JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below					
Article Type	Research article					
Article Title (within 20 words without abbreviations)	Prediction of calcium and phosphorus requirements for pigs in different					
	bodyweight ranges using a meta-analysis					
Running Title (within 10 words)	Calcium and phosphorus requirements in pigs					
Author	Se Min Jeon ^{1#} , Abdolreza Hosseindoust ^{1#} , Sang Hun Ha ² , Tae Gyun Kim ² ,					
	Jun Young Mun ² , Joseph Moturi ^{1,2} , SuHyup Lee ³ , Yo Han Choi ⁴ , Sang					
	Deok Lee ⁵ , Soo Jin Sa ³ , Jin Soo Kim *, 1,2					
	*These authors contributed equally to this work.					
Affiliation	Department of Animal Industry Convergence, Kangwon National					
	University, Chuncheon, 24341, Korea					
	² Department of Bio-health Convergence, Kangwon National University,					
	Chuncheon 24341, Korea					
	³ Department of Swine Science, Korea National College of Agriculture and					
	Fisheries, Jeonju 54874, Korea					
	⁴ Swine Division, National Institute of Animal Science, Rural Development					
	Administration, Cheonan, 31000, Korea					
	⁵ Division of Forest Science, Kangwon National University, Chuncheon,					
	24341, Korea					
ORCID (for more information, please visit	Se Min Jeon (0000-0001-5944-8844)					
https://orcid.org)	Abdolreza Hosseindoust (0000-0001-9191-0613)					
	Sang Hun Ha (0000-0003-3779-1144)					
	Tae Gyun Kim (0000-0002-9772-080x)					
	Jun Yong Mun (0000-0002-3075-7257)					
	Joseph Moturi (0000-0002-0626-0255)					
	SuHyup Lee (0000-0001-8996-3740)					
	Yo Han Choi (0000-0003-4710-4731)					
	Sang Deok, Lee (0000-0001-7314-7271)					
	Soo Jin Sa (0000-0002-2634-5109)					
	Jin Soo Kim (0000-0002-9518-7917)					
Competing interests	No potential conflict of interest relevant to this article was reported.					
Funding sources	Not applicable.					
State funding sources (grants, funding sources, equipment,	117					
and supplies). Include name and number of grant if available.						
Acknowledgements	This research was funded by Rural Development Administration, grant					
	number "PJ014485032021"					
Availability of data and material	Upon reasonable request, the datasets of this study can be available from					
11/minomity of the minomital	the corresponding author.					
Authors' contributions	Conceptualization: SM J, A H, SH L, JS K.					
Please specify the authors' role using this form.	Data curation: SM J, J M.					
rease specify the authors fore using this form.	Formal analysis: SM J, A H.					
	Methodology: SM J, A H, TG K, SD L.					
	Software: SM J, A H, JS K.					
	Validation: SM J, A H, SH H.					
	Investigation: SM J, A H, JY M, SJ S, YH C.					
	Writing - original draft: SM J, A H, JS K.					
Ethics approval and consent to neutralinate	The project underwent proper ethical standards and the experiments (KW-					
Ethics approval and consent to participate	170519-1) were approved by the Institutional Animal Care and Use					
	Committee of Kangwon National University, Chuncheon, Republic of					
	Korea.					
CODDESDONDING ALITHOD CONTACT INI						

CORRESPONDING AUTHOR CONTACT INFORMATION

COMMENT OF DESIGNATION CONTINET EN	010/1111011								
For the corresponding author (responsible for	Fill in information in each box below								
correspondence, proofreading, and reprints)									
First name, middle initial, last name	Jin Soo Kim								
Email address – this is where your proofs will be sent	Kjs896@kangwon.ac.kr								
Secondary Email address	hosseindoust@kangwon.ac.kr								
Address	College of Animal Science, 1, Kangwondaehak-gil, Chuncheon-si,								
	Gangwon-do, Republic of Korea 24341								
Cell phone number	010-2566-5961								
Office phone number	+82-33-250-8614								

