ARTICLE INFORMATION

<table>
<thead>
<tr>
<th>Article Type</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article Title (within 20 words without abbreviations)</td>
<td>Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle</td>
</tr>
<tr>
<td>Running Title (within 10 words)</td>
<td>Enteric and anaerobic methane suppression by monensin and coprophagous insects</td>
</tr>
<tr>
<td>Author</td>
<td>Junichi Takahashi¹, Mitsuhiro Iwasa²</td>
</tr>
</tbody>
</table>
| Affiliation | 1 School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
2 Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan |
| ORCID (for more information, please visit https://orcid.org) | Junichi Takahashi (https://orcid.org/0000-0003-3008-843x)
Mitsuhiro Iwasa (http://orcid.org/0000-0002-8944-9319) |
| Competing interests | No potential conflict of interest relevant to this article was reported. |
| Funding sources | JSPS KAKENHI Grant Number JP20380147, Discretionary budgets of the President of Obihiro University of Agriculture and Veterinary Medicine. |

Availability of data and material

Upon reasonable request, the datasets of this study can be available from the corresponding author.

Authors’ contributions

Conceptualization: Takahashi J.
Data curation: Takahashi J, Iwasa M
Formal analysis: Takahashi J, Iwasa M.
Methodology: Takahashi J, Iwasa M.
Software: Takahashi J
Validation: Takahashi J
Investigation: Takahashi J, Iwasa M.
Writing - original draft: Takahashi J, Iwasa M,
Writing - review & editing: Takahashi J.

Ethics approval and consent to participate

This article does not require IRB/IACUC approval because there are no human and animal participants.

CORRESPONDING AUTHOR CONTACT INFORMATION

<table>
<thead>
<tr>
<th>For the corresponding author (responsible for correspondence, proofreading, and reprints)</th>
<th>Fill in information in each box below</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name, middle initial, last name</td>
<td>Junichi Takahashi</td>
</tr>
<tr>
<td>Email address – this is where your proofs will be sent</td>
<td>junichi@obihiro.ac.jp</td>
</tr>
<tr>
<td>Secondary Email address</td>
<td>Junichi1320@hotmail.com</td>
</tr>
<tr>
<td>Address</td>
<td>Obihiro, Hokkaido 080-0872, Japan</td>
</tr>
<tr>
<td>Cell phone number</td>
<td>+81 9082742341</td>
</tr>
<tr>
<td>Office phone number</td>
<td>+81 155 674330</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Fax number</td>
<td>+81 155 674330</td>
</tr>
</tbody>
</table>
Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle

Abstract

The suppressive effect of monensin as an ionophore-feed additive on enteric methane (CH$_4$) emission and renewable methanogenesis were evaluated. To clarify the suppressive effect of monensin a respiratory trial with head cage was performed using Holstein–Friesian steers. Steers were offered high concentrate diets (80% concentrate and 20% hay) ad libitum with or without monensin, galacto-oligosaccharides (GOS) or L-cysteine. Steers that received monensin containing diet had significantly ($p<0.01$) lower enteric CH$_4$ emissions as well as those that received GOS containing diet ($p<0.05$) compared to steers fed control diets. Thermophilic digesters at 55°C that received manure from steers fed on monensin diets had a delay in the initial CH$_4$ production. Monensin is a strong inhibitor of enteric methanogenesis, but has a negative impact on biogas energy production at short retention times. Effects of the activity of coprophagous insects on CH$_4$ and nitrous oxide (N$_2$O) emissions from cattle dung pats were assessed in anaerobic in vitro continuous gas quantification system modified to aerobic quantification device. The CH$_4$ emission from dungs with adults of Caccobius jessoensis Harold (dung beetle) and the larvae of the fly Neomyia cornicina (Fabricius) were compared with that from control dung without insect. The cumulative CH$_4$ emission rate from dung with dung insects decreased at 42.2% in dung beetles and 77.8% in fly larvae compared to that from control dung without insects. However, the cumulative N$_2$O emission rate increased 23.4% in dung beetles even though it reduced 88.6% in fly larvae compared to dung without coprophagous insects. It was suggested that the antibacterial efficacy of ionophores supplemented as a growth promoter still continued even in the digested slurry, consequently, possible environmental contamination with the antibiotics might be active to put the negative impact to land ecosystem involved in greenhouse gas (GHG) mitigation when the digested slurry was applied to the fields as liquid manure.

