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Abstract
Iris segmentation is an initial step for identifying the biometrics of animals when establishing 
a traceability system for livestock. In this study, we propose a deep learning framework for 
pixel-wise segmentation of bovine iris with a minimized use of annotation labels utilizing the 
BovineAAEyes80 public dataset. The proposed image segmentation framework encompass-
es data collection, data preparation, data augmentation selection, training of 15 deep neural 
network (DNN) models with varying encoder backbones and segmentation decoder DNNs, 
and evaluation of the models using multiple metrics and graphical segmentation results. This 
framework aims to provide comprehensive and in-depth information on each model’s training 
and testing outcomes to optimize bovine iris segmentation performance. In the experiment, 
U-Net with a VGG16 backbone was identified as the optimal combination of encoder and 
decoder models for the dataset, achieving an accuracy and dice coefficient score of 99.50% 
and 98.35%, respectively. Notably, the selected model accurately segmented even corrupted 
images without proper annotation data. This study contributes to the advancement of iris seg-
mentation and the establishment of a reliable DNN training framework.
Keywords: Cow, Deep learning, Identification, Iris, Segmentation

INTRODUCTION
Accurate animal identification applies to individual management and the entire process of livestock 
food production; hence, it is essential for establishing a traceability system for the food supply chain 
from farm to table [1,2]. Reliable animal identification methodologies monitor each stage of growth 
steps and production while minimizing trade losses and ensuring animal ownership. To implement such 
a tracking system, a robust identification methodology is required [3] because the failure of the tracking 
system can cause enormous damage. The damage is linked to cow health and food safety, which can put 
the health of customers at risk and cause serious economic problems [4].

To eliminate these potential hazards, ear notching, tattoos, tags, and branding are some of the 
traditional permanent methods used for animal identification. However, these can be easily duplicated, 
simplifying theft and fraud [5]. Radio frequency identification (RFID) tags have been developed as 
an alternative to traditional methods [6]. Through RFID, animals are registered in computer systems 
and can be identified by scanning the RFID tag. However, the tag is invasive and can be changed by 
manipulating it in the system, creating an avenue for fraud [7]. Recently, biometrics such as retinal 
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vascular patterns (RVPs) [8], muzzle [9,10], and iris [11,12] have been proposed to resolve the 
problems of RFIDs. Methods that utilize these biometrics are reliable for identifying an entity 
because they are the most accurate and stable biometric modalities during the lifetime of an animal 
[3,13].

With the advent of deep neural networks (DNNs) [14], there have been several attempts to 
identify anatomical parts of an animal using deep learning technologies [10,15–17]. Among the 
deep learning technologies, the segmentation technique classifies objects within a given image in 
a pixel-wise manner. As segmentation of the iris from the image of an eye is essential for initiating 
iris identification, using an elaborate and accurate segmentation technique is key to successful iris 
recognition [16].

In this study, we discuss bovine iris segmentation using a novel framework. The framework 
develops multiple segmentation models by training on publicly available bovine iris datasets, 
BovineAAEyes80 [18] and comparing combinations of state-of-the-art deep learning techniques. 
Since iris datasets are rare and have limited formats, like other biometric datasets, we propose a 
framework that can be used to develop models using the smallest input datasets: region of interests 
(ROIs) labels and RGB images. This study contributes to the advancement of iris identification 
using DNNs and the development of a reliable DNN training framework that assists in identifying 
the most suitable combination of DNN models for biometric images.