Fax number +82-33-259-5572

Abstract

1 Several studies have focused on Ca and P requirements for pigs. These requirements are estimated from their retention and bone formation. However, modern pig breeds have different 2 3 responses to dietary Ca and P than traditional breeds, and their requirements are expected to change on an annual basis. Besides individual Ca and P needs, the Ca to P ratio (Ca/P) is an 4 5 important factor in determining requirements. This study aimed to implement a linear and quadratic regression analysis to estimate Ca and P requirements based on average daily gain 6 7 (ADG), apparent total tract digestibility of Ca (ATTD-Ca), ATTD-P, and crude protein (CP) 8 digestibility. Results show that Ca/P had linear and quadratic effects on ADG in the phytase-9 supplemented (PS) group in both the 6–11 kg and 11–25 kg categories. In the latter category, the 10 CP digestibility was linearly increased in response to increasing Ca/P in the without-phytase 11 (WP) group. In the 25-50 kg category, there was a linear response of ADG and linear and 12 quadratic responses of CP digestibility to Ca/P in the PS group, while a linear and quadratic 13 increase in CP digestibility and a quadratic effect on ATTD-Ca were observed in the WP group. 14 In the 50-75 kg category, Ca/P had significant quadratic effects on ADG in the PS and WP groups, along with significant linear and quadratic effects on ATTD-Ca. In addition, Ca/P had 15 16 significant quadratic effects on ATTD-P and led to a significant linear and quadratic increase in 17 the CP digestibility in the WP group. In the 75–100 kg category, analysis showed a significant decrease in ATTD-Ca and ATTD-P in the PS and WP groups; in the latter, ATTD-P and ATTD-18 19 Ca were linearly decreased by increasing Ca/P. In conclusion, our equations predicted a higher 20 Ca/P in the 6–25 kg bodyweight categories and a lower Ca/P in the 50-100 kg category than that 21 recommended in the literature.

Keywords: phytase, weanling, growing, crude protein, digestibility, meta-analysis

Introduction

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

In recent decades, the growth performance of commercial pigs has increased. This may suggest that higher levels of Ca and P supplements are being provided in diets than are currently recommended [1,2] for optimization of skeletal integrity and growth performance [3,4]. Calcium and P are the first limiting minerals in commercial swine nutrition and are commonly supplemented in all diets apart from those tailored to the growth stage. In recent decades, there has been a controversial discussion regarding the effects of the dietary content of Ca and P, and their relative ratio, on biological efficiency, growth performance, and bone mineralization [5,6]. In diets with inadequate levels of P, low bone mineralization and energy metabolism can become growth-limiting factors [7,8] and therefore, high P levels are common in pig diets. However, the dietary requirement of P for pigs has not been well studied. It is well known that high dietary Ca improves bone formation and bone ash content [1,8,9]; however, increased Ca in the diet has also been associated with decreased growth performance due to interactions with other absorbed minerals [10,11]. Ca interacts with inorganic P and phytate and decreases the activity of exogenous phytase [12]. Limestone, an important Ca source, has high acid-binding capacity, which can decrease the solubility of protein and P, subsequently reducing N and P digestibility [7,13]. Therefore, there is a negative correlation between dietary Ca levels and P utilization. Moreover, high doses of dietary Ca decrease the digestibility of food by forming soap with free saturated fatty acids [8,14]. High Ca and P dietary supplementation has increased environmental problems linked to the excessive excretion of manure in intensive pig production. In recent years, supplementation with phytase enzymes has been one of the most commonly used strategies to control environmental contamination and increase P utilization in farm animals. This meta-analysis aimed at developing a new feeding strategy based on the Ca to P ratio (Ca/P) and phytase enzyme supplementation through evaluating their effects on average daily gain (ADG), apparent total tract digestibility of Ca (ATTD-Ca), ATTD-P, and crude protein (CP) digestibility in pigs from different bodyweight ranges.

