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Abstract
Pig farming, a vital industry, necessitates proactive measures for early disease detection and 
crush symptom monitoring to ensure optimum pig health and safety. This review explores 
advanced thermal sensing technologies and computer vision-based thermal imaging tech-
niques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared 
thermography (IRT) is a non-invasive and efficient technology for measuring pig body tem-
perature, providing advantages such as non-destructive, long-distance, and high-sensitivity 
measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to 
acquiring physiological data impacted by environmental temperature, crucial for understand-
ing pig body physiology and metabolism. IRT aids in early disease detection, respiratory 
health monitoring, and evaluating vaccination effectiveness. Challenges include body surface 
emissivity variations affecting measurement accuracy. Thermal imaging and deep learning 
algorithms are used for pig behavior recognition, with the dorsal plane effective for stress 
detection. Remote health monitoring through thermal imaging, deep learning, and wearable 
devices facilitates non-invasive assessment of pig health, minimizing medication use. Inte-
gration of advanced sensors, thermal imaging, and deep learning shows potential for disease 
detection and improvement in pig farming, but challenges and ethical considerations must be 
addressed for successful implementation. This review summarizes the state-of-the-art tech-
nologies used in the pig farming industry, including computer vision algorithms such as object 
detection, image segmentation, and deep learning techniques. It also discusses the benefits 
and limitations of IRT technology, providing an overview of the current research field. This study 
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INTRODUCTION
In response to the growing global demand for animal protein, modern livestock agriculture has 
shifted towards intensive production systems. However, this approach often leads to larger herd 
sizes, making it challenging to monitor the health and welfare of farm animals effectively [1]. Pigs 
play a major role in food productivity for human consumption [2]. Globally, pig meat is the second 
most preferred meat for consumption after poultry because of its relatively low cost.

Pig farms commonly face challenges, including disease outbreaks and events, which can have 
severe consequences. Diseases such as African swine fever (ASF), porcine epidemic diarrhea, and 
swine influenza can cause substantial economic losses for farmers and pose risks to food security 
[3]. Furthermore, events such as crush incidents can result in significant injuries to pigs, leading to 
decreased productivity and heightened expenses for farmers [4]. The early detection of diseases and 
accidents is crucial for preventing disease spread and ensuring prompt treatment for injured pigs. 
Traditional monitoring methods, such as manual observation and physical examination, are time-
consuming, labor intensive, and often inaccurate. Advanced sensors and computer vision-based 
techniques offer a promising solution to these problems by providing real-time, accurate monitoring 
of pig health and behavior. In order to monitor animals effectively, it is important to embrace 
modern technologies such as infrared thermography (IRT) for detection, surveillance, and remote 
monitoring. The utilization of this technology generates a significant amount of data. Therefore, 
there is a need for automated analysis of extensive thermographic datasets to furnish essential 
insights for informed decision-making and dynamic interventions. By implementing automated 
livestock farming systems, many aspects of animal husbandry can be simplified, including early 
warnings and proactive actions, as mentioned by Lowe et al. [5], where this approach resulted in 
reduced unnecessary medical treatments, labor, and treatment costs, ultimately leading to higher 
profit margins.

In the 1960s, IRT was initially developed in the United States, mainly for military purposes such 
as inspection, security, and thermal signature detection, as mentioned by Rogalski [6]. However, 
recently, IRT has found extensive applications in various non-military fields. It has been widely 
utilized in medical imaging and diagnosis [7], ecological research [8,9], and even in engineering 
for building structure analyses [10]. The versatility of IRT application extends to diverse domains, 
including human medicine, veterinary medicine, ecological applications, and industrial applications. 
It is particularly useful for diagnostic purposes in both human and veterinary medicine, as 
demonstrated in studies by Schaefer et al. [11] and Martins et al. [12]. One of the key advantages of 
this technique is that it eliminates the need for physical contact with the surface being monitored, 
enabling remote temperature distribution measurement, as pointed out by Speakmen and Ward 
[13]. This highlights the diverse range of research and applications where IRT has been successfully 
used in animal production systems. In the field of veterinary medicine, IRT has gained popularity 
because of its ability to measure variations in animal surface temperatures. These temperature 
changes can provide valuable insights into different physiological functionalities [14], behavioral 
patterns [15], and digestive functions [16]. By utilizing IRT, veterinarians can effectively detect 
alterations in surface temperature changes in animals, which can aid in early fever, posture, and 
disease detection.
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IRT has proven an effective tool in identifying various diseases in animals. It has been successfully 
used to identify sick or stressed pigs [17], bovine viral diarrhea [18], cattle lameness [19], foot and 
mouth disease in cattle [20] and sheep [21], mastitis in cattle [12], and heat stress in poultry [22]. 
Moreover, IRT is also used to identify non-disease symptoms, including breeding, birth signs, etc. 
[23], as well as to assess animal well-being and productivity [24]. It provides valuable information 
for monitoring and evaluating the overall health, well-being, and productivity of animals.

Intelligent computer systems are necessary to enable the implementation of automated systems 
in agriculture. These systems utilize machine learning algorithms to analyze vast datasets, providing 
valuable insights to farmers and enhancing productivity. In the context of thermographic data, 
machine learning algorithms can be employed to identify specific regions of interest (ROIs) and 
process temperature data within these selected ROIs. This processing enables the prediction of 
outcomes related to agricultural practices [25]. By harnessing the power of machine learning, 
farmers can make informed decisions based on thermal data analysis, leading to improved 
efficiency and productivity in their agricultural operations. Thermal sensing, alongside computer 
vision techniques such as object detection, image segmentation, and deep learning algorithms, 
can effectively monitor pig behavior and identify disease symptoms. Thermal sensors can track 
individual pigs and detect temperature variations on their body surface, allowing for the early 
detection of health issues such as infections or inflammation. Non-intrusive and cost-effective, 
thermal sensing offers a viable solution for large-scale pig farming, avoiding stress and discomfort 
caused by invasive methods such as blood tests. The early detection of diseases and crush symptoms 
can prevent their spread, improve pig welfare, and enhance farm productivity. However, factors such 
as lighting conditions and technical expertise may influence the accuracy and implementation of 
thermal sensing techniques.

Recent advancements in sensors and computer vision-based thermal imaging have demonstrated 
significant potential for monitoring pig diseases and crush symptoms. This article explores their 
practical applications within pig farming, highlighting the benefits of non-intrusive monitoring 
and the ability to detect disease indications through thermal patterns. The implications of this 
technology for enhancing pig welfare, farm efficiency, and environmental sustainability are also 
examined. Addressing challenges such as accuracy, lighting, and technical know-how, this research 
underscores the transformative role of thermal imaging in revolutionizing pig health monitoring 
and its impact on the future of the industry. First, the principles and data processing of IRT are 
outlined. Next, its applications in detecting pig diseases and crush monitoring using thermal 
data processing are highlighted. Then, the integration of the machine learning algorithm with 
thermography data is explored. Additionally, the commercial aspects of IRT sensors are examined. 
Finally, the review concludes by addressing future trends in IRT and challenges in the context of 
pig health monitoring.

