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Abstract
This study aims to predict the change in corn share according to the grazing of 20 gestational 
sows in a mature corn field by taking images with a camera-equipped unmanned air vehicle 
(UAV). Deep learning based on convolutional neural networks (CNNs) has been verified for 
its performance in various areas. It has also demonstrated high recognition accuracy and de-
tection time in agricultural applications such as pest and disease diagnosis and prediction. A 
large amount of data is required to train CNNs effectively. Still, since UAVs capture only a lim-
ited number of images, we propose a data augmentation method that can effectively increase 
data. And most occupancy prediction predicts occupancy by designing a CNN-based object 
detector for an image and counting the number of recognized objects or calculating the number 
of pixels occupied by an object. These methods require complex occupancy rate calculations; 
the accuracy depends on whether the object features of interest are visible in the image. How-
ever, in this study, CNN is not approached as a corn object detection and classification problem 
but as a function approximation and regression problem so that the occupancy rate of corn 
objects in an image can be represented as the CNN output. The proposed method effectively 
estimates occupancy for a limited number of cornfield photos, shows excellent prediction accu-
racy, and confirms the potential and scalability of deep learning.
Keywords: Outdoor, Pig, Vegetation index, Image analysis, Convolutional neural network

INTRODUCTION
Pasture-based pig production is a common practice adopted in various countries, providing an 
opportunity for small-scale farmers to generate additional value within the context of corporate-driven 
swine industries. Iberico pork in Spain is a prime example, which has successfully demonstrated the 
potential benefits of Pasture-based pig production [1]. However, the expansion of this practice may 
lead to land degradation issues, warranting careful assessment and mitigation strategies. We presented 
two previous publications that have addressed the need for Pasture-based pig production and its 
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associated land degradation problem [2,3]. In this study, we focus on the crucial method of the 
land degradation assessment process: defining a suitable approach for measuring the extent of 
degradation in affected areas.

Digital image recognition technology is an image processing technology from computer vision. 
It has been applied in various areas of modern life, including security, the military, transportation, 
agriculture, medicine, and daily life [4–6]. However, it was difficult to recognize object features 
affected by camera settings, brightness around the object, and shadows. Utilizing multilayer artificial 
neural network algorithms in image recognition can allow more accurate object recognition even 
when there are changes to object features. However, this approach could have been impractical 
due to its high computation requirements. With the recent developments in semiconductor 
technologies, devices capable of parallel computing have been developed by integrating thousands of 
processing units into a single device, making it easier to implement algorithms with large amounts 
of computation. As a result, image recognition based on deep convolutional neural networks has 
also become practical technology [5–7]. 

Most yield predictions involve designing a convolutional neural network (CNN)-based object 
detector for an image and predicting the yield or the occupancy by counting the number of detected 
objects or calculating the number of pixels occupied by the objects. However, these methods require 
multiple computational steps in addition to the detector, and their accuracy depends heavily on 
whether the object features of interest are clearly visible in the image. For example, it is difficult to 
classify crops within images captured from high altitudes or wide areas. Moreover, deep learning-
based image recognition in the agricultural domain requires a large amount of image data collected 
by experts in the field, and these images differ depending on the cultivation method, environment, 
and location [8–11]. Basic data augmentation involves applying various image processing techniques 
to preserve the characteristics of the original image while maintaining the diverse characteristics 
of the objects. These techniques vary from physically transforming images by randomly flipping, 
rotating, and cropping them to techniques that change the color or brightness of the images, such 
as inverting and channel mixing [8–13]. Two stages of processing are required to predict the yield or 
occupancy of a specific object. The first step is to classify specific objects in an image using a CNN, 
and the second step is to represent the occupancy rate of the classified objects based on the number 
of objects and the area they occupy. Calculating the degree of occupancy is a very cumbersome 
process. But another advantage of a CNN is that it also can be applied to function approximation 
and regression problems in addition to classifying objects [12,13]. Therefore, if a CNN is applied as 
a regression network, the occupancy rate of specific objects in an image can be represented by the 
network output without going through multiple calculation steps.