48 49

50

Materials and methods

51

52

54

Literature search and database recording

53 For the meta-analysis, data sets were collected from the literature (ISI Web of Science and

PubMed) by searching keywords. Recent papers published between 2010 and 2021 were

considered for data analysis. Keywords selected were as follows: pigs, calcium, phosphate, feed, phytase, crude protein, and digestibility. Papers were screened for suitability before performing statistical analysis. First, research papers relating to gilt, sows, and cannula experiments were excluded, as were conference proceedings without clear results. Then, screened research papers that included information regarding dietary Ca and P contents, presence of phytase, and growth performance, were selected to set up the database. The results of literature screening are presented in Table 1. In total, 76 research papers with 296 to 372 data points per trait were selected. The bodyweight (BW) range of the database was set to 6–100 kg. This range was divided into the following five BW categories: 6–11 kg, 11–25 kg, 25–50 kg, 50–75 kg, and 75–100 kg. All BW categories were then classified by the presence or absence of phytase in diets.

6566

55

56

57

58

59

60

61

62

63

64

Statistical analysis

- 67 All statistical analyses were performed using SAS software (SAS 9.0, 2011). In order to
- determine the optimal dietary Ca/P for each of the five BW categories (with and without dietary
- 69 phytase), we performed a secondary regression analysis of dietary Ca/P to estimate the optimal
- ADG, ATTD-Ca, ATTD-P, and CP digestibility. The quadratic regression equation used was as
- 71 follows:

72
$$Dietary Ca/P = aX^2 + bX + c,$$

- where *X* includes ADG, ATTD-Ca, ATTD-P, and CP digestibility.
- 74 The regression models were estimated for the prediction of dietary Ca/P. The predictors of the
- 75 secondary regression models were ADG (kg/d), ATTD-Ca (%), ATTD-P (%), and CP
- digestibility (%). The optimal value for Ca/P in diets was estimated as per the following formula:

77 Optimal dietary
$$C/P = \frac{-a}{2b}$$
,

- where a is the coefficient of the quadratic term in the regression equation and b is the coefficient
- of the first term in the regression equation.
- 80 Bootstrapping was used to estimate the mean and standard error of the optimal value for Ca/P in
- 81 diets. The results of the estimated regression models for each of the five BW categories (with
- 82 two phytase classifications) are presented in Table 1. The prediction model for each category
- included ADG (kg/d), ATTD-Ca (%), ATTD-P (%), and CP digestibility (%).

Result

86

85

87 The 6 –11 kg bodyweight category

- 88 Linear and quadratic regression analysis was used to predict the effects of Ca/P with or without
- 89 phytase supplementation on ADG, ATTD-Ca, ATTD-P, and CP digestibility. A summary of
- 90 parameter estimates and accuracy indices (RMSE) is provided in Table 2. As this table shows,
- 91 the intercepts of ADG and CP in the phytase-supplemented (PS) group, and the intercept of CP
- 92 in the without-phytase (WP) group were significant in the 6-11 kg category. Additionally, Ca/P
- 93 had linear and quadratic effects on ADG in the PS group (Fig. 1). In contrast, no Ca/P effects
- 94 were observed for ATTD-Ca, ATTD-P, and CP digestibility in both the PS and WP groups.

95

96

The 11–25 kg bodyweight category

- 97 For changing Ca/P in the 11-25 kg BW category (Table 2; Fig. 2), intercepts of ATTD-Ca,
- 98 ATTD-P, and CP in the PS group, and digestibility of CP in the WP group were significant. A
- 99 significant linear and quadratic response to Ca/P was observed for ADG in the PS group;
- 100 however, no effects were detected for ATTD-Ca and ATTD-P in the PS or WP group. The CP
- digestibility increased linearly in response to increasing Ca/P in the WP group.

102

103

The 25–50 kg bodyweight category

- 104 For Ca/P in the 25-50 kg category (Table 2; Fig. 3), significant intercepts were observed for
- 105 ATTD-Ca and CP digestibility in the WP group; however, no significant intercepts were
- observed for ADG, ATTD-Ca, ATTD-P, and CP digestibility in the PS group. There was a linear
- 107 response of ADG and linear and quadratic responses of CP digestibility in the PS group.
- However, no regression response was observed for ATTD-P in the PS or WP group. A linear and
- 109 quadratic increase in CP digestibility and a quadratic effect on ATTD-Ca were observed in the
- 110 WP group.