MATERIALS AND METHODS
Framework overview
The proposed framework starts with data collection. The input data must contain pairs of image 
and annotation data (Fig. 1A). After collecting the data pairs, the data is prepared, which includes 
data splitting and augmentation selection. Data must be split into training, validation, and test 
datasets that are preferably mutually exclusive for each of the training, validation, and testing stages 
to be conducted with unseen data. The data must be split such that it is equally distributed in terms 
of quality since this step can affect the result of the trained model [19]. The augmentation selection 
step can be varied according to the traits of the dataset (Fig. 1B). After selecting the augmentation 
options, we developed 15 combinations of DNN models by utilizing three different encoder 
backbones, namely VGG16 [20], ResNet50 [21], and MobileNet [22]. Additionally, we employed 
five segmentation decoder DNNs, namely FCN8, FCN16, FCN32 [23], U-Net [24], and SegNet 
[25]. The encoder and decoder form an architecture known as an encoder-decoder network, 
which is widely used for tasks such as image segmentation. The encoder extracts useful features 
and compresses the input data, while the decoder reconstructs or segments the data based on the 
encoded representation. This architecture enables the network to learn and leverage hierarchical and 
contextual information, leading to more accurate segmentation results. These combinations allowed 
us to explore a range of model architectures and evaluate their performance. In total, we trained 
and evaluated 75 models (15 combinations × 5-fold cross-validation) to ensure the reliability of 
the training results (Table 1). The evaluation process included assessing various metrics such as 
accuracy, precision, recall, intersection over union (IoU), and dice coefficient [26]. Furthermore, 
the framework provided detailed information such as inference time on each model, along with 
graphical representations of the segmentation results (Fig. 1D).

Model training environment and configuration
With reference to previous studies, we compared five candidates, FCN32, FCN16, FCN8, U-Net, 
and SegNet, to find the most reliable architecture for anatomical segmentation (Fig. 1C). All 
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configurations were set to be equal for a fair comparison, minimizing variants between model 
training processes. After several attempts, the training hyperparameters were experimentally 
determined: training for 100 epochs with 128 steps per epoch, a learning rate of 0.001 optimized 
using an Adam optimizer, and a batch size of 4. These trained models automatically generated 
anatomical ROIs from input test images. After training and evaluation with statistical performance 
measures, such as the dice coefficient and accuracy [27], the statistical result is returned in the csv 
format and analyzed within the framework system.

Model training was conducted on Anaconda 4.10.1 running on 64bit Ubuntu Linux 20.04.3 
LTS and Python v3.8.8. TensorFlow-GPU v2.7.0 and CUDA 11.4 were used to accelerate the 
DNNs framework’s training process on a 24 GB RTX 3090 graphics card, and Keras v2.7.0 was 
used as a Python deep learning application programming interface (API). In the BovineAAEyes80 
dataset, brightness ±10 and rotation ± 40° augmentation are applied to cover variations that could 
arise in from the capturing environment, such as non-cooperative behavior of bovines and changes 
in lighting conditions [18].

Fig. 1. Scheme of model training for selection of the best combination of segmentation models for biometric images. (A) Biometric images are 
collected and captured. The images’ mask anno-tation data is created or collected from data sources. (B) Images are split into training, validation, and 
test datasets. Augmentation techniques can be selected and adapted within the framework according to the traits of the image. (C) Five DNNs – FCN32, 
FCN16, FCN8, U-Net and SegNet – are trained and compared with 3 different backbones for each training to select the most reliable model. After training 15 
combination models, evaluation is conducted with unseen test dataset.

Table 1. Distribution of the dataset for 5-fold cross validation
Dataset Fold Images Eye ID

Train Fold 1 12 3, 7

 Fold 2 13 4

 Fold 3 13 5, 6

 Fold 4 12 8, 9

 Fold 5 22 10, 11

Test - 8 1, 2

Total  80 11 eyes
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Model evaluation
The classification performance of the trained model was evaluated using the following metrics: 
accuracy (1), recall (2), precision (3), IoU (4), and dice coefficient (5) [27]. Compared to the 
reference annotation, each pixel is classified into one of four outcomes: true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN); these classifications are according to the 
metric criteria of a previous study [28].

 (1)

  (2)

 (3)

 (4)

 (5)

RESULTS AND DISCUSSION
The learning curves of model training, as shown in Fig. 2, provide important insights into the 
performance and stability of different models during the training process. In the training curve of 
VGG16, as seen in Figs. 2A and 2B, all of the FCN series are observed to be unstable during the 
training process. Additionally, FCN32 is found to have the highest loss and the lowest accuracy, 
indicating that it is not the best model for this particular task. On the other hand, SegNet and 
U-Net demonstrate a comparatively stable decrease in loss and increase in accuracy during most 
of the training process. In the training curves of ResNet50, as depicted in Figs. 2C and 2D, and 
MobileNet, as seen in Figs. 2E and 2F, decent accuracies and losses with little fluctuation, compared 
with VGG16, are observed. In contrast to FCN32, which has the poorest performance among the 
models, the other models show promising results.