INFRARED THERMOGRAPHY IMAGING TECHNOLOGY
Principle of infrared thermography
IRT is a contactless and non-invasive method that relies on the physical principles explained by the 
Planck, Wien, and Stefan–Boltzmann laws [26]. In accordance with these principles, any object 
with a temperature above absolute zero diffuses electromagnetic radiation within the infrared (IR) 
spectrum. The mathematical relationship between the energy emitted from an object’s surface, 
the wavelength of this radiation, and the object’s temperature is well described by the Stefan–
Boltzmann Law [27], specifically:
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				    (1)

where σ = 5.669 × 10−8 W/m2K4, the Stefan–Boltzmann constant, As is the surface area of the 
blackbody, Ts is the surface temperature in Kelvin (K), and Eb is the total emissivity for the 
blackbody.

By utilizing a sensor array, this emitted radiation can be detected and generate a thermographic 
image. In such an image, the color intensity in each pixel corresponds proportionally to the observed 
body temperature [28]. Fig. 1 shows the measurement principle of IRT sensors.

IRT has emerged as a non-invasive diagnostic tool [29] for measuring radiation. Its effectiveness 
is influenced not only by the temperature of the target object but also by factors such as emissivity 
and conductivity [30]. However, it is important to acknowledge certain limitations associated with 
IRT. Factors such as sunlight, high humidity, convective airflow, and dirt on the livestock’s coat 
should be carefully considered, as they can impact IRT imaging accuracy [31]. The application 
of IRT in livestock production offers several advantages, including ease of use, cost-effectiveness, 
speed, efficiency, and the ability to gather crucial information without the need for physical contact 
with animals [32]. Consequently, IRT represents an innovative strategy with broad potential for 
enhancing animal welfare and promoting welfare-related practices.

Sensors/cameras for infrared thermography
A thermographic camera, also known as an IR camera or thermal imaging camera, is a device that 
captures images using IR radiation, similar to how a regular camera captures images using visible 
light. These cameras are specifically designed to detect the radiation emitted from an object within 
a specific range of IR wavelengths and convert it into an electrical signal, which is processed to 
create a visual image. IR radiation falls beyond the range of human vision; however, camera sensors 
can be engineered to detect and utilize this type of radiation. During the daytime, some cameras 
employ an IR-cut filter to block out IR light and prevent color distortion in images as perceived by 
the human eye. When the camera switches to night mode, the IR-cut filter is removed, allowing 
the camera to capture IR light. Since the human eye cannot see IR light, the resulting images are 
displayed in black and white.

4
emitmax s s bQ A T Eσ′ = =

Fig. 1. Principle of measurement by IRT equipment.



https://doi.org/10.5187/jast.2024.e4 https://www.ejast.org  |  35

Reza et al.

A thermogram is a representation of the apparent temperature distribution on an object’s 
surface, consisting of pixels [33]. IR cameras measure the intensity of incident radiation, not the 
temperature directly. Pseudo colors are used to display this data, making invisible electromagnetic 
spectrum areas visible or highlighting values. The resulting thermogram is monochromatic, but 
pseudo colors can be applied based on temperature using color palettes such as iron, grayscale, or 
rainbow [34]. The temperature scale can be fixed or variable, and it can be set in the camera or 
analysis software [35]. Different manufacturers might have unique color palette names or additional 
options. To facilitate the detection of near-IR light, a light source is required, either natural, 
such as moonlight, or artificial, such as streetlights, or a dedicated IR lamp. With advancements 
in electronics and instrumentation technology, there is a wide range of thermal camera models 
available on the market, catering to various price points and requirements. Table 1 shows the details 
of various thermal camera models used in different livestock production applications.

Factors affecting infrared thermography imaging
IRT imaging is widely used in animal production to measure object temperature using an IRT 
detector. However, accurate temperature measurement requires consideration of important thermal 
imaging parameters, such as emissivity, reflected temperature, distance to the target, ambient 
temperature, and humidity [36,37]. These parameters must be taken into account in calculations 
to ensure reliable temperature determination. The proper use of a professional-grade IRT imager, 
selecting the right model, and considering the imaging angle and thermal imager resolution are also 
crucial for accurate temperature acquisition. Fernández-Cuevas et al. [38] proposed a classification 
of factors that influence thermal evaluations as categorized:
1. Environmental factors: These factors pertain to the surrounding conditions in which the thermal 

Table 1. Different infrared (IR) cameras used in livestock farming

Camera model Detector type Image
size

Spectral
range (mm)

Temperature 
range (℃) Manufacturer

TE-Q1 Mini-Bolometer (uncooled) 384 × 288 8–14 −10–150 Thermal Expert, Daejeon, Korea

TE-SQ1 Micro-Bolometer (uncooled) 384 × 288 8–14 −40–350 Thermal Expert, Daejeon, Korea

Compact pro Microbolometer 320 × 240 7.5–14 −40–330 Seek Thermal Inc., CA, USA

AGEMA 570 FPA, uncooled microbolometer 320 × 240 8–12 −20–500 FLIR Systems, Oregon, USA

AGEMA 880 HgCdTe, liquid nitrogen, or
stirling cooled NA 8–12 20–1,500 LW FLIR Systems, Oregon, USA

FireProX Microbolometer 320 × 240 7.5–14 −20–550 Seek Thermal Inc., CA, USA

Flir T650sc Uncooled microbolometer 640 × 480 7.5–13 −40–150 Teledyne FLIR LLC, Oregon, USA

FLIR C5 Uncooled microbolometer 160 × 120 8–14 −20–400 Teledyne FLIR LLC, Oregon, USA

Flir One Uncooled microbolometer 80 × 60 8–14 −20–120 Teledyne FLIR LLC, Oregon, USA

ThermaCam P65HS FPA, uncooled microbolometer 320 × 240 7.5–13 −40–120 FLIR Systems, Oregon, USA

FLIR E8 Pro Uncooled microbolometer 320 × 240 7.5–13 −20–550 Teledyne FLIR LLC, Oregon, USA

FLIR SC620 Uncooled microbolometer 640 × 480 7.5–13 −40–500 Teledyne FLIR LLC, Oregon, USA

Infra-Eye 102A HgCdTe, liquid nitrogen cooled NA 8–14 NA Fujitsu, Tokyo, Japan

FLIR T865 Uncooled microbolometer 640 × 480 7.5–14 –40–2,000 Teledyne FLIR LLC, Oregon, USA

FLIR T1020 Uncooled microbolometer 1,024 × 768 7.5–14 –40–2,000 Teledyne FLIR LLC, Oregon, USA

Infra-Eye 102A FPA, uncooled microbolometer 320 × 240 7.5–13 −40–120 Infra-Eye 102A

IR Snapshot 525 Uncooled 120 × 120 8–12 −50–650 Alpine Components, East Sussex, UK

D500 NA 320 × 240 7–14 NA Raytheon Inc., Waltham, MA

RSE600 NA 640 × 480 8–14 −10–1,200 Fluke Corporation, Washington, USA
NA, not aplicable.
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evaluation is conducted. They include the ambient temperature, humidity levels, and the presence 
of any radiation sources.