The objective of this study was to predict the occupancy rate of corn that has altered due to 
grazing by twenty gestating sows in a mature cornfield by capturing images with a camera-equipped 
unmanned air vehicle (UAV). A large amount of data is required to effectively train CNN-based 
deep learning, However, only a limited number of images were captured by the UAV so a data 
augmentation method that can effectively increase the data was proposed. Various CNNs were used 
as regression networks for comparison, and the applicability and scalability of deep learning were 
verified.

MATERIALS AND METHODS
Animal care
The present experiment was reviewed and approved by the Institutional Animal Care and Use 
Committee of North Carolina A&T University (IACUC: 12-003.0).
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Study design and site
The images used for the analysis were taken at a swine unit located within the University Farm of 
North Carolina A&T State University (Greensboro, NC, USA; 36°4′16.63″N, 79°43′33.02″E). 
A 50 × 100 m2 grazing area was established for twenty pregnant sows that were allowed to graze 
pasture two weeks prior to their expected delivery date. The grazing area was planted with corn 
crops. The climate in this location is classified as a humid subtropical climate (Köppen climate 
classification), with hot and humid summers and mild winters. The average annual precipitation 
is around 107 cm. The sows were given access to slightly less than standard National Research 
Council balanced rations (2–3 kg/day) considering the consumption of corn in the pasture, but the 
water was provided ad libitum.

Data collection
A Phantom 2 Vision model UAV manufactured by DJI® with a quad-rotor system consisting of 
four propellers was used in this study. Including the camera, the maximum takeoff weight is 1.3 kg, 
and it can fly for about 25 minutes using a 5,200 mAh lithium polymer battery. It has a remote-
control range of up to 300 m and is equipped with a 1/2.3˝ high-resolution 14 megapixels camera 
sensor with a fixed-focus wide-angle lens with a 120° field of view (FOV) and a focal length of 28 
mm. The UAV is equipped with an automatic flight control device, and a 2.4 GHz wireless remote 
controller was used for takeoff and landing as well as manual control of the aircraft. Please refer to 
the research article by Oh et al. [2] for the detailed specifications of the UAV used in this study. 

Ten aerial images were taken using the UAV from a height that allowed the entire grazing area 
to be captured in a single image. The image data were captured on days 2, 3, 4, 5, 7, 9, 10, 11, 12, 
and 14 after releasing the gestating sows onto the cornfield from September 1st to September 13th, 
2015, excluding days with rain. Also, the images were captured around 10:00 AM without the need 
for additional lighting, and an effort was made to minimize the effect of shadows caused by the sun. 
In addition, a GPS attached to the UAV was used to attempt to maintain the same altitude and 
position for each image.

Image preprocessing
Convolutional neural network 
CNN is a multi-layered artificial neural network structure that is widely used for image recognition. 
It consists of a sequence of convolutional, non-linear, and pooling layers, followed by a fully 
connected layer that produces the final output. As the input image passes through the convolutional 
layers, specific features of the target object are revealed, and the final output is produced by the fully 
connected layer. The output layer can classify objects or produce regression values. Fig. 1 represents 
the typical basic structure of CNN. The design of the layer structure can greatly affect the accuracy 
of the output and computation time. In particular, LeNet [5], developed by LeCun in the late 
1990s, served as the basis for modern CNNs and had a significant impact on contemporary image 
recognition methods. CNNs convolve the entire image and intermediate feature maps to learn the 
various features of the objects in an image. As a result, CNNs make it relatively easy to find object 
features compared to traditional methods that require direct differentiation of objects. Additionally, 
CNNs can even identify features that are imperceptible to the human eye, resulting in very high 
recognition accuracy [14]. CNNs continue to improve their performance in the field of image 
recognition, and the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which 
provides a common dataset for benchmarking machine learning and computer vision models, has 
further accelerated the development of CNN models through competition [15]. 

The first winner, AlexNet [16], expanded the input image size from 32 × 32 in LeNet to 224 × 
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224, increasing the model size, but solved the potential problem of overfitting by applying dropout 
layers and significantly improved its accuracy from 73.8% to 83.7% by applying the rectified linear 
unit (ReLU) activation function to the ImageNet tests. VggNet [17] achieved remarkable results 
with an accuracy of 93.2% by increasing the number of convolutional filters and expanding the 
layer structure while unifying the convolution filter size to 3 × 3 to reduce computation. However, 
there was no significant improvement compared to having 16 layers. GoogLeNet [6] improved 
the inefficient structure, and could model deeper than VggNet by using an inception module 
that included a 1 × 1 convolution filter asymmetrically connected and layers that were not fully 
connected, resulting in a smaller model size and faster computation.