Keywords: Methane, Nitrous oxide, Monensin, Cattle dung, pasture, Coprophagous insects

Introduction

CH$_4$ is the second significant GHG succeeded to carbon dioxide (CO$_2$) emitted from human activities [1]. However, CH$_4$ is one of the most important GHG along with N$_2$O attributable to animal agriculture. According to the newest value cited in the report of IPCC/AR4-Working Group 1 [2], total CH$_4$ emission of anthropogenic sources accounts 428 Tg year$^{-1}$and ruminant animals emit 189 Tg year$^{-1}$. Chynoweth [3] presumed that roughly 76% of the
emission can be estimated to be derived from rumen fermentation in ruminants and the rest 24% from manure handling system. Mitigation of belching CH₄ emission derived from rumen fermentation of ruminant livestock is the most important targeted strategies of world livestock industries in developed and developing countries towards Paris Agreement. Polyether ionophore antibiotics such as monensin, salinomycin, lasalocid have been known to reduce rumen methanogenesis when they have been fed as a feed additive [4]. So far, many manipulators which have potential abilities to mitigate CH₄ have been proposed for ruminant feed additives as alternatives of ionophores which have tended to be prohibited as growth promoters due to the emergence of resistant bacteria [5]. However, firstly, in the feed and feeding industries polyether-based ionophores such as monensin, salinomycin and lasalocid have been used world widely to be able to reduce the production cost due to the improvement of feed efficiency as growth promotors rather than ruminal CH₄ inhibiter in the world ruminant livestock production. In general, these ionophores cannot be absorbed by digestive tract of animals and then they cannot migrate to livestock products, thus it seems unlikely that the migration problems of the ionophores would appear in animal and human health. However, unabsorbed ionophores excreted to feces might have a negative impact on land ecosystem when they have been still active in the manures at fertilization.

According to the data of FAOSTAT (http://www.fao.org/faostat/en/#data/RL) [6], world land area under permanent meadows and pastures account for nearly 3.3 billion ha year⁻¹ and 67% of agriculture land. Additionally, Table 1 shows that world cattle manure left on pasture in 2016 account for 8.6 Tg year⁻¹ from dairy cattle and 35.9 Tg year⁻¹ from non-dairy cattle in nitrogen (N) basis. Cattle dung left on pasture emit CH₄ and N₂O other than CO₂ as anthropogenic sources of GHG [7-12]. Studies on GHG emission from cattle dung have focused on field surveys of GHG emission during dung composting in livestock barns and its inhibition [13-17].

Insects are responsible for pollinating 80% wild plants and providing food resources to 60% birds other than controlling pests as predatory insects instead of chemical pesticides and preventing desertification by entomological soil rehabilitation as the vital roles in land ecosystem. Especially, many dung-feeding insects (coprophagous insects) inhabit cattle dung pats in pasture lands. In these various coprophagous insects, dung beetles and fly larvae play an important role contributing to disappear cattle dung from the fields through their feeding behavior and moving in dung [18-20]. Dung beetles especially decompose coarse dung fibers and return nitrogen and water in dung to the soil through their behavior to bury dung in the soil [21-27]. Meanwhile, fly larvae actively move within dung and feed dung to incorporate its N components into the body, thereby N content in dung will decrease [28].

