JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

1
2
3

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Influence of flaxseed with rumen undegradable protein level on milk yield, milk fatty acids and blood metabolites in transition ewes
Running Title (within 10 words)	Feeding of flaxseed and rumen undegradable protein level in ewes
Author	Rahmat Ababakri ¹ , Omid Dayani ¹ *, Amin Khezri ¹ , Abbas-Ali Naserian ²
Affiliation	 ¹Department of Animal Science, College of Agriculture, Shahid Bahonar University of Kerman. 034-33257141. Kerman, Iran ²Department of Animal Science, College of Agriculture, Ferdowsi University of Mashhad, 513-8795620, Mashhad, Iran
ORCID (for more information, please visit https://orcid.org)	Rahmat Ababakri (https://orcid.org/0000-0001-6486-6899) Omid Dayani (https://orcid.org/0000-0002-7067-8242) Amin Khezri (https://orcid.org/0000-0002-5371-9831) Abbas-Ali Naserian (https://orcid.org/0000-0003-1179-6262)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	Not applicable.
Acknowledgements	Not applicable.
Availability of data and material	Upon reasonable request, the datasets of this study can be available from the corresponding author.
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Ababakri, R., Dayani O. Data curation: Ababakri, R., Dayani O. Formal analysis: Ababakri, R., Dayani O. Methodology: Ababakri, R., Dayani, O., Naserian, A.A. Writing-original draft: Ababakri, R., Dayani O. Writing-review & editing: Ababakri, R., Dayani, O., Khezri, A., Naserian, A.A.
Ethics approval and consent to participate	Animals were cared according to the guidelines by the Iranian Council of Animal Care (Guide to the Care and Use of Experimental Animals, Isfahan University of Technology). (Approval no: 1284113).
	4

CORRESPONDING AUTHOR CONTACT IN	FORMATION 5
For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Omid Dayani
Email address - this is where your proofs will be sent	odayani@uk.ac.ir
Secondary Email address	odayanii@yahoo.com
Address	Department of Animal Science, College of Agriculture, Shahid Bahonar University of Kerman. 034-33257141. Kerman, Iran
Cell phone number	+98-913 397 8566
Office phone number	+98-34 31322693
Fax number	+98- 34 33227443

ABSTRACT

An experiment was conducted to determine the effects of two levels of rumen undegradable protein (RUP) without 8 or with whole or extruded flaxseed on milk yield, milk component, milk fatty acids (FAs) profile and plasma 9 metabolites in transition ewes. Three weeks before and after lambing, seventy-two Baluchi ewes were used in a 10 completely randomized design with a 3×2 factorial arrangement of treatments. The treatments contained 1) no 11 flaxseed + 20% RUP (NFLR: No flaxseed, low RUP); 2) no flaxseed + 40% RUP (NFHR: No flaxseed, high 12 RUP); 3) 10% whole flaxseed + 20% RUP (WFLR: whole flaxseed, low RUP); 4) 10% whole flaxseed + 40% 13 RUP (WFHR: whole flaxseed, high RUP); 5) 10% extruded flaxseed + 20% RUP (EFLR: extruded flaxseed, low 14 RUP), and 6) 10% extruded flaxseed + 40% RUP (EFHR: extruded flaxseed, high RUP). Ewes fed 10% extruded 15 flaxseed exhibited higher (p<0.001) dry matter intake (DMI) and colostrum yield (p<0.1) compared to other 16 treatments. Two types of flaxseed and RUP levels had no significant effect on milk yield, but milk fat and protein 17 contents decreased and increased in diets containing 40% RUP, respectively. However, the numerically higher 18 milk production was observed in ewes fed EFLR compared to other treatments. Ewes fed extruded flaxseed 19 produced milk with lower concentrations of saturated fatty acids (SFA) and higher α -linolenic and linoleic acids 20 and also polyunsaturated fatty acids (PUFA) compared to other groups (p < 0.05). During post-lambing, the ewes 21 fed diets containing flaxseed exhibited higher concentration of serum non-esterified FAs (NEFA) compared to 22 diets without flaxseed (p<0.01). The concentration of serum β -hydroxybutyric acid (BHBA) decreased in the diets 23 containing flaxseed types at pre-lambing, but increased in diets containing extruded flaxseed at post-lambing 24 (p<0.01). The serum glucose concentration of ewes (pre and post-lambing) which consumed diets containing 25 extruded flaxseed or 40% RUP increased, but blood urea concentration was elevated following supplementation 26 of diet with whole flaxseed or 40% RUP (p<0.001). In conclusion, utilization of 10% extruded flaxseed in the 27 diets of transition ewes had positive effects on animal performance with favorable changes in milk FAs profile. 28 However, there is no considerable advantage to supply more than 20% RUP level in the diet of transition dairy 29 30 sheep.

7

31

32

Keywords: Transition period, rumen undegradable protein, flaxseed, colostrum, milk fatty acids

INTRODUCTION

Ewe's nutrition management during the transition period is a crucial factor influencing lambs' birth weight, udder 33 development, and milk and colostrum yield. Given that 80% of fetus growth takes place at two last months of 34 pregnancy, the nutrient requirements of ewes increase significantly during this period [1]. Flaxseed 35 (Linumusitatissimum) contains approximately 20% crude protein (CP) and 40% oil on dry matter (DM) basis [2] 36 and it was shown to increase the yield of milk and protein [3]. Feeding animals with flaxseed, as a source of n-3 37 PUFA, is also an effective way to improve feed intake and energy balance [4]. Recently, more attention has been 38 paid to flaxseed as a lipid supplement in the ruminant diets due to its high content of α -linolenic acid (over 55%) 39 of total FA) [5], leading to an increase in the concentrations of long-chain fatty acids (LCFA) and PUFA 40 (especially C18:3n3), and decrease the concentration of short (SCFA) and medium-chain fatty acids (MCFA) and 41 saturated fatty acids (SFA) in milk fat of dairy cows [6], goats [7] and sheep [8]. Maamouri et al. [9] reported that 42 extruded linseed could block the terminal biohydrogenation steps, thus increasing the ratio of trans-intermediate 43 such as cis-9 trans-11 C18:2 and trans-10 cis-12 C18:2 [10]. Therefore, incorporating flaxseed in ruminant diets 44 can contribute to the prevention of cardiovascular diseases [11] and the modulation of immune and inflammatory 45 responses [12]. 46 It has been reported that high levels of dietary RUP and oil can be effective on the dietary protein, milk yield and 47 milk protein efficiencies [3]. Feeding cows with RUP would result in the greater flow of amino acids to the small 48 intestine, increasing intestinal absorption availability [13]. Furthermore, increasing digestion and absorption of 49 proteins in the small intestine following the addition of vegetable oil was previously reported [14]. Therefore, 50 increasing the amounts of dietary RUP and oil or oilseeds may improve the overall use of dietary protein, resulting 51 in increased milk production and protein concentration. Moreover, several studies suggested that providing excess 52 protein in the diet of ewes during late pregnancy is vital for fetus growth, udder development and colostrum and 53 milk yield, and consequently the lamb growth and survival [15, 16]. 54

To the best of our knowledge there is little information regarding the interaction between different RUP level 55 and different flaxseed types during transition period of ewes. Thus, we hypothesize that supplementation of ewe's 56 diets with flaxseeds and RUP in the late gestation may enhance the performance of pregnant ewes. Therefore, the 57 main objective of the present study was to investigate the effects of feeding diets without or with processed 58 flaxseed (whole or extruded) and two theoretical levels of RUP (20 and 40%) on milk yield, milk composition, 59 colostrum yield, milk FAs profile and some plasma metabolites of Baluchi ewes during the transition period. 60