ResNet [7] recognized that designing a deeper layer structure to improve accuracy decreased 
performance and it achieved a higher performance by using residual learning. Residual learning can 
model with deeper layer structures by directly transmitting the next layer by skipping the adjacent 
convolutional layers without compromising the model’s generalization performance. Therefore, 
CNNs have a significant impact on recognition accuracy and computation time depending on how 
the layer structure is modeled and can vary widely depending on the field of application, requiring 
extensive research under various conditions.

Fig. 1. Structure of convolutional neural network (CNN).
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Image collection and preprocessing
Images taken by the UAV are shown on days 3 and 10 after sows were released into the field in 
Fig. 2. The images encompassing the entire cornfield have a resolution of 4,384 × 3,288 pixels, but 
the edges of the cornfield appear distorted into a fish-eye image. Fisheye images make the subject 
appear more prominent and can capture a wide range of backgrounds at the same time. However, 
the exact size cannot be recognized in such a distorted image because the object’s size is distorted. 
Additionally, the camera mounted on the UAV could not consistently capture the cornfield at a 
fixed position and height, resulting in inconsistent left and right edges in the images, and images 
that included other objects outside of the cornfield. Therefore, image preprocessing was required so 
that the images only included the cornfield to accurately compare the corn occupancy rates of the 
images. 

An example of image preprocessing steps for an image taken on day four after sows were 
released into a cornfield is illustrated in Fig. 3. The original image on day four distorted into a 
fish-eye image is in Fig. 3A. The corrected result, as shown in Fig. 3B, is obtained by applying the 
correction method proposed by Scaramuzza [18], which is the best known in the field of computer 
vision, to the distorted fish-eye image. The method is computer vision’s most representative and 
commonly used fisheye correction algorithm. The camera extrinsic and intrinsic parameters must 
be obtained to connect the 3D world coordinate points to the 2D image. World coordinate points 
are converted to camera coordinates using external parameters. Camera coordinates are mapped 
to the image plane using internal parameters. Still, a bird’s eye view transformation is also required 
because the image is not captured at the center of the field. Fig. 3C shows an image containing only 
cornfields by transforming the bird’s eye view and cropping the image. After completing the image 
preprocessing step, an example of 10 images is shown in Fig. 4. The image generation was achieved 

Fig. 2. Examples of images taken by the unmanned air vehicle (UAV).

Fig. 3. Example of image correction.
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by cutting the region of interest to 3,584 × 1,792 pixels centered on the cornfield, ensuring that no 
other objects were in the image.

Data augmentation
Much training data is required to train a deep learning network. Different corn object images are 
needed to recognize and classify common corn objects according to the size, shape, illumination, 
and shadow state of corn objects. The ten transformed images were too few to be used as training 
and testing data for the deep learning networks, and the size of the corn objects was too small to 
extract sufficient features. Limited training data can lead to overfitting during network training, 
which can have a significant impact on performance. Fortunately, the resolution of the final images 
was much larger than the typical input resolution required for deep learning networks. A very 
high input resolution in a deep learning network increases the number of internal parameters of 
the network, resulting in a much longer training time, and increases the network processing time, 
resulting in learning and results processing difficulties. In addition, the accuracy of learning and 
prediction is affected by the very small size of the object (corn) in the image. To resolve this issue, 
the object in the image can be enlarged by cropping the network input resolution to be the size used 
for typical network training data. Data augmentation addresses the shortcomings of small training 
datasets by increasing the size of a training dataset by reflecting the characteristics of the data. Basic 
data augmentation can be performed on an image through various image processing techniques. A 
commonly used technique for data augmentation is to apply transformations that alter the physical 
form of the image, such as flipping the image horizontally or vertically, or rotating the image.

In this study, two different data augmentation techniques were performed for network training. 
First, the images were segmented to crop them to the appropriate size for a deep learning 
input image. Then the segmented images were randomly selected as raw training data, and data 
augmentation was performed by flipping and rotating the images.