2. Individual factors: This category can be further divided into intrinsic and extrinsic factors. 
Intrinsic factors are inherent to the individual being evaluated and may include age, gender, and 
medical history. Extrinsic factors are related to the activities carried out prior to the evaluation, 
such as exercise, medical treatments, or food intake.

3. Technical factors: These factors encompass various technical aspects of the thermal evaluation 
process. They involve considerations such as the resolution and thermal sensitivity of the camera 
used, the specific protocol followed during the evaluation, and the statistical methods employed 
for data analysis.

The application of IR in animals might seem unapproachable after this classification, but 
the good news is that almost all factors affect bodies symmetrically. Therefore, the use of the 
methodology of thermal asymmetries and a proper protocol to know factors that might create 
nonsignificant alerts is a strong and reliable way to reduce their impact and optimize the use and 
benefits of thermography.

Data acquisition and processing algorithm of infrared thermography imaging
IRT is a non-destructive method that uses IR radiation to detect and visualize temperature 
variations swiftly. This versatile technology serves various purposes, including quality control and 
the inspection of different electrical and mechanical components and manufacturing parts, defect 
detection within materials, and continuous monitoring of environmental conditions [28]. The non-
invasive nature and ability to swiftly identify temperature anomalies make IRT an invaluable tool in 
diverse industries and applications. IRT involves capturing temperature variations between different 
parts of an animal body and its surroundings through thermal radiation [39]. However, the specific 
ROIs need to be determined based on study objectives before acquiring data. There are two primary 
approaches to obtaining IR images: capturing a static thermal image for a specific ROI and 
continuous video recording for continuous image frames [40]. Achieving accurate body temperature 
measurements with these methods necessitates maintaining the correct distance and angle between 
the camera and animals [40].

A schematic diagram of the data acquisition and processing procedure for IRT imaging is 
shown in Fig. 2. Data acquired from IRT devices typically require preprocessing due to various 
influencing factors, including environmental interference, image quality, data extraction methods, 
etc. Environmental factors such as visible light and illumination levels can impact IR image quality, 
while temperature and humidity can affect temperature measurements [36]. Correcting for these 
influences through preprocessing is essential. Factors such as distance, angle, and obstructions (e.g., 
mud or dirt) on the animal body can impact image quality and temperature accuracy, requiring the 
exclusion of low-quality images [20]. A large number of high-quality thermal images are typically 
collected in experiments, emphasizing the need for thorough image data preprocessing prior to 
precise temperature analysis [40]. IRT data processing can be categorized into two aspects, spatial 
and temporal processing. Spatial processing enhances spatial resolution through noise reduction and 
edge detection, feature extraction, aiding defect detection, and understating thermal distribution 
[41]. Temporal processing improves temporal resolution by averaging images over time and using 
statistical methods to identify significant temperature changes, particularly valuable for time-
dependent defect identification [42].
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APPLICATION OF INFRARED THERMOGRAPHY FOR PIG 
DISEASES AND CRUSH SYMPTOM MONITORING
IR imaging technology is valuable in rapidly detecting temperature variations between the surface 
and core areas of animal bodies, enabling early diagnosis based on differences between natural 
and pathological conditions [28,43]. IRT has found valuable applications in the monitoring and 
detection of pig diseases and the assessment of crush symptoms in pig farming. Its application 
in animal production has grown, with recent research emphasizing parameters such as emissivity, 
distance, temperature, and humidity [44]. IRT is a valuable tool for detecting and monitoring pig 
diseases and crush symptoms. It is a non-invasive technique that is safe for pigs, and it can be used 
to collect data quickly and easily. IRT is a promising technology that has the potential to improve 
pig welfare and productivity.

Body temperature monitoring
Body temperature, a crucial health indicator, is categorized into three classes based on the 
measurement zone: core temperature (measured close to the main organs via various sensors), mid-
peripheral temperature (measured between the core and skin using implanted microchips), and 
peripheral or surface temperature (measured from the animals skin, eye, ear, udder, or leg) [45]. 
External measurements are less reliable because of factors such as vasodilatation, vasoconstriction, 
and external heat sources. However, they offer less invasive and less painful methods for animals, 
making them reasonable monitoring alternatives. Stukelj et al. [46] conducted a study to determine 
the most appropriate anatomical site for temperature measurement in healthy pigs using thermal 
imaging. Correlations between skin temperature and rectal temperature assessed the feasibility 
of predicting pig health through thermal imaging and compared low and high-spatial-resolution 
cameras. Two calibrated thermal imaging cameras were used to measure skin temperature at 
four different anatomical sites in sows, the ear canal, eye canthus, outer ear, and perianal area. 
The findings indicated that using a high noise equivalent temperature difference (NETD), low 
accuracy, and low spatial resolution thermal imaging camera did not permit accurate temperature 
measurement or prediction of pig body temperature. Fig. 3 shows different pig body temperature 
measurement and monitoring using IRT imageing.

A precise thermal camera accurately predicted temperatures, with the ear canal, outer ear, and 
perianal area equally suitable for this purpose. Uncooled IRT offers a promising method for quickly 

Fig. 2. Schematic diagram of data acquisition and processing for IRT imaging.



Thermal imaging and computer vision technologies for pig husbandry

38  |  https://www.ejast.org https://doi.org/10.5187/jast.2024.e4

screening pig body temperatures. However, accuracy can be compromised by variations in body 
surface emissivity caused by skin blemishes or differences between body parts. To solve this issue, 
Jiao and Jiao [47] introduced a rotatable IR filter into the optical path of a smartphone-based 
uncooled IR detector. This filter allows for the acquisition of IR radiation at different wavelengths, 
enabling the creation of a temperature measurement equation that mitigates the impact of 
emissivity variations. Building on this approach, they developed a smartphone sensor equipped with 
an uncooled IRT system featuring wavelength alteration. This sensor facilitates rapid and precise 
temperature measurements in group settings, offering valuable support for diagnosing physiological 
abnormalities and diseases in pigs. Zhang et al. [48] demonstrated that body surface emissivity in 
pigs fluctuates based on growth stage, sex, species, and specific body regions, spanning a range from 
0.92 to 0.97. However, there is inconsistency in the applied research community regarding the 
emissivity values employed for pig body surfaces. Often, the same emissivity is applied uniformly 
across different pig parts, potentially resulting in errors in IRT temperature measurements and, 

Fig. 3. Pig body temperature monitoring and measurements using IRT imaging. (A) Temperature monitoring of ear canal and eye canthus, (B) exposed 
infected body areas, (C) changes in temperature monitoring using different camera angles and densities of pigs, (D) effect on temperature variation for the 
piglet body and rectal area, and (E) temperature monitoring of pig body during regular activity.
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consequently, inaccurate research outcomes. In growing pigs, automated feeding systems tracked 
individual feed intake and weight. Cook et al. [49] used IR imaging during feeding to capture 
thermal data from the dorsal surfaces of pigs. Fasting periods at 35, 65, and 105 kg showed a 
decrease in maximum surface temperature of 0.28℃ and an average surface temperature of 0.48℃. 
These temperatures correlated negatively with feed intake and positively with residual gain variables. 
Residual feed intake negatively correlated with temperatures, while residual gain and intake and 
gain positively correlated.