> 61 62

83

MATERIALS AND METHODS

Animals, diets and experimental design

This project was carried out at the sheep raising center of Torbat-e-Jam located on the north east part of Iran at 63 35.2317°N latitude and 60.6401°E longitude from November 2018 to January 2019. All animals were housed and 64 treated following the guidelines suggested by Iranian Council of Animal Care [17]. Seventy-two multiparous 65 Baluchi ewes (48.7 ± 2.8 kg of BW and 2-3 years old at the beginning of experiment) were randomly allocated to 66 6 groups (n = 12 ewes in each group) in a completely randomized design with a 3×2 factorial arrangements. Before 67 onset the experiment, all ewes were fed flushing diet in August and after breeding they fed on pasture till about 5 68 weeks prior to lambing. The experiment was conducted from 35-d before parturition [14 d for adaptation to dietary 69 treatments and 21 d for measurements (pre-partum phase)] to day 21 of lactation (post-partum phase). Dietary 70 treatments contained 1) no flaxseed + 20% dietary RUP (NFLR); 2) no flaxseed + 40% dietary RUP (NFHR); 3) 71 10% whole flaxseed + 20% dietary RUP (WFLR); 4) 10% whole flaxseed + 40% dietary RUP (WFHR); 5) 10% 72 extruded flaxseed + 20% dietary RUP (EFLR) and 6) 10% extruded flaxseed + 40% dietary RUP (EFHR). Ewes 73 were housed in the 1.5×1.5 m individual tie stalls with rubber mats. The animals had free access to fresh water 74 and feed. Diets were offered as a total mixed ration (TMR) which were formulated based on small ruminant 75 nutrition system (SRNS) [18] to meet the ewe's nutrient requirements (NRC, 2007) [19]. The diets were fed to 76 ewes at 0800 and 1600 h during pre-partum and post-partum periods to ensure about 5% ort. 77

To achieve isonitrogenous and isoenergetic diets they were formulated by replacing barley grain with flaxseed 78 and nitrogen (the proportions of RUP) balanced using change in the proportions of soybean meal and urea. The 79 Yasminomax product (46% CP and 70% RUP) as a source of RUP was purchased from Sanadam Pars Co, Tehran, 80 Iran. Ingredients and chemical composition of diets and flaxseed during the transition period are shown in Tables 81 1 and 2, respectively. 82

Measurements

The dry matter intake and refusals were recorded daily. All ewes were weekly weighted 4 h before morning84feeding. The blood samples were gathered from jugular vein, using heparinized plastic syringes, 3 h after the85morning feeding on days 7 and 14 pre- and post-partum to obtain plasma via centrifugation at 3000×g for 15 min.86

The plasma was stored at -20°C until later analysis for glucose, BHBA, NEFA and urea by commercial kits (Pars87Azmon Co, Tehran, Iran and Randox, Randox Laboratories Ltd., Crumlin, UK).88

To determine colostrum yield, ewes were milked 1, 10 and 18 h post-parturition and a 50-g samples of 89 colostrum were collected and analyzed for fat and protein contents [20]. The ewes were milked twice a day at 90 0900 and 1700 h and individual yields were recorded at each morning and evening milking. The collected milk 91 samples from each ewe were mixed proportionally based on morning and evening milk yield and then were 92 analyzed for fat and protein by a MilkoScan (TM minor model, 78110, Foss Analytical A/S, Denmark) and also 93 milk FAs profile. 94

Laboratory analysis

The dry matter (DM) was measured by drying a subsample at 105°C (method no. 934.01) in a forced-air oven96[21]. The ash (method no. 945.38) and the ether extract (EE, method no. 945.18) contents were determined based97on AOAC procedures [21]. The crude protein content (method no. 997.06) was measured by kjeldahl method98(Kjel-Foss, Kjeltec Auto 1030). The Acid detergent fiber (ADF) and neutral detergent fiber (NDF) concentrations99were measured according to the methods presented by Van Soest et al. [22].100

Plasma metabolites were determined by an auto-analyzer (Abbott Alcyon 300, Abbot Diagnostics, Lake Forest, 101 IL, USA). The profile of milk FAs were determined as described by Fougère et al. [23]. Briefly, the incubation of 102 freeze-dried milk samples was conducted with 2 mL of 0.5 M sodium methoxide in anhydrous methanol and 1 103 mL of hexane at 50°C for 15 min, and the mixture was cooled. They were then incubated under similar conditions 104 with the addition of 1 mL of 37% methanol/hydrochloric acid (95:5 v/v). To extract fatty acid methyl esters 105 (FAME) of the milk samples, 1.5 mL of hexane and 3 mL of aqueous (6% w/v) potassium carbonate were added 106 and recovered in the hexanoic phase. One µl of recovered hexane phase was injected into gas chromatography 107 (CP-3800, GC, Varian Inc, USA) assembled with a flame ionization detector at 260°C and a CP-Sil 88 capillary 108 column (100 m \times 0.25 mm i.d. \times 0.2 µm film thickness; made by Chrompack, Middelburg, The Netherlands, 109 supplied by Varian Inc., Mississauga, Canada). Helium with a flow rate of 20 cm/sec was used as a carrier gas. 110 The FAME profile was determined in a 1-µl sample at a 1:100 split ratio and 260°C temperature of the injector 111 using a temperature program (140°C (5 min) to 240°C at 4°C/min). To identify peaks, the retention time was 112 compared with commercial standards that contained mixtures of 37 FAME (18919-1AMP, LR-0565, Sigma, USA; 113 and O5632, Sigma, Steinheim, Germany). 114

Statistical analysis

All data were analyzed using the MIXED procedure of SAS Institute Inc. (2003) for a completely randomized116design with a 3×2 factorial arrangement of treatments. The Duncan's Multiple Range Test was employed to117determine means that were significantly different at p<0.05. Trends were also considered when p<0.10. Data were118analyzed using the following statistical model:119

$$Y_{ijk} = \mu + E_{i+}F_{j+}R_{k+}(FR)_{jk} + e_{ijk}$$
120

95

115

125

Where, Y_{ijk} are dependent variables, μ is the total mean, E_i is random effect of animal, F_i is fixed effect of121flaxseed factor, R_j is fixed effect of RUP factor, $(FR)_{ij}$ is interaction effect of flaxseed and RUP, and e_{ijk} is random122residual error with a mean and variance of 0 and σ^2 , respectively.123**Results**124

Dry matter intake, Body weight changes, Colostrum and Milk production and composition

As shown in Table 3, the DMI of ewes was affected by flaxseed, with a significant interaction between flaxseed 126 and RUP level at pre- and post-lambing (p<0.05). Increasing RUP caused lower DMI in ewes fed a diet without 127 flaxseed but did not affect DMI in flaxseed fed ewes at prepartum. During pre-lambing, ewes fed a diet containing12810% extruded flaxseed showed a higher DMI when compared to other groups (p<0.01). However, at post-lambing,129ewes fed 10% extruded flaxseed (p<0.05) or 20% RUP (p<0.01) had significantly higher DMI than those fed no130flaxseed or 40% RUP (p<0.05). At post-lambing, body weight change tended to increase in animals fed the diets131containing 40% RUP (p<0.1) compared to 20% RUP.132

Flaxseed had no significant effect on colostrum and its composition, the colostrum yield tended to increase 133 (p<0.1) in ewes fed the diets containing extruded flaxseed compared to the whole flaxseed or no flaxseed diets 134 (Table 3). Although milk yield was not significantly influenced by flaxseed or RUP, their interaction was 135 significant, and milk yield increased by increasing RUP in ewes fed a diet without flaxseed (p < 0.05), whereas it 136 had no effect on ewes fed with whole or extruded flaxseed. Thus, ewes fed with NFHR, WFHR, EFLR, and EFHR 137 produced higher milk compared to NFLR and WFLR (p < 0.05). The RUP levels influenced the fat and protein 138 concentrations of milk (p < 0.05 and p < 0.01, respectively), and ewes fed low RUP had more fat percentage but 139 produced lower protein compared to those fed high RUP. There was also a significant interaction between flaxseed 140 and RUP for milk fat percentage (p < 0.05). 141