Image segmentation is the process of dividing an image into smaller parts that are suitable for use 
as deep learning input images and increasing the amount of image data for deep learning network 
training. Fig. 5 shows the image segmentation and augmentation process. The ten transformed 
images were divided into eight horizontal and four vertical sections to obtain 320 segmented 
images, which were used as training and testing data. Among them, 48 images were selected 
randomly as raw training images, and 6,912 training images were generated by flipping and rotating 
the images.

In the agricultural field, images acquired by UAVs are advantageous because they can undergo 
data augmentation by rotating the images. For recognizing objects in fields other than agriculture, 
small-angle rotation transformations are mainly applied. Therefore, the corn images captured by 
the UAV can still be used for analysis even if they are rotated 180 degrees. To increase the number 

Fig. 4. Images after pre-processing.
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of training images, 48 raw training images were horizontally flipped to create 96 images, and 
the resulting images were augmented by rotating them in 5-degree increments to produce 6,912 
images. The 6912 training images generated by data augmentation are sufficient to train a CNN to 
predict the occupancy of a corn field.

Convolutional neural network training
Calculation of corn occupancy rate for training image
This study aims to represent the process of cornfield degradation by gestation sows as numerical 
data using the degree of corn occupancy rate. The degree of corn occupancy rate needs to be known 
for each training image to train the deep learning network. To calculate the degree of occupancy 
of corn, corn objects are first labeled with three states (CI, CD, and CS) by corn field experts. CI 
represents the intact state where the corn has not been eaten or damaged by pigs, CD represents the 
state where the corn is damaged by pigs, and CS represents the state where pigs have eaten most the 
corn and only the cob remains. Table 1 shows an example of the boundary boxes labeled with three 

Fig. 5. Data augmentation.
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states for one of the 48 training images.
After labeling the corn state for any training image, the occupied area of the corn state is 

calculated. ACI is the area of corn labeled CI, ACD is the area of corn labeled CD, and ACS is the 
area of corn labeled CS. Therefore, the corn occupancy area (ACIi, ACDi, ACSi) according to the 
corn state in the ith image is calculated as in Equation (1), and the total corn occupancy rate (ACTi) 
is represented as in Equation (2).

                           (1)

where, i is the number of the image, j is the number of CI, CD, and CS in the image, and  n1, 
n2, and n3 represent the maximum number of CI, CD, and CS in the image, and ACIij, ACDij, 
and  ACSij are the area of CIij, CDij, and CSij respectively. And the scale is set to ensure that the 
occupancy rate of ACTi does not exceed 1.

 (2)

where, w1, w2, and  w3 are weights for each corn state.
Table 2 shows an example of corn occupancy rates for the training images. The scale is set to 

11,000, and the weights [w1, w2, w3] are set to [1, 0.5, 0.2].

Convolutional neural network architecture and training
CNN is the most widely used multi-layer structure for image recognition, along with various 
models such as AlexNet, GoogLeNet, VggNet, and ResNet [6,7,15,16]. A CNN structure using 
four CNNs was implemented to represent the degree of the corn occupancy rate and to verify the 
potential of deep learning. CNNs have shown good results in image classification and recognition 
and also can output regression values. Fig. 6 shows a rough CNN structure for outputting 
regression values. The input for the CNN is an image with 448×448 pixels, and the output is the 
degree of corn occupancy rate for the input image as ACIi, ACDi,  ACSi and ACTi. The network 
output applied a regression layer to produce regression values and applied a ReLU layer to eliminate 
negative output values. The network was trained with a dataset consisting of 6,912 images created 
by image augmentation and calculated data on the degree of corn occupancy rate.