The precision of IR temperature measurements is significantly influenced by both distance and 
viewing angle. Wang et al. [50] assessed the horizontal distance, camera height, pig height, and 
view angle between the object on IR temperature measurements. Their proposed mathematical 
model, using response surface methodology, shows a correction method reducing the mean relative 
error from −4.64% to −0.70%. This correction significantly enhances skin temperature monitoring 
in commercial pig farms. Chung et al. [51] introduced non-contact IRT for measuring various 
body areas and established a strong linear correlation with rectal temperature. They noted that areas 
with fewer piglet hairs allowed for more accurate skin temperature measurements, as piglet hair 
tends to cool the skin when using IRT. Soerensen et al. [30] assessed IR temperature measurement 
technology for determining pig body temperature and understanding the relationship between 
skin, environment, and body temperature. They identified optimal skin position as highly correlated 
with rectal temperature. Emissivity values were found to be 0.946, 0.975, and 0.978 for the hairy 
shoulder, udder, and ear base, respectively. In skin areas without blood perfusion, emissivity tended 
to be lower compared with perfused areas (p = 0.06). The study validated using a human skin 
emissivity value of 0.98 for IR measurements on sows but found that hairy or non-perfused skin 
areas have lower emissivity values.

Body temperature monitoring in animals, specifically in pigs, is a critical aspect of veterinary 
and agricultural research. This temperature measurement can provide valuable insights into the 
health and well-being of these animals. However, the choice of measurement method and location 
is pivotal for accurate and reliable results. Nevertheless, the variability in body surface emissivity 
values, as demonstrated by Zhang et al. [39], highlights a challenge in the field. Inconsistencies 
in the application of emissivity values across different pig body regions can lead to errors in IRT 
measurements, potentially affecting research outcomes. Table 2 summarizes various studies on pig 
body temperature measurements using the IRT imaging technique.

Diseases detection and tracking
In pig farming, IRT serves as a non-invasive and non-contact technology for early disease detection 
and tracking. By measuring the IR radiation emitted from pigs’ bodies, IRT can identify elevated 

Table 2. Outline of various studies on pig body temperature measurements using infrared thermography (IRT) imaging
No. Camera Application Measuring part Performance References
1 Flir T650sc

Fluke TiS45
Temperature monitoring Ear canal, eye canthus, outer ear, peri-

anal area
R2 = 0.49–0.54
Error = ±0.2℃, ±0.3℃

Stukelj et al. [46]

2 Rotatable infrared filter Temperature screening Body surface Error = ±0.3℃ Jiao and Jiao [47]

3 FLIR SC620 Infrared emissivity Body, trotter, and eye R2 = 0.89–0.93
R2 = 0.94–0.97

Zhang et al. [48] 

4 Hikvision TB-1217A-3’PA Body surface Skin temperature Error = 4.63% Wang et al. [50]

5 Allflex PNL4060 RFID Temperature screening Dorsal surface Error = −0.28℃ to −0.48℃ Cook et al. [49]

6 ThermaCAM E2 FLIR Temperature monitoring Auricle, ear canal, frontoparietal, infra-
orbital, axillar, dorsum, abdomen, anus 
regions

R2 = 0.19–0.34
MSE= 0.12–0.17

Chung et al. [51]
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body temperatures, which often signal the presence of illnesses such as swine fever or respiratory 
infections. Regular IRT scans enable farmers to pinpoint sick individuals or groups, facilitating 
prompt intervention and treatment. Moreover, IRT aids in monitoring respiratory health and 
detecting stress, both of which can compromise pigs’ well-being and increase disease susceptibility. 
Additionally, it helps in tracking disease spread within the farm, segregating infected pigs, and 
evaluating vaccination effectiveness. This technology not only minimizes human contact with 
animals but also allows for data analysis, aiding in trend prediction and enhancing overall farm 
management and disease prevention strategies. However, it should complement, not replace, 
conventional veterinary care, and specialized knowledge is essential for accurate interpretation and 
effective disease management. Fig. 4 shows different pig diseases detection and ROI tracking using 
IRT imaging system.

Islam et al. [52] aimed to explore the early detection of disease signs based on changes in pig 
body temperature. The researchers conducted three inoculations and monitored the piglet body 
temperatures at specific intervals: 0, 2, 6, 12, and 24 hours post-inoculation and, subsequently, every 
24 hours for a period of up to 14 days. In the case of diseased infected piglets, body temperature 
increased significantly at 24 hours, reaching a peak at 72 hours (p < 0.05), and remained elevated 
after that. The findings demonstrated that thermal imaging can serve as a quick and efficient 
method for the early detection of disease signs in pigs. Jorquera-Chavez et al. [53] utilized 
computer-based methods to measure temperature changes in the eye and ear-base temperatures, 
heart rate, and respiration rate in pigs using both thermal IR and conventional images. Sick pigs 
showed higher increases in both eye and ear-base temperatures compared with healthy pigs. The 
average eye temperature in the sick group rose by 8.1℃ between 7:30 h and 14:30 h, while the 
healthy group increased by only 1.4℃ in the same period. The ear-base temperature remained 
consistently 0.8℃–1.8℃ higher in sick pigs across the four measured time points. The findings 
revealed distinct variations in eye temperature, ear-base temperature, and heart rate between 
healthy and sick pigs during the observation period. This could aid the potential of computer vision 
techniques to offer valuable data on physiological changes, enabling early detection of respiratory 

Fig. 4. Pig disease detection and monitoring and measurements using IRT imaging. (A) Temperature differences between control and disease-infected 
pigs, (B) respiratory disease detection using eye, ear, and nose tip temperatures, (C) pig lameness detection using anatomical area temperature variation in 
the legs, and (D) ROI based temperature detection for disease monitoring.
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infections in pigs.
Amezcua et al. [54] used a handheld FLIR T300 camera and captured thermal images of sow 

legs with a second repeated scan. The study showed IRT as a sensitive and non-invasive means to 
distinguish between lame and non-lame sows. Upon converting surface temperature distribution 
into visual images, IRT, previously applied in equine medicine for lameness detection, demonstrated 
its sensitivity. Images were taken at close range (0.5–0.8 meters) and a 0° angle for both legs 
while the sow stood. Although not diagnostic for specific conditions, IRT effectively monitors 
surface blood flow in some animals, indicating changes in temperature related to physiological and 
painful states. Despite variations in mean temperature, the study emphasized the effectiveness of 
differentiating between lame and non-lame sows using IRT imaging. IR imaging emerged as a 
rapid and straightforward technique for assessing temperature distribution on pig heads. Siewert et 
al. [17] suggested that using IR imaging and a specific ROI method allows for the early detection 
of elevated body temperatures in pigs (> 39.5℃) with approximately 86% sensitivity and 85% 
specificity. Noise is minimized by averaging temperatures within these regions. However, because 
of the limited number of animals in the study, caution is advised. Further measurements are 
recommended despite notable differences between the test and control groups. Kammersgaard et al. 
[55] explored the use of IRT to non-invasively estimate body temperature and evaluate the thermal 
condition of newborn pigs. They studied 91 neonatal pigs in loose farrowing pens with floor 
heating at 34℃, exposed to three different ambient temperatures (15℃, 20℃, and 25℃). Utilizing 
1,695 thermogram and 915 rectal temperature measurements, they analyzed the relationship 
between surface temperatures and rectal temperatures in these conditions. The study derived 
maximum, minimum, and average body and ear surface temperatures from these thermogram. 
Statistical analysis revealed a strong correlation ranging between 0.82 and 0.85 between body and 
ear temperatures and rectal temperature. Additionally, they observed a slightly higher maximum 
temperature when capturing a thermogram from the side of the pig compared with the back. Table 
3 summarizes various studies on pig diseases and tracking using the IRT imaging technique.