111112

The 50–75 kg bodyweight category

- 113 In the 50-75 kg BW category (Table 2; Fig. 4), there were significant intercepts for CP
- digestibility in the PS group, but no significant intercepts for ADG, ATTD-Ca, and ATTD-P in
- the PS or WP group. Using our equations, four different Ca/P effects were detected: 1)
- significant quadratic effects on ADG (PS and WP), 2) significant linear and quadratic effects on

117 ATTD-Ca (PS and WP), 3) significant quadratic effects on ATTD-P (WP), and 4) a significant

linear and quadratic increase in CP digestibility (WP).

119120

The 75–100 kg bodyweight category

- 121 In the 75-100 kg category (Table 2, Fig. 5), there was a significant intercept for ADG in the PS
- group, and CP digestibility in the WP group. The linear and quadratic regression analysis showed
- a significant decrease in ATTD-Ca and ATTD-P in the PS and WP groups. No effects of Ca/P
- were observed for ADG in the PS or WP group, or for CP digestibility in the PS group; however,
- in the WP group, a linear and quadratic increase in ADG was detected as Ca/P increased.

126127

All bodyweights

- Overall, the analysis showed significant intercept differences for ADG, ATTD-Ca, ATTD-P, and
- 129 CP digestibility in the PS and WP groups. The independent variables, Ca/P and phytase addition,
- led to a linear and quadratic increase in ADG in the PS group. In the WP group, ATTP-P and
- ATTD-Ca decreased linearly as Ca/P increased; however, CP digestibility had positive linear and
- 132 quadratic responses to increased Ca/P.

133

134

138

139

140

141

142

143

144

145

146

147

148

Discussion

Due to the importance of growth performance and environmental issues, various meta-analyses

or reviews dealing with the influence of Ca/P or phytase supplementation on P or Ca utilization

and growth performance in pigs have been reported previously [1,2,8,9]. However, genetic

improvements have the potential to change the response of pigs to Ca and P supplementation; to

the best of our knowledge, no meta-analysis has reviewed dietary Ca/P requirements in pigs. The

current meta-analysis focuses on published data from 2010 onwards and offers a potential

method for evaluating Ca and P requirements and their interactions with phytase

supplementation. Pig Ca and P requirements were analyzed according to BW. A multi-criteria

procedure, including available P, bone mineralization, and BW gain should be considered for

balancing diets based on new recommendations regarding Ca and P levels, as should dietary

phytase supplementation. We found that increasing Ca/P in the PS group increased the growth

performance of pigs in the 6-11 and 11-25 kg BW categories. Despite the positive role of low

dietary Ca in growth performance [2], there are some limitations associated with reduced Ca

depending on growth stage. Low dietary Ca compromises bone mineralization when dietary P is