Table 1. Image label
Label Color Corn description Sample

CI Blue Intact corn

CD Yellow Damaged corn

CS Red Corn with stubble 

1 2 3

1 1 1, ,
 scale  scale  scale 

n n n

ij ij ij
j j j

i i i

ACI ACD ACS
ACI ACD ACS= = == = =
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Proposed system
The proposed system aimed to predict the degree of corn occupancy rate for corn images on a 
specific date after learning seven different types of CNN trained on a learning dataset created 
by data augmentation. Fig. 7 illustrates the proposed system flow for a corn image taken on a 
specific date. A distorted fisheye image captured by the UAV on a specific date was corrected to 
3,584×1,792 pixels and divided into 32 (4 × 8) partitions, which were then sequentially fed into the 
CNNs. The CNNs learned from the sequentially inputted images, extracted the characteristics of 
the three corn states, and produced the degree of occupancy rate of the three corn states as outputs 
for each image. The occupancy rate of the entire cornfield on a specific date is ACT, which is the 
average value of ACTi over 32 sequentially inputted image outputs, as shown in Equation (3). The 
ACI, ACD, and ACS values in the network output can be used in Equation (2) to calculate the new 
occupancy rate by applying different weights depending on the state of corn.

(3)

Table 2. The occupancy rate of corn

Sample
images

ACIi 0.975 0.369 0.036 0

ACDi 0.026 0.164 0.080 0

ACSi 0 0.007 0.288 0.005

ACTi 0.988 0.452 0.134 0.001
ACIi, The occupancy rate of intact corn; ACDi, The occupancy rate of damaged corn; ACSi, The occupancy rate of corn with stubble; ACTi, The occupancy rate of corn in all condi-
tions.

Fig. 6. The CNN structure for regression. CNN, convolutional neural network; ACIi, The occupancy rate of intact corn; ACDi, The occupancy rate of damaged 
corn; ACSi, The occupancy rate of corn with stubble; ACTi, The occupancy rate of corn in all conditions.

32 32 32 32

1 1 1 1
/ 32, / 32, / 32, / 32i i i i

i i i i
ACI ACI ACD ACD ACS ACS ACT ACT

= = = =

= = = =∑ ∑ ∑ ∑
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where, ACI, ACD, and ACS represent the occupancy rate of CI, CD and CS for a corn image on a 
specific date, while ACT represents the overall occupancy rate of corn.

RESULTS
When there are a large number of images captured by a UAV, it is easier to apply a deep learning 
system, but when there is a very limited number of images, it is difficult to apply a deep learning 
system. In addition, it is difficult to train deep learning when the captured images are distorted and 
not taken from the same location. The proposed system aimed to predict the occupancy rate of corn 
using a small number of distorted images captured by a UAV. Therefore, bird’s-eye view images 
were used to correct the distorted fisheye images and extract corn field images containing no other 
object images. In addition, due to the lack of training images, the corn field images were divided 
into 32 parts and image augmentation was performed by randomly selecting raw training images 
and rotating and flipping them. Seven types of CNNs were trained using the 6,912 augmented 
training images, and the occupancy rate according to the corn states and the overall occupancy rate 
of corn on a specific date were predicted using the trained CNNs. AlexNet, GoogLeNet, Vgg16, 
Vgg19, ResNet50, and ResNet101 were applied to the structure of the CNN, and the applicability 
and scalability of deep learning were confirmed.

Fig. 8 shows the degree of corn occupancy rate for all images. The CNN used a network provided 
by MatlabⓇ [19] and the output network was configured to suit the proposed purpose. The same 
initial learning rate was set to 0.0001 to evaluate the performance of seven types of CNN. Adam 
Optimizer was used for learning, and network learning was performed with a maximum epoch of 
500 and a mini-batch size of 32. The hardware used for the experiment was an Intel i9-12900 CPU 
and an NVIDIA RTX-A6000 graphics accelerator.

Table 3 shows the results of training the seven types of CNN. All networks were trained five 
times, and the performance evaluation index was obtained by averaging the values. The root mean 
square errors (RMSE) show that ResNet50 has the smallest learning error of the networks, while 
GoogLeNet has the largest. The network learning time varies depending on the size of the network, 
with AlexNet taking the shortest time and ResNet101 taking the longest time. Thus, AlexNet and 
the ResNet series were found to be advantageous in learning in terms of RMSE and learning time.

Figs. 9, 10, 11, 12, 13, and 14 indicate the occupancy rate according to the corn state and the 
total corn occupancy rate in order of date using the ten cornfield images input into the CNN. 

