Table 3. Time series models analysis on forage production of sorghum-sudangrass hybrid with weather variables or some extreme weather events (heavy rainfall and typhoon) as independent variables

Models Variables Estimate R2 RMSE MAPE Ljung-Box Q
1 Forage production (kg/ha) Intercept −61.11 0.7705 2,941.91 12.69 22.74 (p = 0.158)
AR 1 −0.45*
D 1
2 Forage production (kg/ha) Intercept 1,568.90 0.6057 3,784.55 14.80 28.06 (p = 0.045)
AR 1 −0.46*
D 1
GDD (°C) AR 0 6.16*
AR 1 6.65*
3 Forage production (kg/ha) Intercept 1,390.25 0.6101 3,773.65 14.71 26.25 (p = 0.057)
AR 1 −0.37
D 1
GDD (°C) AR 0 6.88*
AR 1 7.32*
Accumulated rainfall (mm) AR 0 −3.55*
AR 1 −3.56*
4 Forage production (kg/ha) Intercept 1,568.47 0.6058 3,789.21 14.79 27.92 (p = 0.046)
AR 1 −0.37
D 1
GDD (°C) AR 0 6.18
AR 1 6.66
Heavy rainfall 2 = 1 (over 1,000 mm) −71.09
5 Forage production (kg/ha) Intercept 1,416.63 0.6061 3,787.84 14.72 28.20 (p=0.043)
AR 1 −0.37
D 1
GDD (°C) AR 0 6.15
AR 1 6.69
Typhoon = 1 (frequency ≥ 1) −347.74
p < 0.05.
RMSE, root mean square error; MAPE, mean absolute percentage error; AR, autoregressive- to forecast the dry matter yield using a linear combination of past value; D, differencing time lag- to make a non-stationary time series stationary for dry matter yield; GDD, growing degree days.