149 high. Therefore, Ca supplementation is associated with phytase because of the significant 150 increase in P availability that occurs when phytate bonds are broken [1,2,15]. Low bioavailability 151 of Ca compromises the deposition of P in bone, increasing loss of P through urine [9]. Low bone 152 mass during skeletal development is known as osteoporosis, which is characterized by low Ca 153 and P deposition [16,17]. Ca absence is considered an important factor in the development of 154 skeletal disorders and decreased growth performance [5,6]. Importantly, Ca and P retention was 155 not decreased by Ca/P in the 6–11, 11–25, and 25–50 kg BW categories; this explains the linear 156 increase in ADG with increasing Ca/P. 157 Digestibility of Ca in pig production is not only affected by Ca level, but also by the exogenous 158 phytase and Ca/P to which the pigs are subjected, as well as the growth stage [5,18]. For pigs, the 159 aim is to optimize BW while decreasing Ca excretion. Optimum growth performance and bone 160 formation with minimum P excretion is also a target. No differences in ATTD-P and ATTD-Ca 161 were observed as a result of phytase supplementation in low-weight categories. This may be due 162 to the diets provided after weaning, which are based primarily on highly digestible ingredients; in these conditions, changes in the Ca level did not affect the efficiency of the phytase enzyme. 163 164 In high-weight categories (50–75 and 75–100 kg) ATTD was decreased by increasing Ca/P. It is 165 likely that the high Ca content in diets compromises the absorption of Ca. Importantly, the 166 formation of Ca-phytate complexes varies based on pH; as the pH increases, the solubility of Ca-167 phytate decreases [2,3,8]. Limestone, as the main Ca source in diets, increases the buffering 168 capacity of digestion [16], resulting in increased Ca-phytate formation. It has been reported that a 169 0.5% increase in dietary Ca decreases the digestibility of P by 56% [19]. Therefore, to improve 170 phytase activity, the level of Ca should be reduced in phytase-supplemented diets when 171 considering skeletal formation or growth performance to increase the bioavailability of Ca. 172 Ouadratic responses have been identified for ATTD-Ca: the digestibility of Ca increased with 173 increasing Ca/P until reaching a plateau; then, it linearly decreased, reaching the minimum 174 digestibility. This may explain the quadratic result obtained in the 50-75 and 75-100 kg BW 175 categories in the present study. 176 Digestibility represents the main factor in determining dietary P efficiency in farm animals. A 177 considerable amount of P in grains is in the form of phytate; this is mostly unavailable or poorly 178 absorbed by pigs, due to the lack of phytase in their intestine. Therefore, nutritional strategies for 179 P addition in pig diets have been explored to reduce the excretion of P and improve growth 180 performance, by fitting linear and quadratic regression models containing the explanatory 181 variable of the P digestibility coefficient. Our results show that the effects of Ca/P on ATTD-P

are significant in the 75–100 kg category, resulting in decreased digestibility of P through increased Ca/P. P bioavailability is regarded as one of the main factors adversely influencing bone mineralization and pig performance in the swine industry [3]. The results of the current study show the importance of Ca/P in the 75–100 kg BW category in phytase-supplemented diets. Supplementation with exogenous phytase enzyme to reduce P excretion has become a common practice in swine nutrition because excreted P has several adverse effects on the environment. This is especially the case when pigs are supplemented in excessive doses, as when trying to maintain growth requirements [12,20]. In our database, the P that represented the principal supplementary P source was mainly mono-calcium phosphate and di-calcium phosphate, being present in 94% of experimental diets evaluated. However, our analysis showed no difference between P sources. It is reported that Ca/P range commonly falls between 1:1 to 1.7:1; thus, it was expected that the target P requirement values must be within this range. The results also show that Ca/P is not an effective parameter in P absorption in younger pigs; this was the case in both the PS and WP groups. It is accepted that higher Ca or Ca/P will result in a decrease in the efficiency of phytase enzyme by forming insoluble Ca-phytate complexes [1,8,21]. Therefore, it is likely that phytate may not be entirely hydrolyzed in the intestine due to solubility limitations and interactions with Ca. This study aimed to better predict the effect of Ca/P and exogenous phytase enzyme on protein digestibility. The model generated herein indicated that Ca/P affects protein digestibility of pigs in PS and WP groups in higher BW categories (50–100 kg). With the increase in Ca/P from 1:1 to 1:1.7, the digestibility of CP was increased. Although several hypotheses are available to explain the adverse effect of phytate on nutrient digestibility, there is still uncertainty shrouding the mode of action involved. Interactions between phytates and proteins may be determining factors in evaluating the effect of phytate on protein digestibility [7,13]. The structure of proteins can be changed through these interactions, thereby reducing the solubility of proteins and decreasing the accessibility of protease to accomplish the hydrolysis process [2]. However, interestingly, there appears to be a greater effect of exogenous phytase on CP digestibility in heavier pigs than in weanling pigs. This may be due to the types of diets utilized in weaning or growing periods. Although many hypotheses have been stated to evaluate the role of phytic acid in decreasing protein digestibility (by forming phytate-protein complexes) [1], our results indicate that CP digestibility improves when Ca/P is increased, regardless of exogenous phytase supplementation. However, these results are still in agreement with Humer et al [2], who reported that increasing Ca/P leads to a decrease in dietary phytate. Therefore, low dietary