Blood metabolites

The serum concentration of NEFA was not affected by the flaxseed or RUP level at pre-lambing (Table 4). 143 However, there was a significant (p < 0.01) interaction between flaxseed and RUP for NEFA concentration at post-144 lambing. As shown in Table 4, at prepartum, the concentration of BHBA was affected by flaxseed (p=0.001) and 145 RUP level (p=0.07) with a significant interaction effect (p=0.001). In this regard, the serum concentration of 146 BHBA reduced with RUP raising in flaxseed fed ewes; however, a greater BHBA in ewes fed a diet without 147 flaxseed was indicated in the diet with higher RUP level. A converse trend for BHBA was observed postpartum. 148 At the post-lambing period, the BHBA concentrations significantly rose (p < 0.01) in extruded flaxseed fed ewes 149 compared to whole flaxseed or no flaxseed. 150

142

156

Blood glucose and urea concentrations boosted by increasing RUP at pre- and postpartum (p<0.01). During 151 both lambing periods, the ewes fed extruded flaxseed had a higher glucose concentration than other groups (p<0.01). The serum concentration of blood urea was also affected by flaxseed type at the pre- and post-lambing periods (p<0.01), and higher blood urea concentration was observed in animals fed whole flaxseed based diets 154 than other groups. 155

The profile of fatty acids in milk fat

The effects of dietary treatments on milk fatty acids composition are presented in Table 5. In general, most FA 157 was affected by flaxseed. The flaxseed supplementation and also RUP level did not significantly affect C4:0 to 158 C12:0 percentages. Higher C13:0 was detected in the ewes fed EFLR when compared to other treatments (p < 0.05). 159 Animals fed the flaxseed diets produced milk containing a lower amount of C14:0, C17:0, C17:1, C20:0, and 160 C21:0 than those on the no flaxseed diets, regardless of RUP level (p<0.05). However, C14:1, C16:1, and C18:2 161 (linoleic acid) significantly increased in ewes fed flaxseed (p < 0.05, p < 0.01 and p < 0.01, respectively). The highest 162 concentration of C18:3 (a-linolenic acid) was observed in milk fat of ewes fed extruded flaxseed compared to the 163 other groups, although the ewes fed with whole flaxseed exhibited higher C18:3 than control group (p < 0.05) 164 (Figure 1). With the exception of C13:0, C17:0, and C22:0, other milk FA were not affected by RUP level. 165 Furthermore, a significant interaction between flaxseed and RUP level was observed for C13:0 and C22:0 (p<0.01). 166

Short and long-chain FA and also monounsaturated FA were not influenced by flaxseed or RUP level, whereas167a trend for a lower amount of medium-chain FA was found in extruded flaxseed fed animals compared to those168

fed a diet without flaxseed (p=0.09). Feeding ewes with both types of flaxseed significantly increased PUFA 169 170 concentrations of milk (p < 0.01), and this considerably indicated in ewes fed extruded flaxseed. Taken as a whole, saturated FA, which makes up the principal group, was significantly affected by flaxseed (p < 0.05), and the ewes 171 fed extruded flaxseed indicated a lower concentration of SFA compared to whole, or no flaxseed fed ewes. 172 Discussion 173

174

Feed intake, Changes in body weight, Colostrum and Milk yields and their compositions

During pre- and post-lambing, the ewes fed the diet containing 10% extruded flaxseed showed higher DMI than 175 those fed the control diet. In agreement with our results, the inclusion of low to moderate levels of flaxseed, either 176 as whole or extruded (up to 10% of diet DM), increased [6, 24 (at postpartum)] or did not affect DMI [7, 24 (at 177 prepartum)] in dairy cows and goats, whereas high inclusion levels (21% of diet DM) decreased DMI of cows 178 [25]. This discrepancy among different studies could be due to different amounts and types of supplemented 179 oilseeds and could be due to their palatability [24]. In general, it was reported that high FA intake could directly 180 suppress DMI due to its inhibitory effect on rumen motility [26] when total fat concentration is higher than 6% of 181 the DM [27]. 182

Reducing DMI by rising the RUP level in the postpartum period in the present study was consistent to the 183 findings of Rehman et al. [13], who reported that the DMI of cows significantly decreased by increasing of RUP 184 level from 30 to 60%. This reduction could be attributed to the presence of less fermentable protein and the 185 subsequent decline in the ruminal ammonia nitrogen, which would reduce the growth rate of ruminal 186 microorganisms, thus diminishing the nutrient digestibility and DMI [28]. Similarly, Hartwell et al. [29] observed 187 that prepartum DMI was not affected by RUP level, while postpartum intake decreased in high RUP diet compared 188 to low RUP diet. However, they indicated that negative effects for postpartum intake following feeding excess 189 protein during late gestation were not a result of rumen degradable protein (RDP) deficiency as they provided 190 similar RDP (but different CP content) for all treatments. 191

A tendency for greater colostrum production (p < 0.1) in extruded flaxseed fed ewes might be related to higher 192 DMI. Consistent to our results, the inclusion of fish oil as a source of n-3 PUFA did not affect the main constituent 193 of goat's colostrum [30]. In contrast, increasing the feeding level of fish oil up to 40g/d led to a linear decline in 194 ewes' total colostrum output [31]. Supplementation of the ewes' diets with digestible undegradable protein (DUP) 195 in the late pregnancy resulted in a higher colostrum yield and yields of components (protein, fat, and solid non-fat 196 197 contents) within 24 h of lambing [15]. However, in another study, Annett et al. [20] found that the negative effect of fish oil on colostrum secretion was alleviated by supplying additional DUP, suggesting the responses to elevated 198 DUP is dependent on metabolizable energy (ME) intake. 199

200 In no flaxseed and whole flaxseed diets, increasing RUP level led to numerically increase (P > 0.05) in the milk production by 41.6% and 27.7%, respectively, but extruded flaxseed diets lead to a significant interaction between 201 flaxseed and RUP level which was higher in ewes fed on EFLR compared to WFLR and NFLR. Do Perdo et al. 202 [32] reported that despite the positive effects of feeding flaxseed or linola (4.8%) on DMI and energy balance, 203 204 milk yield was higher for cows fed Megalc (1.1% of diet DM) which disagrees with the results of Petit [33], who found no difference in milk yield when cows were fed with whole flaxseed (13.9% of diet DM). Conversely, 205 Zachut et al. [24] observed higher milk yield in cows fed 10.7% extruded flaxseed compared to control. Therefore, 206 responses to flaxseed supplementation are still controversial and can be associated to the amounts and forms of 207 208 supplemental flaxseed or to interactions with other diet components [25].

In contrast to our findings, supplementation of dairy cow's diet with whole or micronized flaxseeds reduced 209 milk protein [34] or fat contents [35]. Morsy et al. [36] reported that a decrease in milk fat content following the 210 inclusion of flaxseed oil was related to changes in microbial activity and biohydrogenation of PUFA, leading to 211 the accumulation of *trans*-10 C18:1. The latter has a crucial inhibitory role in short- and medium-chain FA 212 synthesis in the udder's epithelial cells, hence reducing milk fat [35]. Furthermore, oilseeds are typically rich in 213 long-chain unsaturated FA, which can depress milk fat content through their adverse impacts on fiber digestion 214 and subsequently ruminal acetate concentration [37].