Table 2 shows the test results of the models trained with an unseen test dataset. In Table 2, 
U-Net with a MobileNet backbone has the best dice coefficient (98.35 ± 0.54%), accuracy (99.50 ± 
0.16%), and precision (99.57 ± 0.16%). U-Net with a VGG16 backbone shows the best IoU score 
(96.81 ± 2.01%), which is slightly (0.01%) better than that of U-Net with a MobileNet backbone.

Table 3 presents the inference times of different decoder and encoder models for a given task. 
While MobileNet is generally observed to perform the fastest across most of the decoder models, 
the performance of different decoder and encoder model combinations can be influenced by a range 
of factors beyond the choice of encoder architecture alone. For instance, when paired with FCN8 
and FCN16, MobileNet has processing times that are slower than those of VGG16 and ResNet50. 
Specifically, when paired with FCN8, the mean processing times are 133.3 ± 1.0 ms for VGG16, 
180.1 ± 1.6 ms for ResNet50, and 156.8 ± 7.1 ms for MobileNet. When paired with FCN16, the 
mean processing times are 131.6 ± 0.6 ms for VGG16, 182.5 ± 1.3 ms for ResNet50, and 136.7 
± 1.5 ms for MobileNet. Likewise, while MobileNet performs well when paired with FCN32, it 
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is outperformed by VGG16 when paired with FCN8 and FCN16. However, when MobileNet is 
paired with SegNet and U-Net, it shows the fastest inference speed recording 122.8 ± 3.2 ms and 
116.3 ± 2.5 ms respectively.

These findings suggest that the performance of different decoder and encoder model 
combinations can be influenced by a range of factors beyond the general performance of encoder 
architecture alone. The characteristics and complexity of the dataset, as well as the specifics of the 
task at hand, can all impact the performance of the model. Therefore, it is important to carefully 
consider the selection of both the decoder and encoder architectures when developing deep 
learning models for image segmentation tasks. Overall, Table 3 provides useful information on the 
performance of different decoder and encoder model combinations for the given task, with certain 
models performing significantly faster or slower than others. The information on processing times 
can be used to select the optimal model combination based on the trade-off between processing 
speed not only segmentation accuracy.

Based on the results of our study, the U-Net model with a MobileNet backbone can be 

Fig. 2. Learning curves of model training.
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considered the most appropriate model for the given dataset. However, it is important to note 
that there are significant variations in the size of a segmentation unit of pixels between different 
backbones, which is influenced by the extracted feature map size of each encoder architecture. 
Therefore, when selecting a model, both numerical scores and pixel segmentation size should be 
taken into account, as the optimal DNN model can vary depending on the application domain.

In the context of iris segmentation, where the fine segmentation of the edge of the iris boundaries 
is a targeted objective, the model with the second-best score, U-Net with a VGG16 backbone, was 

Table 2. Test result of the trained models with unseen test dataset
 Decoder Encoder Dice IoU Accuracy Recall Precision

FCN8 VGG16 97.90 ± 0.25ab 95.97 ± 0.45ab 99.37 ± 0.07a 96.81 ± 0.44ab 99.06 ± 0.12ab

ResNet50 98.31 ± 0.44a 96.75 ± 0.81a 99.49 ± 0.13a 97.50 ± 0.76a 99.17 ± 0.09a

MobileNet 97.14 ± 0.16abc 94.57 ± 0.29abc 99.15 ± 0.04a 95.52 ± 0.37abc 98.91 ± 0.17ab

FCN16 VGG16 96.91 ± 0.41abc 94.17 ± 0.72abc 99.08 ± 0.12a 95.45 ± 0.63abc 98.48 ± 0.28abc

ResNet50 96.38 ± 1.20bc 93.39 ± 2.02bc 98.96 ± 0.32a 94.46 ± 1.92abcd 98.67 ± 0.22ab

MobileNet 94.44 ± 0.19de 89.93 ± 0.31de 98.39 ± 0.05a 91.90 ± 0.53de 97.40 ± 0.49c

FCN32 VGG16 89.70 ± 0.21f 81.77 ± 0.25f 93.96 ± 1.07c 88.73 ± 1.20f 91.13 ± 1.30e