Knizkova et al. [56] explored thermal imaging cameras for diagnosing orthopedic diseases in 
livestock and poultry. They highlighted the role of IR thermal imaging in animal breeding, aiding 
thermoregulation for improved welfare and assisting in lactation. However, the use of IRT requires 
consideration of limiting factors such as sunlight, moisture, dirt, and weather conditions. Bleul et 
al. [57] evaluated the effectiveness of a low-cost, handheld IRT camera connected to a smartphone 
for disease detection in farm animals. The findings indicated that the camera’s performance was 
limited, resulting in significant measurement variations. Using a higher-quality thermal camera 
for future experiments was recommended. Additionally, the respiratory rate analysis based on 
non-radiometric IR videos might be influenced by fluctuations in lighting conditions, potentially 
affecting measurement sensitivity. 

IRT was explored as a tool for detecting diseases and tracking pigs on livestock farms. 
However, several constraints are associated with its use in this context, such as the requirement for 
calibrated and accurate equipment, the complexity of the operational method, and the influence 
of environmental factors such as sunlight, wind, humidity, and dirt [58,59]. The distance between 
the thermal camera and the animal is another factor affecting temperature measurement accuracy 
[39]. Additionally, varying results in studies may stem from inadequate equipment, differing 
knowledge about its reliable operation, and site-specific factors not considered in assessments [60]. 
Further research and development are necessary to address these constraints and enhance the 
diagnostic value of IRT for pig disease detection and tracking. IRT holds promise for improving 
pig health and disease management in the agricultural sector. While IRT shows promise for early 
disease detection, it is essential to pair it with traditional veterinary care and interpret results using 
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specialized knowledge [58].

Behavior monitoring
Unhealthy pigs may exhibit various non-specific behavioral changes, such as reduced food intake 
and typical sickness behavior. Additionally, certain diseases can lead to specific signs that aid in their 
diagnosis and intervention. These signs include lameness in foot rot, coughing during respiratory 
infections, high-pitched squealing in edema disease, and scratching in pruritic mange. Some 
common early signs of an unhealthy pig include reduced activity, increased resting time, separation 
from other pigs, drooping ears while lying down, huddling, shivering, walking with an arched back 
and drooping tail, and exhibiting labored breathing, thumping, or coughing while sitting [61]. 

In a study by Boileau et al. [62], 1,284 thermal images from 46 pigs engaged in a controlled 
agonistic encounter were analyzed. The thermal camera is positioned approximately 5 meters above 
at an angle of 30 degrees. An average temperature of 31.6℃ ± 0.3 with a coefficient of variation 
(CV) of 2.75 ± 0.03% was found using the ROIs in IRT images during different behavior patterns. 
The findings indicate that the dorsal plane in pigs is effective for detecting surface temperature 
changes in response to stress. Utilizing the dorsal plane instead of the eye or ear for IRT imaging 
simplifies its application in research and practical settings, offering a non-invasive method to 
gauge additional welfare indicators. Costa et al. [63] evaluated the relationship between pig activity 
and environmental factors in a mechanically ventilated barn for 350 fattening pigs. The study, 
conducted over 30 days, employed an IR-sensitive CCD camera mounted 5 meters above the 
floor. The analysis revealed a significant correlation between pig activity and ventilation rate (p < 
0.01), temperature (p < 0.01), and humidity (p < 0.001). Fluctuations in ventilation, followed by 
temperature and humidity changes, significantly impacted the pig behavior patterns, affecting their 
distribution within the pen. In a study by Garrido-Izard et al. [64], the behavior of 30 Landrace pigs 
over an 81-day fattening period was explored by integrating their thermal and food intake patterns. 
The ear skin temperatures revealed a clear relationship between mean temperature and its variability 
(r = 0.83), distinguishing pigs with distinct thermal patterns. Those with higher temperatures 
displayed less variability, and vice versa. Analysis of feeding station data demonstrated consistent 
relationships among frequency, size, and duration parameters, revealing significant differences in the 
feeding strategies of pigs.

Courville et al. [65] developed a learning algorithm to identify mounting behavior in pigs 
using visible light image data features. They analyzed recorded videos, isolating frames displaying 
mounting behavior as positive dataset samples, while images depicting inter-pig adhesion and 
separated pigs were categorized as negative samples. Viazzi et al. [66] developed an automated 
system using image processing to detect aggressive behavior in pigs continuously. With a dataset 
containing 150 aggressive interaction episodes and 150 non-aggressive episodes from video 
recordings, they used linear discriminant analysis (LDA) based on motion intensity and occupation 
index, achieving successful aggression classification. Through cross-validation, the system 

Table 3. Outline of various studies on pig diseases and tracking using infrared thermography (IRT) imaging technique
No. Camera Application Measuring part Performance References

1 Thermo Tracer TH5104R Disease diagnosis Head, body, and tail region p <0.05 Islam et al. [52]

FLIR AX8 Disease diagnosis Eye, ear, nose LSD 0.6–0.84 Jorquera-Chavez et al. [53]

3 FLIR T300C Disease diagnosis Foot - Amezcua et al. [54]

4 VarioCAM
IR Flex CAM R2

Health monitoring Head Error= ±1.5℃ to ± 2.0℃ Siewert et al. [17]

5 Testo T880-3 Health monitoring Ear, head, armpit R2 = 0.82–0.85 Kammersgaard et al. [55]
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attained 89.0% accuracy, with 88.7% sensitivity and 89.3% specificity. Lee et al. [67] introduced 
an economical and non-invasive prototype system for automatic monitoring in commercial pig 
pens. Their system utilized a Kinect depth sensor to identify aggressive behavior among pigs. This 
system employed a detection and classification module, which used a two-step approach with 
binary-classifier support vector machines (SVMs) to identify and categorize aggressive actions, 
including head-to-head or body knocking and chasing. Their experimental findings demonstrated 
the effectiveness of this method in cost efficiency and accuracy, with detection and classification 
rates of 95.7% and 90.2%, respectively. Detecting pig behavior is crucial for effectively identifying 
abnormalities, including diseases and abnormal activities, thereby safeguarding the overall health 
and welfare of pigs [68].