Compared to 20% RUP, ewes consuming 40% RUP produced more milk protein concentration. It was reported216that supplementation of ruminant diets with RUP could enhance the flow of nitrogen and essential amino acids to217duodenum; hence, increase the milk yield and milk protein concentration in cattle and sheep [13, 38]. However,218Mikolayunas-Sandrock et al. [39] reported a 14% increase in milk yield and milk fat as well as a 15% increase in219milk protein yield when dairy ewes were fed the diets containing high RUP compared to the group receiving lower220RUP, without any significant changes in milk fat or protein percentages.221

222

Blood metabolites

Almost all measured blood metabolites were within the range reported for sheep [40, 41]. Except for NEFA at 223 prepartum, other blood parameters were significantly affected by flaxseed, RUP, or their interactions. Petit [27] 224 found no changes in NEFA, BHBA, and glucose concentrations for cows fed with different levels of whole 225 flaxseed. He noted that this lack of effect was related to a similar energy balance among treatments. The higher 226 concentration of BHBA in ewes fed NFHR could be ascribed by lower prepartum energy intake which could lead 227 to moderate ketosis (0.8 and 1.6 mmol/L), although their blood glucose concentration was within the normal range 228 of 31 to 81 mg/dL reported by Christian and Pugh [42]. It has been stated that, in contrast to dairy cows, an 229 increased concentration of ketone bodies is not always accompanied by glucose deficiencies in ewes [43]. 230 However, at post lambing, concentrations of BHBA in NFLR fed ewes were back to normal range. An increase in 231 serum concentration of glucose and the significant reduction of serum BHBA in ewes fed WFHR and EFHR at 232 the pre-lambing period indicated the improved energy status of body compared to other treatments. 233

The serum NEFA concentration is considered an index for adipose fat mobilization [44]. Increased NEFA 234 concentrations postpartum in ewes fed whole or extruded flaxseed compared to the control might indicate the 235 breakdown of fat as a result of increased energy demand, suggesting that the ewes were in negative energy balance 236 due to the increased nutrient demands for milk production. However, NEFA concentration may progressively fall 237 due to increased DMI and energy balance [45]. Bertics et al. [46] reported that DMI is inversely related to 238 concentrations of NEFA and BHBA in plasma which disagrees with the data from the current study. Kholif et al. 239 [47] reported that plasma concentrations of NEFA were increased with feeding 20 mL flasseed or soybean oil; 240 however, in another study, the inclusion of 50 g crushed flaxseed or 20 mL flaxseed oil did not affect NEFA 241 concentration in goats [7]. This discrepancy may be due to providing additional energy density required for milk 242 production. 243

The diets containing extruded flaxseed and also 40% RUP elevated the serum glucose concentration in ewes 244 at pre- and post-lambing periods which is in agreement with Jahani-Moghadam et al. [48] and Kholif et al. [47], 245 who reported higher serum glucose concentration by adding flaxseed or feeding diets containing n3-PUFA. This 246 increment might be due to the improvement in nutrient digestion and ruminal fermentation, as well as improved 247 production of propionate [36, 47]. Furthermore, it seems that blood glucose concentration is related to changes in 248 DMI as well as the effect of supplemented extruded flaxseed as a source of PUFA on glucose metabolism. Qin et 249

al. [49] reported that the increase in glucose concentrations in fat supplemented groups might be as a consequence250of higher somatotropin concentrations, as somatotropin was found to stimulate hepatic gluconeogenesis to supply251the energy demand of the lactating mammary gland [50]. Moreover, increased RUP resulted in higher serum252glucose content through gluconeogenesis from excess amino acids other than its utilization towards mammary253protein synthesis. Therefore, it may explain the increase of serum concentration of glucose caused by increasing254RUP level to 40% in treatments containing extruded flaxseed. These findings are in agreement with those255presented by Milis et al. [51] and Amanlou et al. [15].256

Plasma urea is an indicator of protein supply or protein utilization that is influenced by the animals' nutritional 257 258 status [52]. Reduction in blood urea concentration in ewes fed extruded flaxseed compared to those fed with whole flaxseed or without flaxseed may probably be explained by the effectiveness of oilseeds in controlling the ruminal 259 protozoa population and improving the efficiency of dietary protein intake [53]. Furthermore, Johnson et al. [54] 260 stated that feeding cows with oilseeds increased plasma urea levels due to increased ruminal nitrogen absorption. 261 The significant increase in serum blood urea concentration with a higher RUP level of diets to 40% was somewhat 262 unexpected. However, this finding is in agreement with Amanlou et al. [15], who reported that elevating DUP and 263 dietary protein simultaneously resulted in increased serum blood urea of sheep. 264

265

Fatty acids profile of the milk fat

It has been well documented that diet strongly affects both milk fat content and milk FA profile [55]. Similar to 266 our results, Zachut et al. [24] and Neveu et al. [6] observed that the inclusion of flaxseed did not affect the short-267 chain FA (C4 to C10) content of cow's milk fat. In another study, Glasser et al. [56] reported that oilseeds rich in 268 C18:3 like flaxseed had lower inhibitory effects on de novo short-chain FA synthesis compared to oilseeds rich in 269 C18:2. The abundance of unsaturated FAs, especially C18:3, would explain the results obtained in whole or 270 extruded flaxseed diets. The intermediates of these unsaturated FA which are produced during biohydrogenation 271 in the rumen, can inhibit de novo FA synthesis in the mammary gland and would cause a relative reduction in 272 short and medium-chain FA [55], as seen in Table 5. In the current study, a decrease in odd and branched-chain 273 FA (C15:0 and C17:0) following the inclusion of extruded or whole flaxseed is consistent to Isenberg et al. [57]. 274 This reduction could be due to the variation in the rumen bacterial population since most of these FA derived from 275 bacteria leaving the rumen [58]. 276

The higher concentrations of C14:1 and C16:1 in milk fat along with higher Δ^9 -desaturation indexes of C14 277 and C16 (data not shown) in ewes fed extruded and/or whole flaxseed diets than the control group suggested an 278 increase in Δ^9 -desaturase activity. However, Correddu et al. [59] reported that despite increasing the 279 concentrations of C14:1, C16:1, and C18:1 with the inclusion of grape seed and linseed in the diet of dairy sheep, 280 the desaturase indexes did not follow the same trend, indicating the increase of these unsaturated FA were not 281 related to an increase in Δ^9 -desaturase activity. 282

An increase in ewes' milk α -linolenic acid in the diets containing flaxseed agreed with previous studies that 283 used whole or ground flaxseed [5], extruded flaxseed [6], and crushed flaxseed [7]. These elevated effects could 284 285 simply be a consequence of the direct incorporation of these FA from diet to the mammary gland. Similar to our results, Maamouri et al. [9] reported an increase of 21% of total FA of α -linolenic acid in the diets supplemented 286 with extruded linseed compared to the whole one. Kennelly [60] and Neveu et al. [6] reported that extrusion might 287 denature the protein matrix around the fat droplet, hence protect FAs from ruminal biohydrogenation. However, 288 more recently, Maamouri et al. [9] stated that extrusion might lead to the partial release of the oil due to reduction 289 290 in the protective effect of oilseeds proteins. This free oil then could interfere with microorganisms responsible for

biohydrogenation, thus increase *trans*-intermediates. Although we could not measure all *trans*-FAs due to technical limitation, similar concentrations of *trans*-9 C18:1 and *trans*-9 *trans*-12 C18:2 and also more PUFA in milk fat of extruded compared to whole flaxseed fed ewes might indicate the lack of effect of oil on ruminal biohydrogenation. 294

Decreases in saturated FA in ewes fed extruded flaxseed are in agreement with most experiments on oil and/or 295 oilseeds in ewes [55, 61] and cows [6, 24]. Kholif et al. [7] reported that lower total SFA content in animals fed 296 with a diet containing PUFA-rich oil sources was justified by the inhibitory effect of PUFA on *de novo* FAs 297 synthesis. This increment in PUFA, along with decreased in SFA of milk fat are beneficial in human health in 298 terms of lowering total and low-density lipoprotein cholesterol [62]. 299