ResNet50 94.00 ± 0.51e 89.23 ± 0.83e 98.29 ± 0.13ab 90.82 ± 0.77ef 97.81 ± 0.36bc

MobileNet 88.51 ± 0.86f 81.11 ± 1.16f 96.96 ± 0.18b 83.61 ± 1.18g 95.43 ± 0.43d

SegNet VGG16 96.45 ± 0.75bc 93.40 ± 1.29bc 98.97 ± 0.20a 94.04 ± 1.21bcd 99.24 ± 0.17a

ResNet50 98.04 ± 0.54ab 96.25 ± 1.01ab 98.05 ± 1.06ab 96.85 ± 1.10ab 99.36 ± 0.13a

MobileNet 95.73 ± 0.33cd 92.09 ± 0.56cd 98.77 ± 0.09a 92.83 ± 0.61cde 99.12 ± 0.09ab

U-Net VGG16 98.34 ± 0.49a 96.81 ± 0.90a 99.47 ± 0.81a 97.38 ± 0.83a 99.37 ± 0.13a

ResNet50 98.26 ± 0.42a 96.66 ± 0.78a 99.18 ± 0.27a 97.11 ± 0.82a 99.52 ± 0.09a

MobileNet 98.35 ± 0.24a 96.80 ± 0.45a 99.50 ± 0.07a 97.20 ± 0.47a 99.57 ± 0.07a

a–gThe values are represented as mean ± standard error mean (p < 0.05).
Dice, dice coefficient; IoU, intersection of union.

Table 3. Inference times of the trained models with unseen test dataset

Decoder Encoder
Times (ms)

Mean Minimum Max
FCN8 VGG16 133.3 ± 1.0 126.9 151.1

ResNet50 180.1 ± 1.6 167.8 211.8

MobileNet 156.8 ± 7.1 124.8 272.1

FCN16 VGG16 131.6 ± 0.6 127.3 144.4

ResNet50 182.5 ± 1.3 168.2 202.7

MobileNet 136.7 ± 1.5 125.6 158.7

FCN32 VGG16 135.1 ± 1.5 127.5 165

ResNet50 184.5 ± 1.5 169.2 207.5

MobileNet 132.8 ± 2.8 125.6 158.2

SegNet VGG16 129.2 ± 3.5 107.9 182.3

ResNet50 126.5 ± 2.1 113.2 168.6

MobileNet 122.8 ± 3.2 102.8 157.8

U-Net VGG16 125.6 ± 2.1 108.2 177.8

ResNet50 143.3 ± 7.8 113.4 347.5

MobileNet 116.3 ± 2.5 100.8 152.8
The values are represented as mean ± standard error mean.
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chosen as the best model due to its superior dense boundary segmentation. The decision to select 
this model was based on the median values of the dice coefficient observed in the results of the 
5-fold cross-validation.

Overall, while the U-Net model with a MobileNet backbone is the most suitable for the given 
dataset, the U-Net model with a VGG16 backbone was deemed the optimal model for iris 
segmentation due to its superior boundary segmentation. The selection of the best model for a given 
task requires careful consideration of both numerical scores and pixel segmentation size, as well as 
the specific objectives of the application domain (Fig. 3).

In Fig. 4, common corruptions in iris images are described. Minor corruptions, which distort the 
iris image, can be caused by many factors, such as dust in the spots, stains over the lens, the animal’s 
eyelash or fur in the eye (Fig. 4A), and unwanted light spots [16]. These minor corruptions were 
not reflected in the segmentation result (Fig. 4C). However, this issue must be resolved to eliminate 
false information within the iris image. Major corruption is generally caused by relatively large 
parts of the animal’s body, such as the occlusion of eyelashes and eyelids (Fig. 4B). As mentioned 
in other studies, these major corruptions can impede accurate identification [12, 18, 29]. However, 
the best selected model accurately segmented the corrupted image by excluding the occlusion (Fig. 
4D). This could have not been calculated correctly in the result because the annotation labels used 
in the model training did not provide much pixel-wise accurate segmentation ground truth. This is 
remarkable compared with other studies using image processing techniques because it segmented 
the exact iris area without preprocessing or postprocessing with the model’s knowledge, even 
though image corruption was not annotated in the given labels.

