation was conducted from the liver and spleen 1 week after inoculation, 
the pathogen was isolated from all tested chickens, whereas 2 weeks after inoculation some re-
isolation attempts were unsuccessful. In particular, the number of S. Gallinarum present in the liver 
and spleen gradually decreased over time, and chickens showed a tendency to recover [37]. In a 
similar study, 6-week-old commercial chickens were inoculated with S. Gallinarum and observed 
for three weeks. Testing of the liver, spleen, and cecum for S. Gallinarum confirmed that the level of 
infection gradually decreased to 75% after 1 week, 50% after 2 weeks, and 0% after 3 weeks [38]. In 
our study, the detection rate of S. Gallinarum in the livers of dead chickens was 100%, suggesting 
that the chickens died due to infection with S. Gallinarum and the occurrence of FT. In addition, 
the result of re-isolation from live chickens after the end of the experiment revealed that the 
concentration of the pathogen gradually decreased over time and the chickens recovered, as in other 
studies.

In this study, when the SPA test was performed on live chickens, seven out of 26 chickens tested 
positive and most chickens did not show agglutination reactions. In general, the SPA test, which 
can be used to detect Salmonellae or Mycoplasma gallisepticum, is a very simple and sensitive method, 
but is suitable for detecting pathogen antibodies within 10 days of infection with the pathogen 
[39]. When the SPA test was performed on 279 chicken sera infected with S. Gallinarum and an 
agglutination reaction was observed, 125 samples showed a positive reaction, showing a detection 
rate of 44.8% [29]. In another study, 555 samples were collected from 30 poultry farms to determine 
whether they were infected with Salmonella. Using the SPA method, 38 samples (7%) showed a 
positive reaction, but in the analysis using fecal leukocytes, 82 samples (14.8%) were positive. In 
other words, a comprehensive investigation and diagnosis based on multiple analyses, rather than 
diagnosing infection through serum analysis alone, is necessary [40].

Recently, many studies have been conducted on the detection of chickens suffering from stress-
inducing environments or diseases by monitoring specific behavior [41,42]. When chicken 
movement and drinking time were directly monitored using time-lapse video and deep learning 
algorithms at various temperature and humidity indices (THI), it provided a 98% chicken detection 
and tracking accuracy, and there was a moderate correlation between water intake time and THI 
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[42]. In one study, 2D posture shape descriptors (circle variance, elongation, convexity, complexity, 
and eccentricity) and mobility features (walking speed) were analyzed for early detection of 
chickens infected with the Newcastle disease virus. Consequently, chickens were detected with 
high accuracy, and the proposed system contributed to the development of an automatic broiler 
monitoring system capable of early warning and prediction [22]. In addition, when monitoring the 
skeletal angle and posture of 6-week-old broilers infected with avian influenza virus H5N2, high or 
low accuracy was obtained according to each characteristic, but an accuracy of approximately 99% 
was obtained when all characteristics were considered [43].

It has been investigated that there are many types of behaviors in poultry rearing, such as sitting, 
lying, standing, feeding, drinking, walking, and preening [44–47]. Among them, the sitting behavior 
is a state in which the poultry’s ventral part and the fibula and tibia of the leg are in contact with the 
floor, and it is a behavior that occurs frequently in broilers and laying hens [47–49]. This behavior is 
similar to that observed in our study, and in the case of broilers, it is affected by the rearing density 
and environment, and the duration time and frequency increase as the body weight increases 
[50–53]. In particular, the time and frequency of sedentary behavior increased under various stress 
conditions (increased density, high temperature environment, air concentration in the facility, 
harmful substances in feed, etc.) [54–58]. However, the results of the investigation on the sitting 
behavior or non-movement behavior during disease outbreaks in broilers are not known, so further 
research is required on the behavioral observation time and observation method for more efficient 
detection.

In this study, when 14-day-old broilers were infected with S. Gallinarum, clinical symptoms 
were observed on the 4th day and dead chickens on the 6th day after inoculation. When gross 
lesions of various organs were examined, the dead chickens displayed more severe organ damage 
than the live chickens, and the pathogens were re-isolated from the livers of dead chickens. When 
looking at the overall results including serological tests results, the infection and FT progression 
occurred normally in the conducted study. IP camera detection through the algorithm detected 
dead chickens in advance with an accuracy of 83%, and some live chickens were also detected. In 
other words, it seems that the detection of sick chickens by behavioral observation can be detected 
in advance with high accuracy. However, the detection of sick chickens through the non-movement 
behavior has a disadvantage in that the sensitivity is still low, so that the object cannot be detected 
more quickly. In future studies, it is necessary to improve the detection criteria, and complex clinical 
symptom detection studies are required to increase the sensitivity and accuracy.

CONCLUSION
This study aimed to lay the foundation for the development of early detection technology 
using non-movement behavior observation for detecting sick chickens in order to improve the 
management of poultry farms. After inoculation with S. Gallinarum in broilers, most chickens 
suffered damage to several organs due to infection, and the presence of infection was confirmed by 
serum agglutination analysis. Many infected chickens showed clinical signs and non-movement 
behavior was observed. The detection of sick chickens using IP cameras pre-detected dead chickens 
with high accuracy. The detection technology developed based on the results of this study is 
expected to be of great help in the remote management of poultry farms.
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