Pig behavior plays a crucial role in the productivity, health, and welfare of pig farming [69]. These 
behavior patterns are essential for timely diagnosis and intervention. The ability to continuously 
monitor and detect pig behavior contributes not only to the early identification of diseases and 
abnormalities but also plays a crucial role in ensuring the overall health and welfare of pigs in 
commercial farming settings [70]. Both image-based recognition and video-based approaches, 
aimed at extracting spatial–temporal features, contribute to achieving superior performance in this 
context [71]. Nevertheless, numerous challenges persist in pig behavior recognition. Addressing 
issues related to excessive crowding and captivity among pigs, leading to the loss of major behavioral 
characteristics, is a significant challenge [69,72]. Enhancing the accuracy of recognizing similar and 
multi-behaviors in complex environments remains a priority [73]. Additionally, the fast-moving 
pigs result in body deformation and drift, further complicating the task of behavior recognition 
[71].

Remote application and sustainable pig production
Remote health monitoring in pig farming has gained prominence in animal welfare and farm 
management by capturing thermal images from a distance, revealing temperature variations 
indicative of pig health and well-being [74]. This innovative technology enables early disease 
detection, even before visible symptoms appear, reducing the risk of disease spread within the farm. 
Additionally, it assesses comfort levels, identifies opportunities to optimize feed efficiency, and 
offers automated, continuous monitoring [70]. Data analysis software detects anomalies and trends, 
allowing for comprehensive pig health assessments, while automated alerts prompt timely action 
[75]. This approach contributes to better pig welfare, minimizes medication use, lowers mortality 
rates, and improves feed efficiency, all while integrating thermal data with other farm metrics for a 
complete performance overview. Oh et al. [76] explored IRT as a potential diagnostic tool for early-
stage ASF detection in pigs. They observed that ASF-infected pigs exhibited an increase in skin 
temperature, rising from 35.0℃ to 38.5℃ between 2 and 3 days post-infection. The IRT approach 
holds potential for pig farms at high risk of ASF outbreaks. While the study focused on controlled 
conditions, further research is needed to determine optimal skin and ambient temperatures across 
different age groups. This will ensure the effective application of the IRT technique in real-world 
pig farm settings.

Remote health monitoring using thermal imaging in pig farming offers a non-invasive and 
effective method to monitor pig health, improve welfare, and optimize farm management practices. 
This technology has the potential to revolutionize how farmers care for their pigs, ensuring better 
health outcomes and increased efficiency in the industry [45]. Integrating IRT into sustainable 
pig production offers multifaceted benefits. Through real-time health monitoring, IRT enables 
early detection of anomalies and promotes timely intervention, reducing antibiotic use. It enhances 
energy efficiency by optimizing temperature control and minimizing heat loss, contributing to 
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environmentally friendly operations. IRT also aids in resource management, precision farming, 
and stress reduction, ultimately improving animal welfare and productivity. However, successful 
implementation requires addressing initial costs, maintenance, and ethical considerations. Overall, 
IRT empowers sustainable pig farming by fostering efficient, eco-friendly practices while ensuring 
animal well-being.

DEEP LEARNING ALGORITHMS FOR INFRARED THER-
MOGRAPHY APPLICATION
The convergence of deep learning and IRT has ushered in a new era of temperature-based analysis. 
Inspired by the human brain, deep learning algorithms have emerged as potent tools for unlocking 
insights within thermal images. These algorithms are reshaping thermal data interpretation, 
enhancing accuracy and efficiency across diverse fields. With their multi-layered neural networks, 
deep learning excels at uncovering intricate patterns in complex datasets. In IRT, these algorithms 
provide a transformative approach, revealing subtle thermal cues that evade human detection. This 
capacity enhances anomaly detection, behavior prediction, and informed decision-making. 

In recent times, deep learning and IRT have held immense promise in various domains. From 
predicting stress levels in animals to disease detection, disease symptoms, behavior patterns, daily 
activity monitoring, food habit analysis, etc., the applications are extensive and far-reaching. Fig. 
5 shows deep learning algorithm application along with IRT imaging to detect pig body parts, 
diseases monitoring, tracking, and real-time application. Küster et al. [77] introduced an automated 
approach for evaluating thermal images of neonatal piglets to assess body temperature. This method 
integrates climate sensor data with thermal images, considering surface emissivity and camera-to-
object distances for accuracy. It utilizes a convolutional deep neural network (CDNN) (YOLOv3-
SPP) to identify key areas in piglet images, distinguishing them from the background using 
the Otsu algorithm. YOLOv3-SPP achieved precise detection of trained body parts with 0.78 
precision, 0.98 recall, and a mAP of 0.97. The regression method exhibited a strong correlation of 
body temperature estimation with an R2 = 0.774. Lu et al. [78] proposed an automated method 
for extracting ear base temperature from top-view thermal images of piglets. They developed a 
SVM classifier to identify piglet head parts. Using the head contour shape, they located two ear 
base points. Ear base temperatures were determined by extracting the two highest temperatures 
within circles centered on these points. The approach achieved high accuracy, with less than a 0.4℃ 
inaccuracy for 97% and 98% of left and right ear bases, respectively. However, variations in head 
and ear positions in different photos led to occasional incorrect ear temperature readings. Wang 
et al. [79] introduced the SwinEAR technique for measuring pig IR temperature. This method 
employs pig ear segmentation and multi-variable calibration. The study examined environmental 
factors, such as temperature, humidity, detector drift, target-object distance, and emissivity, affecting 
the IR temperature model. The findings demonstrated a substantial enhancement in temperature 
measurement accuracy through the IR temperature calibration model. The mean absolute error 
dropped from 0.89℃ to 0.29℃ compared with the built-in IR thermal imager module.

Despite this improvement, environmental factors may still impact temperature measurement 
precision. Jia et al. [80] introduced a non-contact IRT approach for measuring skin temperature 
in specific ROIs but showed limitations in predicting internal temperature reliably. They examined 
the impact of air temperature and humidity on ROI temperature and utilized this data to develop 
a prediction model employing backpropagate neural net (BPNN), random forest (RF), and 
support vector regression (SVR) algorithms. When environmental factors were accounted for, 
SVR yielded the best results, achieving a maximum error of 0.478℃, minimum error of 0.124℃, 
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and MSE of 0.159℃. Future research should expand dataset diversity, encompassing varied 
seasons to capture temperature and humidity fluctuations more comprehensively. Modeling efforts 
should be grounded in broader datasets, enhancing year-round applicability. As pig farm setups 
differ, investigations should dynamically adjust environmental factors to accommodate specific 
circumstances, considering varying degrees of influence.

Subsequent difference imaging significantly reduces variable offset errors present in each 
IRT image. Xie et al. [81] proposed an IRT and visible imaging (VI) method to develop a deep 
learning-based fusion technique for measuring temperatures across various pig body parts. They 
identified IRT measurement regions on pig skin and created an automatic detection method using 
VI and YOLOv4 models for body part recognition. Utilizing semantic segmentation, they extracted 
pig body surface temperatures through the fusion approach. Temperatures ranged from 33.6℃ 
on the nose to higher values on the tail root, ear root, anal, and forehead, with means of 36.2℃, 
37.0℃, 37.1℃, and 36.0℃, respectively. Significant disparities in minimum temperatures were 

Fig. 5. Deep learning algorithms for IRT application. (A) Pig pody parts detection using IRT and deep learning algorithms, (B) bounding box of detection 
and Otsu method to segment the head part, (C) detection of target ROIs and temperature variations, (D) partially visible image and IRT in different body parts 
detection, (E) ROI-based temperature detection fro specific body area, (F) multiple point-based temperature detection on pig body surfaces, and (G) automatic 
region measurement and body temperature detection.