The field of deep learning is rapidly evolving, with new and improved models being developed all 
the time [26,30,31]. Therefore, it is possible that even better-performing segmentation encoder and 
feature map decoder models may become available in the future. The current study used a limited 
set of models, which may not represent the best possible models for bovine iris segmentation. 
However, the proposed deep learning framework provides a foundation for future research to 
incorporate and evaluate additional models. This could lead to further improvements in the accuracy 
and efficiency of the segmentation process.

In addition, the present study focused on bovine iris segmentation using a limited dataset. Future 
research could expand the framework to include other animal species and biometric features. This 
would increase the framework’s versatility and applicability to various animal biometric applications.

Overall, while the proposed framework has limitations, it serves as a starting point for future 

Fig. 3. Comparison of segmentation performance in the unit of pixels. Depending on the type of encoder 
backbone, the size of a segmentation unit is changed because of the DNNs structured and it influences to the 
model performance. The smaller size of a segmentation unit (A) allows more precise iris boundary segmentation 
and yields faster inference speed compared to (B). DNN, deep neural networks.
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research to incorporate additional models and further optimize the segmentation process. As 
the field of deep learning continues to advance, it holds great promise for improving animal 
identification and traceability systems.

The deep learning framework proposed in this study for bovine iris segmentation has potential 
applications in animal identification and traceability systems, which are crucial for ensuring food 
safety, quality, and individual management system. The framework could be used in various animal 
biometric applications, such as identifying individual animals in large herds, monitoring animal 
health, and tracking animal movements.

In addition, the proposed framework could have implications for improving the efficiency and 
accuracy of livestock management practices. By enabling reliable and rapid animal identification, 
the framework could help reduce labor costs and improve animal welfare. Furthermore, the 
framework’s use of deep learning technology could lead to new insights into animal biometrics and 
behavior, which could inform the development of more effective management strategies. Moreover, 
the proposed framework’s reliance on deep learning technology could also exacerbate existing biases 
and inequalities in animal identification and traceability systems. Careful consideration must be 
given to how the framework’s use of biometric data might disproportionately affect certain animal 
populations or communities. Nevertheless, despite these concerns, it is deemed necessary to conduct 
in-depth further research as this technology can still contribute to the national animal population 
management system, livestock distribution industry, and livestock quality assessment. 

In summary, the proposed deep learning framework for bovine iris segmentation has the 
potential to improve animal identification and traceability systems, and to enhance the efficiency 
and accuracy of livestock management practices. However, its use must be guided by ethical 

Fig. 4. Common corruptions in iris image. (A) Minor corruption caused by an eyelash over the eye. The 
eyelash made shadow in iris area (yellow arrow). In addition, the eyelash itself covers minor part of iris and pupil. 
(B) Major corruption caused by eyelashes which cover most part of upper iris. The corruption makes it difficult 
to identify the area. (C) Segmentation result does not reflect the minor corruption in the iris. (D) Even though the 
annotation masks used in training the model does not exclude eyelashes from the iris area, the trained model 
successfully segmented iris area excluding eyelashes.
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principles and considerations to prevent potential harms and biases.

CONCLUSION
With the proposed framework, iris segmentation for identifying animal biometrics was performed 
utilizing the information in the trained DNNs along with robust comparisons to determine the 
best model for the given dataset. The model selected as the best combination of an encoder and 
decoder, U-Net with a VGG16 backbone, demonstrated an accuracy and dice coefficient of 99.50% 
and 98.35%, respectively, on an unseen test dataset.

This study contributes to the initial step of iris identification to improve animal tracking systems; 
it suggests a framework for training DNNs for pixel-wise segmentation using a minimum use of 
annotation labels. For the reliable comparison of various combinations of DNN models to select 
the most suitable DNN model combination, this approach uses multiple metrics commonly 
used in the evaluation of segmentation, including visual references; hence, it is unbiased and has 
consistent model selection. The framework has the potential to improve the accessibility of DNNs 
for operators with limited knowledge of DNNs, accelerate inter-study comparisons, and reduce 
the variations in current manual model selection methods. Following this study, the authors plan to 
improve the framework’s model selection, image segmentation, machine learning, animal biometrics, 
and multi-resolution imaging. The goal of future research is to develop techniques and skills that 
can be applied to animal tracking, image recognition, and artificial intelligence applications in 
domestic animal field.
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