Fig. 7. System configuration. ACIi, The occupancy rate of intact corn; ACDi, The occupancy rate of damaged 
corn; ACSi, The occupancy rate of corn with stubble; ACTi, The occupancy rate of corn in all conditions.
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Overall, the graphs displayed similar trends. Figs. 9A, 10A, 11A, 12A, 13A, and 14A show that 
the occupancy rate of undamaged corn (ACI) decreases gradually over time. Figs. 9B, 10B, 11B, 
and 12B show that the occupancy rate of corn damaged by sows (ACD) sharply increases initially 
and then decreases rapidly from day 4. Figs. 9C, 10C, 11C, 12C, 13C, and 14C show that the 
occupancy rate of corn damaged by sows gnawing at the corn, leaving only a stump (ACS) also 
sharply increased until day 4 and then decreased gradually. Figs. 9D, 10D, 11D, 12D, 13D, and 
14D show that the overall occupancy rate of corn by date decreases exponentially over time across 
all networks. AlexNet, Vgg16, and Vgg19 show particularly good prediction accuracy compared 
to the other networks. GoogLeNet showed that the occupancy rates of ACD on day 3 and day 5 
were slightly higher than on day 4, and the rates of ACS and ACT were slightly higher on days 11 

Fig. 8. The degree of corn coverage in the training data.

Table 3. Training results
Network (CNN) RMSE Training time Training performance

AlexNet 0.16 74 min. 48 sec. Very good

GoogLeNet 0.19 107 min. 16 sec. Little good

VggNet16 0.14 355 min. 11 sec. Good

VggNet19 0.14 414 min. 32 sec. Good

ResNet18 0.14 88 min. 41 sec. Very good

ResNet50 0.05 345 min. 45 sec. Very good

ResNet101 0.07 623 min. 37 sec. Good
CNN, convolutional neural network; RMSE, root mean square errors.
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and 12 compared to day 10. ResNet50 and ResNet101 generally showed good prediction accuracy, 
but their predictions were slightly higher on day 14. Overall, the CNNs demonstrated excellent 
prediction accuracy, confirming the potential and scalability of deep learning. The proposed method 
effectively estimated the occupancy rate of a limited number of cornfield photos, and there is a high 
potential for expanding it into other areas of livestock farming in the future.

DISCUSSION
Deep learning has been validated for its performance in various fields, and it has also demonstrated 
high recognition accuracy and detection time in agricultural applications, such as pest and 
disease diagnosis and prediction, fruit detection and maturity determination, and yield prediction 
[4–8,16,20,21]. In one agricultural application, Priyadharshini et al. [9] classified corn leaves into 
four states, three based on diseases that appear on corn leaves and one normal state. They trained 
a modified version of LeNet [5] on the Plantvillage dataset and achieved a high accuracy of over 

Fig. 9. The occupancy rate of corn by date (AlexNet).

Fig. 10. The occupancy rate of corn by date (GoogLeNet).

Fig. 11. The occupancy rate of corn by date (Vgg16).
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97%. Koirala et al. [10] suggested the Mango You Only Look Once (YOLO) network detects 
mangoes in real time and achieves excellent real-time performance with an F1 score of 0.97. Fu 
et al. [11] used the YOLOv4 network to accurately detect various sizes and shapes of bananas in 
harsh environments such as orchards. They demonstrated better detection speed and accuracy than 
tests performed on the YOLOv3 network. Kitano et al. [12] used U-Net to predict the growth 
of corn at an early stage from images of corn fields taken by a UAV. Mota-Delfin et al. [13] also 
used the YOLO method to effectively detect corn in cornfields with large numbers of weeds in the 
background and predict the yield. Oh et al. [2] trained a YOLOv4 network using a small number 
of images of cornfields and calculated the occupancy rate of cornfields by detecting corn objects.

The rationale behind choosing these specific models (AlexNet, GoogLeNet, VggNet, ResNet) 
was based on their well-established performance and effectiveness in various computer vision tasks. 
These models have been widely used and tested in different research and industrial applications, 
demonstrating state-of-the-art results in image recognition and classification tasks. Among 
the deep learning currently studied, the structures of CNNs to which regression can be applied 
represent the four network types tested in this study. Therefore, this experiment included the above 

Fig. 13. The degree of occupancy of corn by date (ResNet50).

Fig. 14. The degree of occupancy of corn by date (ResNet101).