Thermal imaging and computer vision technologies for pig husbandry

46  |  https://www.ejast.org https://doi.org/10.5187/jast.2024.e4

observed between automatic and manual temperature measurements. Despite this, the innovative 
model shows potential for effective monitoring of abnormal body temperatures. Xiong et al. [82] 
introduced IRT and machine learning to predict neonatal piglet rectal temperature. They collected 
data on rectal temperatures and thermal ear images at various time points after birth. The average 
rectal temperature decreased by 5.1℃ post-birth, hitting a low of 33.6℃ after around 30 minutes, 
significantly below the birth temperature of 38.7 ± 0.8℃. Evaluating the model, they classified data 
by piglet gender, initial weight, and environmental factors (room temperature, humidity, wet bulb 
temperature). The Lasso regressor machine-learning model outperformed direct regression models 
with a prediction standard error of about 1.5℃, enhancing accuracy by around 0.2℃. However, 
potential factors beyond consideration could lead to unaccounted variations among individual pigs 
within each litter.

Caldara et al. [83] explored the impact of the environment on newborn piglet weight using IRT 
imaging and variance analysis. Thermal images were analyzed for multiple point-based temperature 
detection. Piglet heat loss was studied shortly after birth and emphasized the importance of 
maintaining a comfortable birthing environment. After 15 minutes from birth, the body surface 
temperature of piglets showed significant negative correlations (−0.824 and −0.815) with the 
ambient temperature and humidity. The study highlighted significant thermal exchange between 
piglets and the farrowing crate floor, potentially impacting their heat loss and overall performance. 
IRT images indicated that piglets with lower birth weights experienced more temperature drop 
within their first hour of life compared with others. A similar study by Jensen et al. [84] also found 
that the sow has a strong effect on piglet rectal temperature at birth, but this effect retreated by 2 
hours after birth. This suggests that IRT may play a role in monitoring piglets’ thermoregulation in 
the first few hours after birth. de Oliveira et al. [85] developed a fuzzy model to predict respiratory 
frequency and rectal temperature in pigs subjected to acute and chronic heat stress. The model 
used air dry bulb temperature and average surface temperature as input variables and respiratory 
frequency (movements/minute) and rectal temperature as output variables. The Mamdani inference 
method was used with six rules and the center of gravity defuzzification technique. The model was 
evaluated using experimental data and showed satisfactory efficiency in both respiratory frequency 
and rectal temperature determination, with R2 values of 0.997 and 0.951 for acute stress and 0.993 
and 0.964 for chronic heat stress, respectively. 

Tabuaciri et al. [86] suggested an effective regression method for diagnosing hypothermic 
piglets and a practical alternative for assessing core body temperature in newborns. Emphasizing 
immediate attention for all shivering piglets, particular focus should be directed toward those 
exhibiting low IR body temperatures within 24 hours of birth. The ear-tip temperatures remained 
consistently low (averaging 34.2 to 34.4℃), and even in warm summer conditions with heat lamps, 
9% of piglets displayed shivering, with higher rates in cooler months. The correlations between ear 
bases and tips (0.33–0.80) were weaker, as extremity temperatures tend to drop in cold conditions 
to conserve core body heat. da Fonseca et al. [87] proposed a predictive model for assessing stress 
in piglets across various conditions such as pain, cold/heat, hunger, and thirst using an IRT camera 
placed at a distance of 0.30 cm from the measurement site. By considering minimum and maximum 
IR skin temperatures along with piglet sex, they constructed a machine learning and paraconsistent 
logic model. The decision tree model demonstrated robust accuracy, detecting cold and thirst stress 
with precisions of 100% and 91%, respectively. Additionally, hunger stress prediction achieved an 
accuracy of 86% using only minimum temperature. The model performance in predicting pain 
stress (< 50%) was notably limited or potentially unattainable. 

Table 4 summarizes various studies on deep learning algorithms for IRT applications. Graciano 
et al. [24] used IRT imaging to detect edema in pigs on a farm, showcasing its efficacy in early 
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arthritis diagnosis. The need for automatic pig disease, behavior, and size assessment has increased 
due to extensive phenotyping. Although automated tracking in labs has proven effective, challenges 
arise when dealing with diverse agricultural settings and large animal groups [88]. By harnessing the 
prowess of deep learning, IRT can transcend its traditional boundaries and unlock new dimensions 
of understanding temperature-based phenomena. The fusion of deep learning algorithms with IRT 
presents compelling advantages such as heightened accuracy, efficient data analysis, versatility, and 
unbiased interpretation. However, challenges encompass data dependency, computational demands, 
interpretability concerns, overfitting risks, and the need for continuous learning. Striking a balance 
between these benefits and drawbacks is crucial as this synergy offers remarkable potential to 
elevate temperature-based analysis across diverse fields.

COMMERCIAL UTILIZATION OF INFRARED THERMOGRA-
PHY IN PIG HEALTH MONITORING
The economic prospects of monitoring pig diseases and crush symptoms hold substantial value 
within the global pig industry, which is a multi-billion-dollar sector. The demand for technologies 
that enhance pig health and productivity is substantial. Profitable avenues include creating and 
selling monitoring devices, offering data interpretation services to farmers, and establishing data 
analytics companies. In recent years, pig farming has seen the emergence of various innovative 
commercial products aimed at improving efficiency, animal welfare, and overall farm management. 
These products cater to different aspects of pig farming, ranging from health monitoring to 
environmental control.

Fever screening systems
InfiRay (IRay Technology, Yantai, China) concentrates on developing IR thermal imaging 
technologies and manufacturing relevant products with completely independent intellectual property 
rights. InfiRay thermal cameras feature non-contact measurement, accurate measurement, and 
quick measurement of multiple points. They can effectively improve the measurement efficiency and 
avoid causing animal discomfort, which is suitable for temperature measurement of scaled farms. 
For large farms, the AT300 thermal cameras can be installed on robots on suspended rails for patrol 
temperature measurement of all animals. ATS300 fever screening systems have a measurement 
distance of 1–5 m with a measurement accuracy of ±0.3℃ and flux of 100 objects/min.