For cattle dung pats in pastures, only GHG emission from dung pats and the concentration [7, 29-31] and loss of
N and ammonia by volatile gases related to dung beetle activities have been reported [32,33]. Penttila et al. [34] recently reported that dung beetles increase CO₂ and N₂O emission from cattle dung pats but decrease CH₄ emission. So far, the relationship between the activity of insects living in dung and GHG emission remains to be elucidated. However, recently, Iwasa et al. [35] have quantitatively demonstrated the contribution of coprophagous insects to mitigate GHG emitted from dung pats left on the dairy cattle pastures using in vitro continuous gas quantification system.

The present review deals with environmental impacts of ionophore-feed additives on the methanogenesis in rumen and anaerobic digester and entomological approach to assess the global mitigation potentials of coprophagous insects on CH₄ and N₂O emission from cattle pasture.

Effect of monensin containing diet on rumen CH₄ emission and anaerobic fermentation of manure in steers

In an attempt to seek safe manipulators of CH₄ emission, we tried to clarify the effects of galacto-oligosaccharides (GOS) and L-cysteine vs. monensin on rumen CH₄ emission and renewable CH₄ production from anaerobic fermentation of manures [17, 36]. As experimental animals four Holstein-Friesian steers (291 ± 11 kg) were fed on high concentrate diet (20% mixed hay and 80% concentrates) with or without 200 g GOS, L-cysteine as a hydrochloride (1.156 g kg⁻¹ concentrate) or monensin (30 g kg⁻¹ concentrate), and assigned according to 4×4 Latin Square Design. Rumen CH₄ emission were determined using open-circuit ventilated-hood respiratory system for indirect calorimetry equipped with infrared CH₄ analyzer (VIA-300, Horiba, Japan) [37].

Table 2 shows daily amount of rumen CH₄ emitted from experimental steers. Control steers without supplements was emitted 98.1 L d⁻¹. CH₄ emission in steers fed on monensin diet was 17.8% lower (p < 0.05) than those fed control diet. For mitigating effect of monensin on enteric CH₄ emission, it is widely indicated that the inhibition of rumen methanogenesis by monensin is not due to a specific toxic action on the methanogenic archaea such as hydrogen peroxide (H₂O₂) produced by *Lactobacillus plantarum* TUA14901 [38]. Rather, the indirect actions were more likely the population change related to the decrease in ciliate protozoa and shortage of available hydrogen from formate or acrylate pathway in the rumen [39-41]. Recent studies have suggested that rumen microbiome will adapt to monensin over time [42], though Gram-positive bacteria are reduced via disruption of the ion-flux mechanism in the short-term [43, 44]. Consequently, the mitigating effect of dietary monensin on CH₄ emission will be disappeared by long-term feeding.

Even in steers fed on GOS diet, CH₄ emission was also exhibited 7.4% lower (p < 0.05) than those fed also
control diet. Consequently, energy retention (% GE intake) in steers fed on monensin diet tended to be 9.5% higher compared to those fed control diet. This remedial effect of monensin on feed efficiency in energy metabolism has been a principal driving force behind spread over the world ruminant production as an ionophore supplement, although the incidence of resistant bacteria is being currently at issue.

Table 3 shows quantitative evaluation of anaerobic CH$_4$ production from manure collected from steers fed on high concentrate diet with or without GOS, L-cysteine or monensin. For the anaerobic fermentation, thermophilic (55°C) batch digesters (1 L capacity) filled with 300g inoculums (9.3g volatile solid (VS)) and 300g sample (30g total solids (TS)) were used. The digesters operated for 50 days. For desulfurization iron oxide was used to capture hydrogen sulfide from biogas. Total volume of gas production was measured using wet gas meter. CH$_4$ concentration was analyzed by gas chromatograph (GC-8A, Shimadzu, Kyoto, Japan).