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

phytate content may decrease protein interactions and facilitate their absorption. It should be noted that there are strong kosmotropic influences of anionic phosphoryl groups in phytate, which stabilize protein structures by affecting the aqueous medium around the molecule [7,22]. The total secretion of mucin in the intestine increases by interacting with phytase [12,23,24], resulting in an increased loss of endogenous amino acids due to the low digestibility of mucin structural proteins. Another effect of phytate on protein digestibility in the intestinal lumen is associated with the phytase interaction that increases sodium ion (Na⁺) influx into the intestine. The high buffering capacity of Na⁺, triggers the secretion of hydrochloric acid (HCL), which reduces the digestibility of proteins [1,25]. Therefore, when considering CP digestibility, a lower P and higher Ca/P are recommended in growing and finishing pigs.

Conclusion

Overall, the present meta-analysis showed that phytase supplementation and to a lesser extent, Ca/P are key factors in affecting the growth performance of pigs. Results demonstrated that increased Ca/P decreases Ca and P retention in pigs in heavier categories (50–100 kg); however, it is not a determinant factor in Ca and P retention in lower weight pigs (6–25 kg). Increased Ca/P can increase CP digestibility in a wide BW range (11–100 kg). Based on our results, we suggest that the best practice would be to increase Ca levels in weanling pig diets and reduce Ca levels in diets for finishing pigs.

References

- 1. Selle PH, Cowieson AJ, Cowieson NP, Ravindran V. Protein–phytate interactions in pig and poultry nutrition: a reappraisal. Nutr. Res. Rev. 2012;25:1-7.
- 239 https://doi.org/10.1017/S0954422411000151
- 240 2. Humer E, Schwarz C, Schedle K. Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr.
- 241 2015;99:605-25. https://doi.org/10.1111/jpn.12258
- 3. Dersjant-Li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a
- critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci.
- 244 Food Agric. 2015 Mar 30;95(5):878-96. https://doi.org/10.1002/jsfa.6998
- 4. Mahajan A, Alexander LS, Seabolt BS, Catrambone DE, McClung JP, Odle J, Pfeiler TW, Loboa
- EG, Stahl CH. Dietary calcium restriction affects mesenchymal stem cell activity and bone
- development in neonatal pigs. J. Nutr. 2011;141(3):373-9. https://doi.org/10.3945/jn.110.131193
- 248

- 5. Almeida FN, Sulabo RC, Stein HH. Effects of a novel bacterial phytase expressed in Aspergillus
- oryzae on digestibility of calcium and phosphorus in diets fed to weanling or growing pigs. J.
- 251 Anim. Sci. Biotechnol. 2013;4:1-0. https://doi.org/10.1186/2049-1891-4-8
- 6. Schlegel P, Gutzwiller A. Dietary calcium to digestible phosphorus ratio for optimal growth
- performance and bone mineralization in growing and finishing pigs. Animals. 2020;10(2):178.
- 254 https://doi.org/10.3390/ani10020178
- 7. Zouaoui M, Létourneau-Montminy MP, Guay F. Effect of phytase on amino acid digestibility in
- pig: A meta-analysis. Anim. Feed Sci. Technol. 2018;238:18-28.
- 257 https://doi.org/10.1016/j.anifeedsci.2018.01.019
- 8. Selle PH, Cowieson AJ, Ravindran V. Consequences of calcium interactions with phytate and
- 259 phytase for poultry and pigs. Livest Sci. 2009;124(1-3):126-41.
- 260 https://doi.org/10.1016/j.livsci.2009.01.006
- 9. Spencer JD, Allee GL, Sauber TE. Phosphorus bioavailability and digestibility of normal and
- genetically modified low-phytate corn for pigs. J Anim Sci. 2000;78(3):675-81.
- 263 https://doi.org/10.2527/2000.783675x
- 10. González-Vega JC, Walk CL, Liu Y, Stein HH. The site of net absorption of Ca from the
- intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca
- digestibility. Arch. Anim. Nutr. 2014 4;68(2):126-42.
- 267 https://doi.org/10.1080/1745039X.2014.892249
- 268 11. Bradbury EJ, Wilkinson SJ, Cronin GM, Walk CL, Cowieson AJ. Effects of phytase, calcium
- source, calcium concentration and particle size on broiler performance, nutrient digestibility and
- skeletal integrity. Anim. Prod. Sci. 2018;58(2):271-83. https://doi.org/10.1071/AN16175

