Article Type: Research article

Article Title (within 20 words without abbreviations): Complete genome sequence of serotype 3 *Streptococcus suis* INT-01, isolated from a domestic pig in South Korea

Running Title (within 10 words): Genomic sequence of *Streptococcus suis* INT-01

Author: Seon Young Park\(^{a,b,1}\), In Hwang Kim\(^{c,1}\), Hyun Jin Yu\(^{c}\), Hyoung Rok Paik\(^{c}\), Jee Soo Son\(^{c,*}\), Ji Hyung Kim\(^{a,*}\)

Affiliation:
\(^a\) Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
\(^b\) Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
\(^c\) iNtRON Biotechnology, Inc., Seongnam, 13202, Republic of Korea

ORCID: Seon Young Park (0000-0002-1351-7557)
In Hwang Kim (0000-0002-0141-5537)
Hyun Jin Yu (0000-0001-9930-0318)
Hyoung Rok Paik (0000-0002-6343-2383)
Jee Soo Son (0000-0003-0994-2105)
Ji Hyung Kim (0000-0002-7921-2625)

Competing interests: The authors declare no conflict of interest.

Funding sources: This study was funded by the KRIBB Initiative programs, the National Research Foundation (NRF) of Korea (NRF-2020R1F1A2068827), the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (20180430) funded by the Ministry of Oceans and Fisheries, and ATC Program grant 10076996 from the Ministry of Trade, Industry, and Energy of Korea.

Acknowledgements: Not applicable.

Availability of data and material: Upon reasonable request, the datasets of this study can be available from the corresponding author. *Streptococcus suis* INT-01 has been deposited in the Culture Collection of Antimicrobial Resistant Microbes (CCARM) as CCARM4634.

Authors’ contributions:
Conceptualization: Kim JH, Son JS.
Data curation: Park SY, Kim IH, Yu HJ.
Formal analysis: Park SY, Kim IH.
Methodology: Park SY, Kim IH, Yu HJ, Paik HR.
Software: Park SY, Kim IH.
Validation: Park SY, Kim IH, Paik HR.
Investigation: Park SY, Kim IH, Kim JH.
Writing - original draft: Park SY, Kim IH, Kim JH.
Writing - review & editing: Kim JH, Son JS.

Ethics approval and consent to participate: This article does not require IRB/IACUC approval because there are no human or animal participants.

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints):
Ji Hyung Kim (Kim JH), Jee Soo Son (Son JS)
<table>
<thead>
<tr>
<th>Email address – this is where your proofs will be sent</th>
<th>kzh81@kribb.re.kr (Kim JH), jsson@intron.co.kr (Son JS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Email address</td>
<td>Phagekzh81@gmail.com (Kim JH); rheason@hanmail.net (Son JS)</td>
</tr>
<tr>
<td>Address</td>
<td>(Kim JH) Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daedeon, 34141, Republic of Korea (Son JS) iNtRON Biotechnology, Inc., Seongnam, 13202, Republic of Korea</td>
</tr>
<tr>
<td>Cell phone number</td>
<td>(Kim JH) +82-10-7272-4561; (Son JS) +82-10-2031-4637.</td>
</tr>
<tr>
<td>Office phone number</td>
<td>(Kim JH) +82-42-879-8272; (Son JS) +82-31-739-5309</td>
</tr>
<tr>
<td>Fax number</td>
<td>(Kim JH) +82-42-879-8498; (Son JS) +82-31-736-7246</td>
</tr>
</tbody>
</table>
Abstract

Streptococcus suis is a major pig pathogen causing severe economic losses to the swine industry. This study aimed to analyze the genome of *S. suis* strain INT-01 isolated from a domestic pig in Korea. We found that the genome of strain INT-01 contains 2,092,054 bp, with a G + C content of 41.3%, and the capsular polysaccharide synthesis locus of this strain is almost identical to that of serotype 3 *S. suis* strain 4961 isolated from China, suggesting that these isolates can be classified as serotype 3. Genomic analyses revealed that strain INT-01 is an epf⁺/mrp⁺/sly⁻ *S. suis*, which is the most prevalent genotype in Korea, and several virulence-related genes associated with the pathogenicity of *S. suis* were also detected. The genomic information of strain INT-01 may provide important insights into the development of control strategies against *S. suis* infections in Korea.

Keywords (3 to 6): *Streptococcus suis*, Pathogen, Genotype, Control strategy, Swine industry
Streptococcus suis is a major pig pathogen causing severe economic losses to the swine industry and is considered a prominent zoonotic agent [1]. Thus far, 35 capsular serotypes have been reported for this species, and its distribution among pigs geographically varies [2]. Several virulence factors have been reported for S. suis, and extracellular protein factor (epf), muraminidase-released protein (mrp), and suilysin (sly) are considered to be the major virulence-associated genes underlying the pathogenesis of this bacterium [3]. Although a recent study has reported that serotype 3, with the epf/mrp+/sly− genotype, is the most prevalent serotype among Korean isolates [1], its genomic characteristics remain unknown.