Manure composition from steers fed monensin-containing diets had higher ($p < 0.01$) volatile solids and NDF and also higher ($p < 0.05$) hemicellulose contents than that from steers fed on control diets. Progressive CH$_4$ production (L g$^{-1}$ volatile solids fed, VSf) in batch digesters fed with manure from steers fed monensin-containing diets delayed in initiating CH$_4$ production. On day 10 of anaerobic fermentation, monensin-containing digesters produced lower ($p < 0.001$) methane compared to other digesters. Until day 30 the difference between monensin containing digesters and other treatments was significant ($p < 0.05$), though the difference was gradually narrowing with time of fermentation.

The deactivation with degradation of ionophore antibiotics is regarded to be affected by temperature and retention time of anaerobic fermentation. In a global trend mesophilic and thermophilic biogas systems have become widespread. Impact of hyper-thermophilic fermentation around 60°C for cattle manure to possible degradation of polyether-based ionophores has room for further investigation.

Global impact of coprophagous insects on CH$_4$ and N$_2$O emission from dung pads of dairy cattle

Freshly passed dung pads were collected on the day of the experiment on the pasture where milking cows were grazing on the temperate mixed pasture. Two species coprophagous insects, i.e. adults of dung beetles *Caccobius jessoensis* Harold and fly larvae of *Neomyia cornicina* (Fabricius), were examined in in vitro gas metabolism trials. Both species were commonly found in the temperate pasture land and are relatively abundant species. They were collected in the same pasture. Dung beetles were collected from cattle dung pads a day before the experiment. For fly larvae and fly eggs were collected a day before the experiment, and newly hatched first instar larvae were designated as test samples. Fig. 1 shows schematic illustration of vented glass chamber used for this experiment which is
connected to in vitro continuous gas quantification system and experimental coprophagous insects. Since this experiment examined living insects, fresh air was continuously provided to the vented glass containers at 0.5mL min⁻¹ by air cylinder. As experimental materials, 1 kg of black soil, 1 kg of dung, and the insects were introduced in sequence. Five hundred fly larvae and 30 adult dung beetles (10 males and 20 females) were introduced. Insect density was determined by considering the volume of the container and amount of dung.

Fig. 2 shows in vitro continuous gas quantification system [45] installed infrared CO₂ analyzer and Infrared CH₄ analyzer [46, 47] for seven straight days by operating the three containers simultaneously. This gas flows through the individual insectary containers separately, and data from each container would not be scrambled. In parallel with the measurement with in vitro continuous gas quantification system, exhaust gases from system were quantitatively collected in the Tedlar bag every 12 or 24 hours to determine nitrous oxide (N₂O) concentration. The N₂O concentration in the Tedlar bag was analyzed by ECD gas chromatograph (Shimadzu GC-1024) equipped with an attachment of direct inlet device system.

Table 4 shows effect of coprophagous insects on cumulative flux of GHG from dung in chambers for 7 days. The cumulative CH₄ emission from dung was decreased by the feeding behavior of coprophagous insects. Each reduction rate of cumulative CH₄ emission is 42.2% in dung beetles or 77.8% in fly larvae compared to dung without coprophagous insects. Meanwhile, the cumulative N₂O emission rate increased 23.4% in dung beetles even though it reduced 88.6% in fly larvae compared to dung without coprophagous insects. Dung N content collected from dairy pasture was analyzed at 2.14% in DM basis and total yearly fecal N was 8.59 Tg in dairy cattle and 35.89 Tg in non-dairy cattle (Table 1). Hence, approximate yearly total fecal DM can be figured out at 401.40 Tg in dairy cattle and 1,677.10 Tg in non-dairy cattle, though that is only a guide due to the different feeding condition. According to FAOSTAT (Table1) total N₂O emission from dung left on pasture was 327.4Gg in dairy cattle and 1.27 Tg in non-dairy cattle. Thus, total potential contribution of fly larvae to mitigate N₂O can be roughly estimated yearly at 290.08Gg from dairy pasture and 1.12 Tg from non-dairy pasture, For CH₄ emitted from cattle dung left on pasture, statistical evidences have not been reported as references, and therefore total CH₄ emission has been estimated from dung CH₄ without insects in the present study (Table 4) and fecal DM calculated using FAOSTAT (Table 1). In this calculation, average moisture content of fresh dung in grazing cattle was presumed at 80%. Thus, total CH₄ emission from dung without insects left on pasture was 300.9Gg in dairy cattle and 1.26 Tg in non-dairy cattle. With respect to the contribution of coprophagous insects to CH₄ emission from dung left on pasture, the potential mitigating ability of dung beetles can be estimated yearly at 126.98Gg from dairy pasture and 531.72Gg from non-dairy pasture. In the
case of fly larvae dung CH₄ emission presumed to be mitigated by 234.10Gg in dairy cattle and 980.28Gg in non-dairy cattle.