300

311

315

CONCLUSION

The results indicated that the supplementation of ewe's diets with flaxseed (especially the extruded form) during 301 the transition period increased DMI and colostrums compared to diets without flaxseed. However, the advantage 302 of increasing RUP level was to improved milk protein percentage along with higher blood glucose concentration, 303 although ewes fed low RUP had normal glucose contents. Blood parameters varied extensively among treatments 304 due to significant interaction between flaxseed and RUP. The concentrations of linoleic, linolenic, and PUFA were 305 significantly increased about twofold by the inclusion of flaxseed in the diet. In general, it can be concluded that 306 using 10% extruded flaxseed compared to a control diet in transition dairy sheep feeding had beneficial effects on 307 colostrum yield and insignificant but considerable amount of milk production (1.66 vs. 2.03) and also favorable 308 modification of milk FA profile. However, due to similar performance responses to RUP level and economic point 309 of view, it is recommended to use 20% RUP in both pre- and post-lambing. 310

Acknowledgements

The authors would like to thank the Shahid Bahonar University of Kerman for the financial support of this research.312We also gratefully acknowledge the assistance of Dr. Mohsen Kazemi and Dr. Amir Mokhtarpour in editing this313paper.314

REFRENCES

- Dawson LER, Carson AF, Kilpatrick DJ. The effect of digestible undegradable protein concentration of concentrates and protein source offered to ewes in late pregnancy on colostrum production and lamb performance. Anim Feed Sci Technol. 1999;82:21–36. https://doi.org/10.1016/S0377-8401(99)00101-7
 318
- Petit HV. Review: Feed intake, milk production and milk composition of dairy cows fed flaxseed. Can J Anim Sci. 2010;90:115–127. https://doi.org/10.4141/CJAS09040
 320
- Petit HV, Ivan M, Mir PS. Effects of flaxseed on protein requirements and N excretion of dairy cows fed diets with two protein concentrations. J Dairy Sci. 2005;88:1755–1764. https://doi.org/10.3168/jds.
 S0022-0302(05)72850-2
 323
- 4. Petit HV, Benchaar C. Milk production, milk composition, blood composition and conception rate of transition dairy cows fed different profiles of fatty acids. Can J Anim Sci. 2007;87:591-600.
 325 https://doi.org/10.4141/CJAS07027
 326
- Petit HV, Côrtes C. Milk production and composition, milk fatty acid profile, and blood composition of dairy cows fed whole or ground flaxseed in the first half of lactation. J Anim Feed Sci Technol.
 2010;158:36–43. https://doi.org/10.1016/j.anifeedsci.2010.03.013
 329

6.	Neveu C, Baurhoo B, Mustafa A. Effect of feeding extruded flaxseed with different grains on the	330
	performance of dairy cows and milk fatty acid profile. J Dairy Sci. 2014;97:1543-1551. https://	331
	doi.org/10.3168/jds.2013-6728	332
7.	Kholif AE, Morsy TA, Abdo MM. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats:	333
	Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk	334
	composition and milk fatty acid Profile. J Anim Feed Sci Technol. 2018;244:66-75.	335
	https://doi.org/10.1016/j.anifeedsci.2018.08.003	336
8.	Zhang RH, Mustafa AF, Zhao X. Effects of feeding oilseeds rich in linoleic and linolenic fatty acids to	337
	lactating ewes on cheese yield and on fatty acid composition of milk and cheese. J Anim Feed Sci Technol.	338
	2006;127:220-233. https://doi.org/10.1016/j.anifeedsci.2005.09.001	339
9.	Maamouri O, Mahouachi M, Kraiem K, Atti N. Milk production, composition and milk fatty acid profile	340
	from grazing ewes fed diets supplemented with Acacia cyanophylla leaves as tannins source and whole or	341
	extruded linseed. Livest Sci. 2019;227:120-127. https://doi.org/10.1016/j.livsci.2019.06.024	342
10.	Shingfield K, Bonnet M, Scollan N. Recent developments in altering the fatty acid composition of	343
	ruminant-derived foods. Animal. 2013;7:132-162. https://doi.org/10.1017/S1751731112001681	344
11.	Wright T, McBride B, Holub B. Docosahexaenoic acid-enriched milk. World Rev Nutr Diet. 1998;83:160-	345
	165. https://doi.org/10.1159/000059660	346
12.	Dilzer A, Park Y. Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci Nutr.	347
	2012;52:488-513. https://doi.org/10.1080/10408398.2010.501409	348
13.	Rehman A, Arif M, Saeed M, Manan A, Al-Sagheer A, EL-Hack ME, Swelum AA, Alowaimer AN.	349
	Nutrient digestibility, nitrogen excretion, and milk production of mid-lactation Jersey× Friesian cows fed	350
	diets containing different proportions of rumen-undegradable protein. An Acad Bras Ciênc. 2020;92.	351
	https://dx.doi.org/10.1590/0001-3765202020180787	352
14.	Mir PS, Mears GJ, Okine EK, Entz T, Ross CM, Husar SD, Mir Z. Effects of increasing dietary grain on	353
	viscosity of duodenal digesta and plasma hormone, glucose and amino acid concentrations in steers. Can	354
	J Anim Sci. 2000;80:703-712. https://doi.org/10.4141/A99-119	355
15.	Amanlou H, Karimi A, Mahjoubi E, Milis C. Effects of supplementation with digestible undegradable	356
	protein in late pregnancy on ewe colostrums production and lamb output to weaning. J Anim Physiol and	357
	Anim Nutr. 2010;95:616-622. https://doi.org/10.1111/j.1439-0396.2010.01092.x	358
16.	Binns SH, Cox IJ, Rizvi S, Green LE. Risk factors for lamb mortality on UK sheep farms. Prev Vet Med.	359
	2002;52:287-303. https://doi.org/10.1016/s0167-5877(01)00255-0	360
17.	Iranian Council of Animal Care. Guide to the care and use of experimental animals. Vol 1. Isfahan (Iran):	361
	Isfahan University of Technology; 1995.	362
18.	Tedeschi LO, Cannas A, Fox DG. A nutrition mathematical model to account for dietary supply and	363
	requirements of energy and other nutrients for domesticated small ruminants: The development and	364
	evaluation of the Small Ruminant Nutrition System. Small Rum Res. 2010;89:174-184.	365
	https://doi.org/10.1016/j.smallrumres.2009.12.041	366
19.	NRC [National Research Council]. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids,	367
	and New World Camelids. Washington, DC: The National Academies Press; 2007.	368
	https://doi.org/10.17226/11654	369