In this study, strain INT-01 was isolated in 2018 from the tonsillar swab of a growing pig with respiratory clinical signs that had been reared at a private farm in Yesan (Chungcheongnam-do, Korea). The α-hemolytic isolate displayed 99.7% 16S rRNA identity to S. suis S735T (AY585196), thus suggesting that strain INT-01 is a member of S. suis. The antimicrobial susceptibility of strain INT-01 was evaluated according to the testing guidelines and interpretive breakpoints in the M100S document of the Clinical and Laboratory Standards Institute [4]. The isolate was resistant to tetracycline, erythromycin, gentamicin, lincomycin, and levofloxacin. Its genome was sequenced using the PacBio RS II system (Pacific Biosciences, CA, USA) with P6-C4 chemistry by constructing a 20 kb SMRTbellTM template library, using the DNA/polymerase binding kit P6 (Pacific Biosciences, CA, USA) in accordance with the manufacturer’s instructions. Genome assembly of the filtered reads (1,245,264,540 bp, 153,790 reads, N₅₀, and 10,696 bp) was performed using the PacBio HGAP (v.2.3) pipeline with default settings, using the de novo assembly protocol, and the reads (2,113,334 bp, 409×) were polished using Quiver. Annotation was performed using the Prokaryotic Genome Annotation Pipeline (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/books/NBK174280/).

The genome of INT-01 was found to comprise 2,092,054 bp (41.3% G + C content), encoding 2,054 coding sequences, 12 rRNAs, 57 tRNAs, and 4 non-coding RNAs (Table 1). Genome similarities among INT-01 and other S. suis strains were assessed using ANI Calculator [5], and the genome was found to be 96.9% similar to that of S. suis S735T (NC_018526, serotype 2); furthermore, this strain is most similar to S. suis ST3 (NC_015433, serotype 3) [6,7] (Figure 1). Moreover, the capsular polysaccharide synthesis
(cps) locus of INT-01 is almost identical (> 99.9%) to that of strain 4961 (JF273646, serotype 3), thus suggesting that INT-01 can be classified as serotype 3 [8].

Major virulence-associated genes in INT-01 were manually compared with those of the \textit{S. suis} strains available in the GenBank database, and other virulence-associated and antibiotic-resistant genes were screened as previously described [9]. Consequently, strain INT-01 was identified to be an \textit{epf}/\textit{mrp}^+/\textit{sly}^- \textit{S. suis}, which is the most prevalent genotype in Korea [1]. Additionally, several virulence-associated factors of the genus \textit{Streptococcus}, including choline-binding protein D (\textit{cbpD}), fibronectin/fibrinogen-binding proteins (\textit{fbp54/pavA}), glyceraldehyde-3-phosphate dehydrogenase (\textit{plr/gapA}), extracellular hyaluronidase (\textit{hylA}), periplasmic serine endoprotease (\textit{htrA/degP}), trigger factor (\textit{tig/ropA}), and zinc metalloproteinase (\textit{zmpC}) were detected. However, no genetic determinants associated with antibiotic resistance were detected. These results suggest that other unknown resistance determinants are present in INT-01, warranting further investigation. To our knowledge, this is the first study to report the genome of \textit{S. suis} from Korea. The present results potentially provide important insights into the development of control strategies against \textit{S. suis} infections by providing the genomic information of the most prevalent type of the pig pathogen in Korea.

\textit{Streptococcus suis} INT-01 has been deposited in the Culture Collection of Antimicrobial Resistant Microbes (CCARM) as CCARM4634, and its genome has been deposited in the DDBJ/ENA/GenBank database under accession number CP041994.1.

\textbf{Acknowledgments}

This study was funded by the KRIBB Initiative programs, the National Research Foundation (NRF) of Korea (NRF-2020R1I1A2068827), the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (20180430) funded by the Ministry of Oceans and Fisheries, and ATC Program grant 10076996 from the Ministry of Trade, Industry, and Energy of Korea.
References

https://doi.org/10.1016/j.margen.2017.09.004
Tables and Figures

Table 1. Characteristics of the *Streptococcus suis* strain INT-01 genome

<table>
<thead>
<tr>
<th>Features</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome Size (bp)</td>
<td>2,092,054</td>
</tr>
<tr>
<td>G+C content (%)</td>
<td>41.3</td>
</tr>
<tr>
<td>Contigs</td>
<td>1</td>
</tr>
<tr>
<td>Total genes</td>
<td>2,073</td>
</tr>
<tr>
<td>tRNAs</td>
<td>58</td>
</tr>
<tr>
<td>rRNAs (5S, 16S, 23S)</td>
<td>4, 4, 4</td>
</tr>
<tr>
<td>ncRNAs</td>
<td>4</td>
</tr>
<tr>
<td>Protein-coding genes</td>
<td>1,929</td>
</tr>
<tr>
<td>Pseudogenes</td>
<td>70</td>
</tr>
</tbody>
</table>
Figure 1. Phylogenetic trees constructed on the basis of OrthoANI values determined with the available complete genomes of *S. suis* INT-01 and other species in the *S. suis* strains. The result of each two-strain comparison is provided, where the diagonals departing from each strain meet, e.g., the OrthoANI value between *S. suis* INT-01 and *S. suis* ST3 is 99.95%. (2-column fitting image).