Table 4. Outline of various studies on pig diseases and tracking using the IRT imaging technique
No. Camera Measuring part Method used Performance References

1 FLIROnePro Head, back, back end YOLOv3-SPP + Otsu R2 = 0.774 Küster et al. [77]

2 Fluke TI32 Head, ear SVM Acc: 0.97–0.98 Lu et al. [78]

3 MAG64AI Ear Semantic segmentation Acc: 0.921 Wang et al. [79]

4 Fluke Ti-300 Skin BPNN, RF, SVR MSE = 0.159℃ Jia et al. [80]

5 Fotric 287-L20 Body surface Semantic segmentation and YOLOv4 mAP = 94.20 Xie et al. [81]

6 Fluke Ti55 Body surface Fuzzy model R2 = 0.95–0.99 Oliveira et al. [85]

7 FLIR T450sc Back, head, ears Regression models Error= 1.5℃–1.7℃ Xiong et al. [82]

8 Testo 876-1 Body surface Variance analysis R2 = 0.81–0.82 Caldara et al. [83]

9 Flir ThermaCam Body surface Regression method R2 = 0.38–0.80 Tabuaciri et al. [86]

10 Testo 876-1 Skin Decision tree Acc: 0.91–0.99 da Fonseca et al. [87]
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Temperature/humidity logger
The iButton® temperature/humidity logger (DS1923, Maxim Integrated Product, Dallas, TX, 
USA) is a durable and self-contained system that measures and records temperature and/or 
humidity in a secure memory section. Users can set the recording interval, with storage capacity for 
either 8192 8-bit readings or 4096 16-bit readings. The intervals can range from 1 second to 273 
hours. It also has 512 bytes of SRAM for specific data and 64 bytes for calibration. Data collection 
missions can be scheduled to start immediately, after a set delay, or triggered by a temperature alarm. 
Password protection ensures memory and control access. To measure pig ear temperature, iButtons 
(DS1923) can be used in farm conditions with a resolution of 0.5℃ and a reported accuracy of 
±0.5℃[89], as shown in Fig. 6. iButton can be fastened to the ID tag on the ear of each animal in 
such a way that it was in contact with the inner part of the ear.

Wearable and implantable devices
Various implantable devices and evolving wearables offer temperature-sensing solutions. Implants, 
including rumen-placed ones in cattle and microchips in pigs, monitor body temperature. Some 
microchips enable easy reading via radio telemetry. Comparably, these devices align well with rectal 
temperature, often measuring around 1℃ lower. While diverse implantable options exist, they 
necessitate invasive procedures. An innovative wearable, positioned on cattle legs, closely gauges 
body surface temperature and exhibits a strong correlation with rectal readings [90]. In adult pigs, a 
self-sustaining pacemaker for cardiac pacing was successfully implanted, utilizing energy harvested 
from the pig’s own heartbeat [91]. Pigs, given their anatomical similarity to humans, serve as 
valuable models for testing medical devices and treatments before human application. A new model 
has been effectively adopted in the development and assessment of neural prosthetic devices [92]. 
These advancements collectively contribute to the modernization and sustainability of pig farming, 
meeting the demands of a growing global population while ensuring ethical and responsible 
farming practices. Joosen et al. [93] employed a torso-mounted sensor to measure a pig’s heart 
rate, while Suresh et al. [94] utilized recommended pulse sensors for their automatic cattle health 
monitoring system. Antanaitis et al. [95] created an experimental device based on piezoelectric 
and electrocardiogram (ECG) sensors to measure both respiration and heart rates. These methods 
involve close contact with the skin of animals and are generally considered high-stress techniques, 
which should be taken into account. Wearable devices have also been developed for tracking and 
tracing animals, such as wireless ear tags that can monitor body temperature, physical signs, and pig 
mating cycle data [96].
 

Fig. 6. Wearable temperature sensor. (A) DS1923 iButton loggers, (B) desktop reader for DS1923 iButton, and (C) attaching the sensor to the monitored 
animal.
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FUTURE PERSPECTIVES AND CHALLENGES
As the field of pig farming continues to evolve, advanced sensors and computer vision-based 
thermal imaging techniques hold promising potential for enhancing pig health and management. 
These innovations offer valuable insights into disease detection, piglet crush monitoring, and overall 
animal well-being [71]. However, several key perspectives and challenges shape the future trajectory 
of this technology.

Key Perspectives:
• Enhanced Disease Detection: Advanced sensors and thermal imaging can provide real-

time data on pig body temperatures, aiding in the early detection of diseases. This proactive 
approach enables timely intervention and disease prevention, contributing to healthier herds 
and improved farm productivity [58].

• Automated Symptom Monitoring: Computer vision-based techniques can automate the 
monitoring of diseases and behavior patterns, ensuring rapid response to any distress signals. 
This can lead to more efficient care and reduced stress for animals [71].

• Remote Monitoring: Remote access to thermal imaging data allows farmers to monitor their 
herds from afar, facilitating prompt decision-making and reducing the need for constant on-
site presence [97].

• Innovative Management Practices: Data-driven insights based on IRT technologies can drive 
innovative management practices, promoting animal welfare, sustainable farming, and resource 
optimization [98].

• Precision Livestock Farming: The integration of advanced sensors and computer vision with 
data analytics offers precision livestock farming. Farmers can gain deeper insights into pig 
behavior, health trends, and environmental conditions, enabling optimized management 
strategies [92].

Challenges:
• Accuracy and Reliability: Ensuring the accuracy and reliability of IRT sensor measurements 

and thermal imaging interpretations is crucial for effective disease detection and symptom 
monitoring [73,82].

• Data Management and Analysis: Handling an influx of IRT data generated by advanced 
sensors and thermal imaging requires robust data management and sophisticated analytical 
tools to extract meaningful insights [41].

• Implementation Costs: The initial investment for adopting advanced sensors and computer 
vision systems may pose financial challenges for smaller pig farms [32,57].

• Animal Behavior Variability: Pig behavior can vary widely, and some animals might react 
differently to sensor attachment or thermal imaging, impacting data collection consistency 
[71,73].

• Ethical and Privacy Concerns: The use of technology for monitoring animals raises ethical and 
privacy concerns that need careful consideration, particularly regarding data collection and 
sharing.

• Integration and Training and Regulatory Considerations: Incorporating IRT technologies 
into current farm operations and training farm staff for proficient data interpretation can pose 
complexities. It is crucial to adhere to pertinent regulations regarding animal welfare, data 
privacy, and technology usage standards.

The integration of advanced sensors and computer vision-based thermal imaging holds significant 
promise for pig disease and piglet crush symptom monitoring. While challenges exist, addressing 
these issues can lead to transformative advancements in pig farming, benefiting both animal health 
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and farm productivity. It requires a collaborative effort between technology developers, researchers, 
and the farming community to realize the potential of these innovations fully.

CONCLUSION
In pig farming, the integration of advanced sensors and computer vision-based thermal imaging 
techniques represents a remarkable leap forward in disease detection and crush symptom 
monitoring. This synergy of technology offers a proactive and data-driven approach to pig health 
management, promising improved animal well-being and enhanced farm productivity. While 
challenges such as data accuracy, ethical considerations, and implementation costs remain, they 
serve as stepping-stones toward refining these innovations for practical application. As we stand at 
the cusp of a new era in precision livestock farming, the potential benefits of these advancements 
underscore a path toward more efficient, humane, and sustainable pig farming practices. Through 
collaboration, research, and responsible implementation, the future holds the promise of healthier 
herds, reduced disease impact, and elevated standards of care, all made possible by the fusion of 
advanced sensors and cutting-edge computer vision-based thermal imaging techniques.
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