20.	Annett RW, Carson AF, Dawson LER. Effects of digestible undegradable protein (DUP) supply and fish	370
	oil supplementation of ewes during late pregnancy on colostrum production and lamb output. J Anim Feed	371
	Sci Technol. 2008;146:270-288. https://doi.org/10.1016/j.anifeedsci.2008.01.013	372
21.	AOAC. Official Methods of Analysis. 19th ed. Washington, DC: AOAC Association of Official	373
	Analytical Chemists; 2012.	374
22.	Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch	375
	polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-3597. https://doi.org/10.3168	376
	/jds.S0022-0302(91)78551-2	377
23.	Fougère H, Delavaud C, Bernard L. Diets supplemented with starch and corn oil, marine algae, or	378
	hydrogenated palm oil differentially modulate milk fat secretion and composition in cows and goats: A	379
	comparative study. J Dairy Sci. 2018;101:8429-8445. https://doi.org/10.3168/jds.2018-14483	380
24.	Zachut M, Arieli A, Lehrer H, Livshitz L, Yakoby S, Moallem U. Effects of increased supplementation	381
	of n-3 fatty acids to transition dairy cows on performance and fatty acids profile in plasma, adipose tissue	382
	and milk fat. J Dairy Sci. 2010;93:5877-5889. https://doi.org/10.3168/jds.2010-3427	383
25.	Chilliard Y, Martin C, Rouel J, Doreau M. Milk fatty acids in dairy cows fed whole crude linseed, extruded	384
	linseed, or linseed oil, and their relationship with methane output. J Dairy Sci. 2009;92:5199-5211.	385
	https://doi.org/10.3168/jds.2009-2375	386
26.	Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J Dairy	387
	Sci. 1993;76:3897-3931. https://doi.org/10.3168/jds.S0022-0302(93)77730-9	388
27.	Petit HV. Digestion, milk production, milk composition, and blood composition of dairy cows fed whole	389
	flaxseed. J Dairy Sci. 2002;85:1482-1490. https://doi.org/10.3168/jds.S0022-0302(02)74217-3	390
28.	Tufarelli V, Dario M, Laudadio V. Influence of dietary nitrogen sources with different ruminal	391
	degradability on growth performance of Comisana ewe lambs. Small Rum Res. 2009;81:132-136.	392
	https://doi.org/10.1016/j.smallrumres.2008.12.014	393
29.	Hartwell JR, Cecava MJ, Donkin SS. Impact of dietary rumen undegradable protein and rumen-protected	394
	choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition	395
	dairy cows. J dairy sci. 2000;83:2907-2917. https://doi.org/10.3168/jds.S0022-0302(00)75191-5	396
30.	Cattaneo D, Dell'Orto V, Varisco G, Agazzi A, Savoini G. Enrichment in n- 3 fatty acids of goat's	397
	colostrum and milk by maternal fish oil supplementation. Small Rum Res. 2006;64:22-29.	398
	https://doi.org/10.1016/j.smallrumres.2005.03.013	399
31.	Annett RW, Dawson LER, Edgar H, Carson AF. Effects of source and level of fish oil supplementation	400
	in late pregnancy on feed intake, colostrum production and lamb output of ewes. J Anim Feed Sci Technol.	401
	2009;154:169-182. https://doi.org/10.1016/j.anifeedsci.2009.09.002	402
32.	Do Prado RM, Palin MF, Do Prado IN, Dos Santos GT, Benchaar C, Petit HV. Milk yield, milk	403
	composition, and hepatic lipid metabolism in transition dairy cows fed flaxseed or linola. J Dairy Sci.	404
	2016;99:8831-8846. https://doi.org/10.3168/jds.2016-11003	405
33.	Petit HV. Milk production and composition, milk fatty acid profile, and blood composition of dairy cows	406
	fed different proportions of whole flaxseed in the first half of lactation. J Anim Feed Sci Technol.	407
	2015;205:23-30. https://doi.org/10.1016/j.anifeedsci.2015.04.009	408
34.	Mustafa AF, Gonthier C, Ouellet DR. Effects of extrusion of flaxseed on ruminal and postruminal nutrient	409
	digestibilities. Arch Anim Nutr. 2003;57:455-463. https://doi.org/10.1080/0003942032000161036	410

35.	Hurtaud C, Faucon F, Couvreur S, Peyraud JL. Linear relationship between increasing amounts of	411
	extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J Dairy Sci.	412
	2010;93:1429-1443. https://doi.org/10.3168/jds.2009-2839	413
36.	Morsy TA, Kholif SM, Kholif AE, Matloup OH, Salem AZM, Abu Elella A. Influence of sunflower whole	414
	seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating	415
	goats. Asian-Australas J Anim Sci.2015;28:1116-1122. https://dx.doi.org/10.5713/ajas.14.0850	416
37.	Onetti SG, Shaver RD, McGuire MA, Grummer RR. Effect of type and level of dietary fat on rumen	417
	fermentation and performance of dairy cows fed corn silage-based diets. J Dairy Sci. 2001;84:2751-2759.	418
	https://doi.org/10.3168/jds.S0022-0302(01)74729-7	419
38.	Volden H. Effects of level of feeding and ruminally undegraded protein on ruminal bacterial protein	420
	synthesis, escape of dietary protein intestinal amino acid profile and performance of dairy cows. J Anim	421
	Sci. 1999;77:1905-1918. https://doi.org/10.2527/1999.7771905x	422
39.	Mikolayunas-Sandrock C, Armentano LE, Thomas DL, Berger YM. Effect of protein degradability on	423
	milk production of dairy ewes. J Dairy Sci. 2009;92:4507-4513. https://doi.org/10.3168/jds.2008-1983	424
40.	Merck Veterinary Manual. Serum biochemical reference ranges. Available at:	425
	www.merckvetmanual.com. Accessed March 2009	426
41.	Pichler M, Damberger A, Schwendenwein I, Gasteiner J, Drillich M, Iwersen M. Thresholds of whole-	427
	blood β -hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to	428
	identify ovine hyperketonemia. J dairy Sci. 2014;97:1388-1399. https://doi.org/10.3168/jds.2013-7169	429
42.	Christian JA, Pugh DG. Reference intervals and conversions. In Sheep and goat medicine. WB Saunders.	430
	2012;596-600.	431
43.	Rook JS. Pregnancy toxemia of ewes, does, and beef cows. Vet Clin North Am Food Anim Pract.	432
	2000;16:293-317. https://doi.org/10.1016/S0749-0720(15)30107-9	433
44.	Ingvartsen KL, Andersen JB. Integration of metabolism and intake regulation: A review focusing on	434
	periparturient animals. J Dairy Sci. 2000;83:1573-1597. https://doi.org/10.3168/jds.S0022-	435
	0302(00)75029-6	436
45.	Drackley JK. Biology of dairy cows during the transition period: the final frontier. J Dairy Sci.	437
	1999;82:2259-2273. https://doi.org/10.3168/jds.S0022-0302(99)75474-3	438
46.	Bertics SJ, Grummer RR, Cadorniga-Valino C, Stoddard EE. Effect of prepartum dry matter intake on	439
	liver triglyceride concentration and early lactation. J Dairy Sci. 1992;75:1914-1922.	440
	https://doi.org/10.3168/jds.S0022-0302(92)77951-X	441
47.	Kholif AE, Morsy TA, Abd El Tawab AM, Anele UY, Galyean ML. Effect of supplementing diets of	442
	Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J Agric Food Chem.	443
	2016;64:6163-6170. https://doi.org/10.1021/acs.jafc.6b02625	444
48.	Jahani-Moghadam M, Mahjoubi E, Dirandeh E. Effect of linseed feeding on blood metabolites, incidence	445
	of cystic follicles, and productive and reproductive performance in fresh Holstein dairy cows. J Dairy sci.	446
	2015;98:1828-1835. https://doi.org/10.3168/jds.2014-8789	447
49.	Qin N, Bayat AR, Trevisi E, Minuti A, Kairenius P, Viitala S, Mutikainen M, Leskinen H, Elo K,	448
	Kokkonen T, Vilkki J. Dietary supplement of conjugated linoleic acids or polyunsaturated fatty acids	449
	suppressed the mobilization of body fat reserves in dairy cows at early lactation through different	450
	pathways. J dairy sci. 2018;101:7954-7970. https://doi.org/10.3168/jds.2017-14298	451