Conclusions

It might be difficult to apply statistics of FAOSTAT to results form in vitro study, because the global distribution of the coprophagous insects in the different climatic zone must be considered based on more detailed investigation. However, it is worth to imagine the impact of roles of coprophagous insects in land ecosystem to mitigate CH₄ and N₂O emitted from cattle dung left on pastures. Effects of ionophore antibiotics residues as feed additives on land ecosystem such as coprophagous insects involved in GHG mitigation remain to be elucidated.

Abbreviations

GHG: Greenhouse gas; CH₄: Methane; GOS: Galacto-oligosaccharides; N₂O: Nitrous oxide; CO₂: Carbon dioxide; N: Nitrogen; VS: Volatile solid; TS: Total solids; VSf: volatile solids fed. DM: Dry matter, Tg: teragram

Declarations

Nothing to declare.

Consent for publication

Not applicable.

Availability of data and materials

Please contact author for data requests.

Competing interests

The authors declare no conflict of interest.

Funding

A part of this work was supported by JSPS KAKENHI Grant Number JP20380147 and discretionary budgets of the President of Obihiro University of Agriculture and Veterinary Medicine.

Authors’ contributions

Conceptualization and hypothesis: Takahashi J
Statistical analyses:
Analysis of variance for Latin square design with General Linear Model Procedure of SAS (1996) to examine the effect of steer, period and dietary treatment in the model. : Takahashi J
Analysis of variance (ANOVA) followed by the Tukey-Kramer honestly significant difference (HSD test with JMP6 (SAS Institute, Tokyo, Japan) to examine entomological gas analyses: Iwasa M

Methodology and laboratory analyses: Takahashi J, Iwasa M,

Writing first draft: Takahashi J, Iwasa M,

Writing, reviewing and editing: Takahashi J

Preparation, experiments, and discussion: Takahashi J, Iwasa M

Supervised the experiment, supporting the experiment financially: Takahashi J

Acknowledgements

Our special thanks are extended to Dr. Reina Morikawa and Dr. Takaki Yamashiro of Obihiro University of Agriculture and Veterinary Medicine for their valuable suggestions and technical support.
References

Table 1. Cattle manure left on pasture in the world [6].