- 12. Cowieson AJ, Bedford MR, Selle PH, Ravindran V. Phytate and microbial phytase: implications
 for endogenous nitrogen losses and nutrient availability. World Poult Sci J. 2009;65(3):401-18.
 https://doi.org/10.1017/S0043933909000294
- 13. Cowieson AJ, Ruckebusch JP, Sorbara JO, Wilson JW, Guggenbuhl P, Tanadini L, Roos FF. A
 systematic view on the effect of microbial phytase on ileal amino acid digestibility in pigs. Anim.
 Feed Sci. Technol. 2017;231:138-49. https://doi.org/10.1016/j.anifeedsci.2017.07.007

278

279

280

281

289

290

291

292

293

294

295

296

297

298

- 14. Antezana W, Calvet S, Beccaccia A, Ferrer P, De Blas C, García-Rebollar P, Cerisuelo A. Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: III. Influence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation. Anim. Feed Sci. Technol. 2015;209:128-36. https://doi.org/10.1016/j.anifeedsci.2015.07.022
- 282 15. Woyengo TA, Nyachoti CM. Anti-nutritional effects of phytic acid in diets for pigs and poultry– 283 current knowledge and directions for future research. Can. J. Anim. Sci. 2013;93(1):9-21. 284 https://doi.org/10.4141/cjas2012-017
- 16. Blavi L, Perez JF, Villodre C, López P, Martín-Orúe SM, Motta V, Luise D, Trevisi P, Sola-Oriol
 D. Effects of limestone inclusion on growth performance, intestinal microbiota, and the jejunal
 transcriptomic profile when fed to weaning pigs. Anim. Feed Sci. Technol. 2018;242:8-20.
 https://doi.org/10.1016/j.anifeedsci.2018.05.008
 - 17. Tatara MR, Śliwa E, Krupski W. Prenatal programming of skeletal development in the offspring: effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone. 2007;40(6):1615-22. https://doi.org/10.1016/j.bone.2007.02.018
 - 18. An J, Cho J. Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide, J. Anim. Sci. Technol. 2021;63(1):114. http://doi: 10.5187/jast.2021.e12
 - 19. Tamim NM, Angel R, Christman M. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci. 2014;83:1358-1367. https://doi.org/10.1093/ps/83.8.1358
 - 20. Akter M, Graham H, Iji PA. Response of broiler chickens to diets containing different levels of sodium with or without microbial phytase supplementation. J. Anim. Sci. Technol. 2019;61(2):87. http://doi: 10.5187/jast.2019.61.2.87
- 21. Lei XG, Ku PK, Miller ER, Yokoyama MT, Ullrey DE. Calcium level affects the efficacy of supplemental microbial phytase in corn–soybean meal diets of weanling pigs. J. Anim. Sci.1994;72:139-143. https://doi.org/10.2527/1994.721139x
- 303 22. Gemede HF. Potential health benefits and adverse effects associated with phytate in foods: A
 304 review. Glob. J. Med. Res. 2014;27:2224-6088.

305	23. Mesina VG, Lagos LV, Sulabo RC, Walk CL, Stein HH. Effects of microbial phytase on mucin
306	synthesis, gastric protein hydrolysis, and degradation of phytate along the gastrointestinal tract of
307	growing pigs. J Anim Sci. 2019; 97(2):756-67. https://doi.org/10.1093/jas/sky439
308	24. Lu H, Shin S, Kuehn I, Bedford M, Rodehutscord M, Adeola O, Ajuwon KM. Effect of phytase
309	on nutrient digestibility and expression of intestinal tight junction and nutrient transporter genes
310	in pigs. J Anim Sci. 2020;98(7):skaa206. https://doi.org/10.1093/jas/skaa206
311	25. Dersjant-Li Y, Verstegen MW, Schulze H, Zandstra T, Boer H, Schrama JW, Verreth JA.
312	Performance, digesta characteristics, nutrient flux, plasma composition, and organ weight in pigs
313	as affected by dietary cation anion difference and nonstarch polysaccharide. J Anim Sci.
314	2001;79(7):1840-8. https://doi.org/10.2527/2001.7971840x
315	
316	