Fig. 12. The degree of occupancy of corn by date (Vgg19).
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four types and subtypes, and it is confirmed that deep learning shows robust performance not 
only for object classification tasks but also for regression. AlexNet was one of the pioneering deep 
learning models that gained significant attention after winning the ILSVRC in 2012. Its success 
was attributed to its deep architecture and the use of ReLU activation functions. GoogLeNet, also 
known as Inception, introduced the concept of inception modules, which allowed the network 
to capture features at multiple scales. This architecture proved to be highly efficient and achieved 
outstanding performance on ILSVRC in 2014. VggNet, short for Visual Geometry Group 
Network, is known for its simple and uniform architecture with a deep stack of 3 × 3 convolutional 
layers. Despite its straightforward design, VggNet showed impressive results in ILSVRC 2014. 
Residual Network (ResNet) addressed the problem of vanishing gradients in very deep networks 
by introducing skip connections or residual blocks. This innovation enabled the successful training 
of extremely deep models, with ResNet becoming the winning model of ILSVRC 2015. Given 
their track record of success and the depth of their architectures, these models were chosen as 
they provided a strong foundation for comparison in this study of deep learning applicability and 
scalability.

In a pig grazing area, the decrease in the occupancy rate of undamaged corn over time could be 
attributed to several factors related to pig behavior. Pigs are known to forage and consume plants, 
including corn, as part of their diet. Over time, as pigs continue to graze in the area, they may 
consume or damage some of the undamaged corn plants, leading to a decrease in their occupancy 
rate. Pigs exhibit grazing behavior, preferring corn varieties, resulting in a higher rate of damage to 
corn plants, leading to a decline in their occupancy rate of intact corn. Pigs might cause physical 
damage to corn plants by trampling on them or rooting around the area. Such damage can hinder 
the growth and survival of corn plants, contributing to the decrease in their occupancy rate over 
time.

The sharp increase followed by a decrease in the occupancy rate of corn damaged by sows can 
be explained by several factors related to sow behavior. When sows are introduced to the grazing 
area, they might initially exhibit increased feeding activity and target the readily available and easily 
accessible corn plants. This initial feeding frenzy could lead to a sharp increase in the occupancy rate 
of damaged corn. Also, the grazing area was limited, the concentrated feeding activity of sows at 
the beginning could lead to a quick increase in the occupancy rate of damaged corn. In competition 
with other sows, if sows initially focus on consuming only the intact corn ears, leaving behind the 
corn stalks, their main interest may shift elsewhere afterwards exploring other areas of the grazing 
field or shifting their focus to alternative food sources such as pellet feed. The combination of sow 
behavior mentioned above can lead to the observed pattern of an initial increase and subsequent 
decrease in the occupancy rate of corn damaged by sows, and this aligns with the results we have 
analyzed through images in this study.

CONCLUSION
Deep learning has proven its performance in various fields and has demonstrated high recognition 
accuracy and detection time in agricultural applications such as pest and disease diagnosis and 
prediction. Most yield predictions involve designing a CNN-based object detector for an image, 
counting the number of detected objects, or calculating the number of pixels occupied by objects 
to predict yield or occupancy. These methods require several computational steps besides a detector, 
and their accuracy strongly depends on whether the object features of interest are visible in the 
image. However, in addition to object detection and classification, CNNs can be applied to function 
approximation and regression problems. Therefore, if CNN is used as a regression network, the 



Comparison of estimating vegetation index using different CNNs

1268  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e81

occupancy of a specific object in an image can be expressed as a network output without going 
through several calculation steps for object classification. This study applied the four most widely 
known networks (AlexNet, GoogLeNet, VggNet, and ResNet) as regression networks to predict 
the market share according to corn condition and total corn share in day order. 

In conclusion, this study emphasizes the importance of accurately measuring and addressing 
land degradation concerns associated with pasture-based pig farming. The proposed methodology 
offers an effective means to evaluate the extent of land degradation with a limited number of 
cornfield photos showing excellent prediction accuracy, and confirms the potential and scalability 
of deep learning. By taking proactive steps towards mitigating land degradation, the pasture-based 
pig farming sector can continue to thrive while preserving the environment and promoting socio-
economic well-being.
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