<table>
<thead>
<tr>
<th></th>
<th>Head N (Million)</th>
<th>N (Tg year⁻¹)</th>
<th>N₂O (Gg year⁻¹)</th>
<th>N₂O leaches³ (g head⁻¹year⁻¹)</th>
<th>N₂O volatilises³ (g head⁻¹day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy cattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock</td>
<td>274</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure N left on pasture</td>
<td>8.59</td>
<td>31.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure N left on pasture that leaches</td>
<td>2.58</td>
<td>9.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure N left on pasture that volatilises</td>
<td>1.72</td>
<td>6.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission of N₂O¹</td>
<td>327.4</td>
<td>1195.6</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct emission of N₂O</td>
<td>270.0</td>
<td>986.1</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect emission of N₂O</td>
<td>57.4</td>
<td>209.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O leaches²</td>
<td>30.4</td>
<td>110.9</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O volatilises³</td>
<td>27.0</td>
<td>98.6</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-dairy cattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock</td>
<td>1201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure left on pasture</td>
<td>35.89</td>
<td>29.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure left on pasture that leaches</td>
<td>10.77</td>
<td>39.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure left on pasture that volatilises</td>
<td>7.18</td>
<td>26.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission of N₂O¹</td>
<td>1367.6</td>
<td>1138.6</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct emission of N₂O</td>
<td>1127.9</td>
<td>939.1</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect emission of N₂O</td>
<td>239.7</td>
<td>199.6</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O leaches²</td>
<td>126.9</td>
<td>105.6</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O volatilises³</td>
<td>112.7</td>
<td>93.8</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ N₂O from manure left on pasture
² N₂O that leaches from manure left on pasture
³ N₂O that volatilises from manure left on pasture
Table 2. Rumen CH₄ emission in steers fed high concentrate diets (80 % DM basis) with or without GOS, L-cysteine or monensin.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>GOS</th>
<th>L-cysteine</th>
<th>Monensin</th>
<th>SEM</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ L⁻¹ d</td>
<td>98.1ᵃ</td>
<td>90.8ᵇᶜ</td>
<td>95.9ᵇᶜ</td>
<td>80.6ᶜ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ᵃ,b,c Means within a row with different superscripts differ (p < 0.05)
Table 3. Progressive CH₄ yield (L g⁻¹ volatile solids fed (VSf)) in batch digesters fed manure from steers supplemented with or without (control) GOS, L-cysteine or monensin

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Day</th>
<th>Control</th>
<th>GOS</th>
<th>L-cysteine</th>
<th>Monensin</th>
<th>SEM</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>0.187ᵃ</td>
<td>0.207ᵃ</td>
<td>0.214ᵃ</td>
<td>0.061ᵇ</td>
<td>0.016</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.230ᵃ</td>
<td>0.251ᵃ</td>
<td>0.259ᵃ</td>
<td>0.091ᵇ</td>
<td>0.023</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.252ᵃ</td>
<td>0.274ᵃ</td>
<td>0.281ᵃ</td>
<td>0.145ᵇ</td>
<td>0.029</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.266</td>
<td>0.287</td>
<td>0.294</td>
<td>0.174</td>
<td>0.037</td>
<td>0.156</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.275</td>
<td>0.295</td>
<td>0.302</td>
<td>0.185</td>
<td>0.039</td>
<td>0.197</td>
</tr>
</tbody>
</table>

ᵃᵇ Means within a row with different superscripts differ by the corresponding p - value
Table 4. Effect of coprophagous insects on cumulative emission of CH₃ and N₂O from cow dung for 7 days

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CH₄</th>
<th>Δ%</th>
<th>N₂O</th>
<th>Δ%</th>
<th>CH₄</th>
<th>N₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dung beetles</td>
<td>2.324</td>
<td>42.3</td>
<td>0.116</td>
<td>23.4</td>
<td>41.5</td>
<td>67.6</td>
</tr>
<tr>
<td>Fly larvae</td>
<td>0.893</td>
<td>77.8</td>
<td>0.011</td>
<td>88.3</td>
<td>15.9</td>
<td>6.3</td>
</tr>
<tr>
<td>No insects</td>
<td>4.025</td>
<td>—</td>
<td>0.094</td>
<td>—</td>
<td>71.9</td>
<td>54.8</td>
</tr>
</tbody>
</table>

1. Cumulative flux of GHG emitted from dung for 7 days.

2. Calculated with global warming potential(GWP) values (CH₄: 25, N₂O: 298) relative to CO₂ adapted from IPCC Fifth Assessment 2014 (AR5)
Fig. 1. Vented glass chamber connected to in vitro continuous gas quantification system and experimental coprophagous insects.
Fig. 2. In vitro continuous gas quantification system installed infrared CO$_2$ analyzer and Infrared CH$_4$ analyzer [45]