50.	Knapp JR, Freetly HC, Reis BL, Calvert CC, Baldwin RL. Effects of somatotropin and substrates on	452
	patterns of liver metabolism in lactating dairy cattle. J Dairy Sci. 1992;75:1025-1035.	453
	https://doi.org/10.3168/jds.S0022-0302(92)77846-1	454
51.	Milis C, Liamadis D, Roubies N, Christodoulou V, Giouseljiannis A. Comparison of corn gluten products	455
	and a soybean-bran mixture as sources of protein for lactating Chios ewes. Small Rum Res. 2005;58:237-	456
	244. https://doi.org/10.1016/j.smallrumres.2004.10.006	457
52.	Wallace JM, Milne JS, Redmer DA, Aitken RP. Effect of diet composition on pregnancy outcome in	458
	overnourished rapidly growing adolescent sheep. Brit J nutr. 2006;96:1060-1068.	459
	https://doi.org/10.1017/BJN20061979	460
53.	Majewska MP, Miltko R, Bełżecki G, Skomiał J, Kowalik B. Supplementation of rapeseed and linseed	461
	oils to sheep rations: effects on ruminal fermentation characteristics and protozoal populations. Czech J	462
	Anim Sci. 2017;62:527-538. https://doi.org/10.17221/9/2017-CJAS	463
54.	Johnson KA, Kincaid RL, Westberg HH, Gaskins CT, Lamb BK, Cronrath JD. The effect of oilseeds in	464
	diets of lactating cows on milk production and methane emissions. J dairy sci. 2002;85:1509-1515.	465
	https://doi.org/10.3168/jds.s0022-0302(02)74220-3	466
55.	Gómez-Cortés P, De la Fuente MA, Toral PG, Frutos P, Juárez M, Hervás G. Effects of different forage:	467
	concentrate ratios in dairy ewe diets supplemented with sunflower oil on animal performance and milk	468
	fatty acid profile. J Dairy Sci. 2011;94:4578-4588. https://doi.org/10.3168/jds.2010-3803	469
56.	Glasser F, Ferlay A, Chilliard Y. Oilseed lipid supplements and fatty acid composition of cow milk: A	470
	meta-analysis. J Dairy Sci. 2008;91:4687-4703. https://doi.org/10.3168/jds.2008-0987	471
57.	Isenberg BJ, Soder KJ, Pereira ABD, Standish R, Brito AF. Production, milk fatty acid profile, and nutrient	472
	utilization in grazing dairy cows supplemented with ground flaxseed. J dairy sci. 2019;102:1294-1311.	473
	https://doi.org/10.3168/jds.2018-15376	474
58.	Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM, Dewhurst RJ. Factors affecting odd-and branched-	475
	chain fatty acids in milk: A review. J Anim Feed Sci Technol. 2006;131:389-417.	476
	https://doi.org/10.1016/j.anifeedsci.2006.06.017	477
59.	Correddu F, Gaspa G, Pulina G, Nudda A. Grape seed and linseed, alone and in combination, enhance	478
	unsaturated fatty acids in the milk of Sarda dairy sheep. J Dairy Sci. 2016;99:1725-1735.	479
	https://doi.org/10.3168/jds.2015-10108	480
60.	Kennelly JJ. The fatty acid composition of milk fat as influenced by feeding oilseeds. J Anim Feed Sci	481
	Technol. 1996;60:137-152. https://doi.org/10.1016/0377-8401(96)00973-X	482
61.	Caroprese M, Ciliberti MG, Marino R, Santillo A, Sevi A, Albenzio M. Polyunsaturated fatty acid	483
	supplementation: effects of seaweed Ascophyllumnodosum and flaxseed on milk production and fatty acid	484
	profile of lactating ewes during summer. J dairy Res. 2016;83:289-297.	485
	https://doi.org/10.1017/s0022029916000431	486
62.	Bauman DE, Perfield JW, Lock AL. Effect of trans fatty acids on milk fat and their impact on human	487
	health. In: Proceedings of the 19th Southwest Nutrition and Management Conference; 2004; University	488
	of Arizona, USA	489
		490

- . -

Table 1. Ingredient and chemical composition of diets (% of DM) fed to Baluchi ewes during the transition period516

517

			Pre-	lambing					Post-	lambing		
	No fla	No flaxseed		0% flaxseed		10% Extruded flaxseed		No flaxseed		10% whole flaxseed)% l flaxseed
	20% RUP ¹⁾	40% RUP	20% RUP	40% RUP	20% RUP	40% RUP	20% RUP	40% RUP	20% RUP	40% RUP	20% RUP	40% RUP
Ingredients (%DM)	(NFLR)	(NFHR)	(WFLR)	(WFHR)	(EFLR)	(EFHR)	(NFLR)	(NFHR)	(WFLR)	(WFHR)	(EFLR)	(EFHR)
-							10	10	10	10	10	10
Alfalfa hay, chopped	-	-	-	-	-	-	10	10	10	10	10	10
Corn silage	73.4	73.4	73.4	73.4	73.4	73.4	40	40	40	40	40	40
Barley grain, grounded	15.1	15.1	5.1	5.1	5.1	5.1	27.5	27.5	7.5	17.5	7.5	17.5
Soybean meal	5.4	3	2.3	-	2.3	-	-	8	-	4.5	-	4.5
Beet pulp	-	-	7.7	2.3	7.7	2.3	-	-	29.5	3.5	29.5	3.5
Wheat bran	4.6	-	-	-	-	-	19.5	5	-	5	-	5
Whole flaxseed	-	-	10	10	-	-	-		10	10	-	-
Extruded flaxseed	-	-	-	-	10	10	-	-	-	-	10	10
Urea	0.7	-	0.7	-	0.7	-	2	-	2	-	2	-
Yasminomax ²⁾	-	7.7	-	8.4	-/	8.4	-	8.5	-	8.5	-	8.5
Calcium carbonate	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5
Minerals-vitamins ³⁾	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5
Chemical Composition	(% in DM	[)	C									
DM	31	31	31	31	31	31	45	45	45	45	45	45
ME(Mcal/kg DM)	2.2	2.2	2.2	2.2	2.2	2.2	2.3	2.3	2.4	2.5	2.4	2.5
СР	12.2	12	12.1	12.2	12.1	12.2	15.6	15.6	15.8	15.6	15.8	15.6
NDF	44.1	43.7	44.4	44.7	44.4	44.7	40.3	37.0	39.5	37.8	39.5	37.8
EE	2.9	2.8	6	6.1	6	6.1	3	2.6	5.5	6	5.5	6
RUP (% of CP)	21.5	37.5	20.8	37.4	20.8	37.4	21.5	38.5	22	38	22	38
RDP (% of CP)	78.5	62.5	79.2	62.6	79.2	62.6	78.5	61.5	78	62	78	62
Ca	0.57	0.58	0.68	0.63	0.68	0.63	0.58	0.6	0.9	0.68	0.9	0.68
Р	0.38	0.36	0.36	0.4	0.36	0.4	0.51	0.4	0.4	0.46	0.4	0.46

¹⁾Rumenundegradable protein

²⁾Yasminomax contained 46 % CP, 70 % RUP, 7% ash, 4% fat (DM basis).

³³Mineral and vitamin mix contained 200 g/kg Ca, 98 g/kg P, 21 g/kg Mg, 44 g/kg Na, 0.3 g/kg Cu, 2 g/kg Mn, 3 g/kg Fe, 3 g/kg Zn, 0.1 g/kg I, 0.1 g/kg Co, 0.001 g/kg Se, 500,000 IU/kg of vitamin A, 100 mg/kg of vitamin E, 100,000 IU/kg of vitamin D3, and 400 mg/kg Antioxidant. DM,dry matter; ME, metabolizable energy; CP, crude protein; EE, ether extract; RDP, rumen degradable protein; C, calcium; P, phosphorus. 520 521 522

523

518

Composition	content
DM (% of fresh weight)	94.62
Crude protein (% of DM)	18.7
Ether extract (% of DM)	41.05
Neutral Detergent Fiber(% of DM)	22.21
Acid Detergent Fiber(% of DM)	18.73
Ash (% of DM)	2.95

Table 2. The chemical composition of flaxseed used in transition diets

Table 3. Dry matter intake (DMI), body weight (BW) change, yield and composition of colostrum and milk in transition ewes fed two flaxseed types and two rumen undegradable protein (RUP) levels

527
528
529

]	Level and type f								
	No fla	axseed	10 Whole fi)% I flaxseed		<i>p</i> -value			
	20%RUP (NFLR)	40% RUP (NFHR)	20%RUP (WFLR)	40% RUP (WFHR)	20%RUP (EFLR)	40%RUP (EFHR)	SEM ¹⁾	Flax	RUP	Flax×RUP	
Pre-lambing											
DMI (kg/day)	1.07	0.95	1	1.01	1.12	1.18	0.03	0.001	0.560	0.017	
BW Change (kg)	6	5.45	4.65	5.6	5.56	5.95	0.37	0.600	0.901	0.650	
Post-lambing											
DMI (kg/day)	1.84	1.77	1.98	1.75	1.92	1.89	0.04	0.031	0.007	0.028	
BW Change (kg)	-0.83	-0.02	0.32	1.58	0.70	1.28	0.84	0.271	0.055	0.781	
Colostrum											
Yield (kg)	1.89	1.83	1.90	1.88	2.43	2.38	0.27	0.097	0.860	0.998	
Fat (%)	9.6	9.3	9.2	9.9	9.5	9.9	0.78	0.950	0.670	0.800	
Protein (%)	4.7	4.3	4.6	5.1	4.9	4.1	0.44	0.641	0.510	0.280	
Milk											
Yield (kg)	1.37	1.94	1.59	2.03	2.23	1.83	0.18	0.130	0.170	0.021	
Fat (%)	6.75	4.83	5.45	5.42	5.33	4.87	0.38	0.211	0.013	0.041	
Protein (%)	3.33	3.51	3.43	3.53	3.43	3.54	0.05	0.410	0.002	0.661	
¹⁾ Standar	rd error of the	means.	\sim							530 531	
										532	

Table 4. Blood metabolites in transition ewes fed two flaxseed types and two rumen undegradable protein (RUP) levels

			Level and type f				_			
	No fl	axseed	10 Whole f)% I flaxseed			n voluo	
	110 112	ixseeu	whole i	laxseeu	Extruded	Thaxseeu	-		<i>p</i> -value	
	20%RUP (NFLR)	40% RUP (NFHR)	20% RUP (WFLR)	40% RUP (WFHR)	20%RUP (EFLR)	40%RUP (EFHR)	SEM ¹⁾	Flax	RUP	Flax×RUI
Pre-lambing										
NEFA (mmol/l)	0.31	0.33	0.30	0.24	0.28	0.32	0.02	0.541	0.850	0.381
BHBA (mmol/l)	0.43	0.81	0.43	0.35	0.48	0.33	0.03	0.001	0.071	0.001
Glucose (mg/dl)	67.2	73.0	67.2	72.8	75.2	87.0	1.96	0.001	0.001	0.262
blood urea (mg/dl)	55.6	66.0	56.2	77.0	51.7	55.20	1.57	0.001	0.001	0.002
Post-lambing										
NEFA (mmol/l)	0.15	0.23	0.37	0.32	0.17	0.33	0.02	0.003	0.001	0.001
BHBA (mmol/l)	0.51	0.39	0.37	0.42	0.45	0.57	0.03	0.009	0.320	0.006
Glucose (mg/dl)	67.5	76.7	64.7	67.7	68.0	81.7	2.30	0.004	0.002	0.091
Blood urea (mg/dl)	39.8	66.3	48.0	76.2	38.6	68.2	1.46	0.001	0.001	0.571
	error of the m		β-hydroxybutyri							544 545

	No flaxseed		Level and type flaxseed 10% Whole flaxseed		10%Extruded flaxseed		_	<i>p</i> -value		
	20%RUP (NFLR)	40%RUP (NFHR)	20% RUP (WFLR)	40%RUP (WFHR)	20%RUP (EFLR)	40% RUP (EFHR)	SEM ¹⁾	Flax	RUP	Flax*RUP
Fatty acid	(INI'LK)		(WILK)	(WITK)	(EFER)	(ETTIK)		гах	кur	Flax 'KUP
C4:0	1.41	1.55	1.87	1.88	1.61	1.94	0.15	0.69	0.70	0.94
C6:0	1.43	1.36	1.42	1.39	1.49	1.42	0.06	0.93	0.717	0.99
C8:0	1.96	1.68	1.80	2.07	1.86	1.90	0.09	0.71	0.95	0.20
C10:0	5.96	5.78	5.7	5.88	5.86	5.39	0.18	0.91	0.75	0.86
C11:0	0.16	0.20	0.18	0.17	0.18	0.15	0.10	0.82	0.97	0.42
C12:0	3.42	3.15	3.4	3.92	3.12	3.74	0.12	0.41	0.23	0.25
C13:0	0.05	0.04	0.03	0.05	0.09	0.04	0.006	0.001	0.001	0.001
C14:0	10.56	10.84	9.01	9.04	9.13	9.31	0.25	0.007	0.59	0.94
C14:1	0.12	0.13	0.19	0.22	0.20	0.25	0.02	0.03	0.26	0.75
C15:0	0.67	0.75	0.99	1.07	0.66	0.82	0.006	0.084	0.03	0.59
C16:0	27.24	27.19	26.97	24.30	23.53	23.40	0.69	0.11	0.47	0.63
C16:1	0.66	0.53	0.89	0.96	1.04	1.06	0.08	0.002	0.74	0.17
C17:0	1.05	0.88	0.68	0.75	0.79	0.58	0.05	0.03	0.05	0.06
C17:1	0.58	0.44	0.20	0.21	0.25	0.22	0.04	0.001	0.08	0.13
C18:0	13.87	13.48	13.72	14.13	13.59	13.21	0.30	0.86	0.88	0.89
C18:1n9t	2.74	3.16	3.68	3.84	3.00	4.73	0.25	0.21	0.10	0.31
cis-9C18:1, oleic acid	24.06	24.25	23.87	21.61	25.10	25.23	0.66	0.47	0.68	0.76
trans-9 trans-12C18:2	0.27	0.34	0.33	0.36	0.35	0.25	0.03	0.82	0.98	0.61
C18:2 n6, linoleic acid	1.33	1.87	2.55	2.71	2.85	2.99	0.19	0.008	0.11	0.51
C18:3n3, linolenic acid	0.52	0.59	1.02	1.32	1.79	1.99	0.18	0.01	0.28	0.73
C20:0	0.29	0.31	0.25	0.28	0.15	0.17	0.02	0.006	0.28	0.97
C21:0	1.52	1.25	1.09	0.98	0.22	0.17	0.16	0.001	0.28	0.75
C22:0	0.11	0.17	0.36	0.16	0.15	0.13	0.03	0.003	0.03	0.003
C20:4n6	0.25	0.12	0.11	0.16	0.16	0.19	0.01	0.02	0.14	0.001
Short-chain fatty acids	14.39	13.76	14.41	15.36	14.22	13.89	0.43	0.74	0.99	0.79
Medium-chain fatty acids	39.26	39.44	38.05	35.60	34.55	34.85	0.80	0.09	0.66	0.68
Long-chain fatty acids	46.59	46.86	47.87	46.51	48.40	49.85	0.81	0.59	0.95	0.84
Polyunsaturated fatty acids	2.37	2.92	4.02	4.55	5.14	5.42	0.35	0.001	0.19	0.92
Monounsaturated fatty acids	29.68	29.76	29.93	27.82	29.81	31.66	0.54	0.47	0.96	0.43
Saturated fatty acids	69.70	68.63	67.47	66.07	62.44	61.67	1.10	0.01	0.45	0.98

Table 5. The milk fatty acids profile (g/100 g of total fatty acids) in the transition ewes fed two flaxseed types

 and two rumen undegradable protein (RUP) levels

¹⁾Standard error of means.

short-chain fatty acids (C4:0 to C13:0, **SCFA**); medium-chain fatty acids (C14:0 to C16:1, **MCFA**); long-chain fatty acids (> C17, **LCFA**); polyunsaturated fatty acids (trans-9 trans-12 C18:2, C18:2 n6, C18:3n3, C20:4n6, **PUFA**); monounsaturated fatty acids (C14:1, C16:1, C17:1,C18:1n9t, *cis*-9 C18:1, C21:0, **MUFA**); saturated fatty acids (C4:0, C6:0, C8:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C20:0, C21:0, C22:0, **SFA**).

Figure 1. Linolenic (C18:3n3) and linoleic (C18:2n6) acids concentrations of milk in transition ewes fed two flaxseed types and two RUP levels.558Treatment were: NFLR: no flaxseed diet + 20% dietary RUP, NFHR: no flaxseed diet + 40% dietary RUP, WFLR: 10% Whole flaxseed diet + 20% dietary RUP, EFLR: 10% Extruded flaxseed diet + 20% dietary RUP and EFHR:56010% Extruded flaxseed diet + 40% dietary RUP.561