317 Figure legends

318

Figure 1. Fit plot of 6-11 kg body weight category (a, without phytase; b, with phytase).

Figure 1a. Fit plot of 6-11 kg body weight category (without phytase)

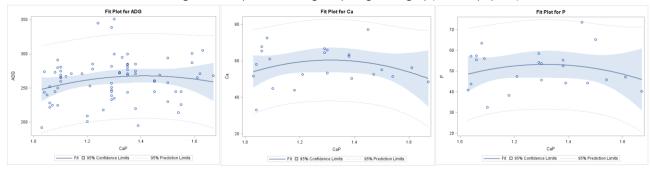


Figure 1b. Fit plot of 6-11 kg body weight category (with phytase)

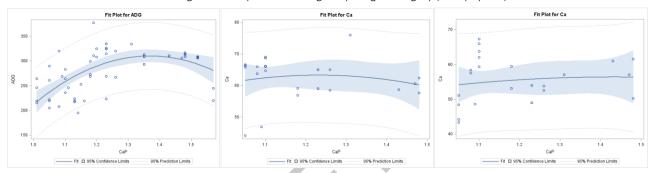


Figure 2a. Fit plot of 11-25 kg body weight category (without phytase)

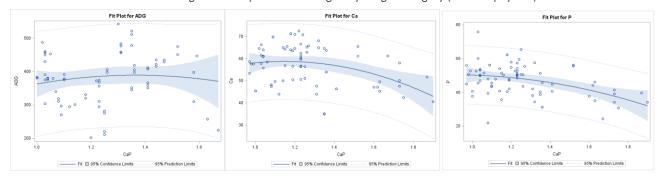


Figure 2b. Fit plot of 11-25 kg body weight category (with phytase)

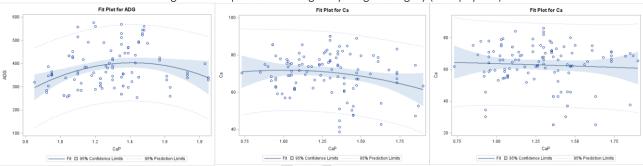


Figure 3a. Fit plot of 25-50 kg body weight category (without phytase)

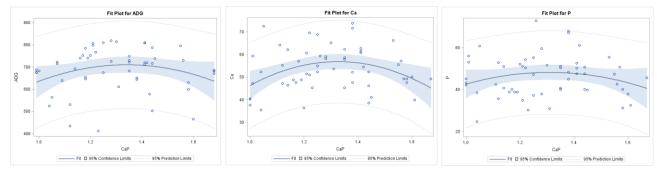
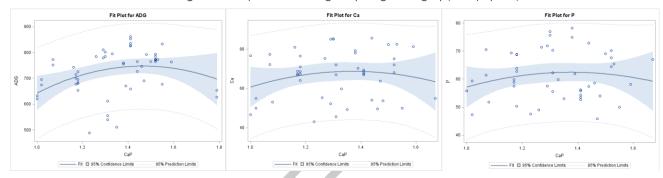
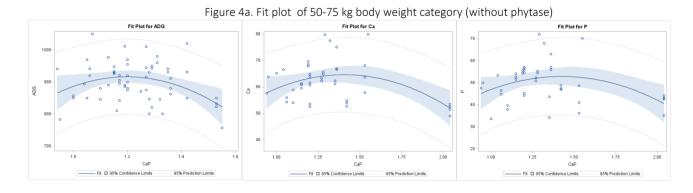




Figure 3b. Fit plot of 25-50 kg body weight category (with phytase)

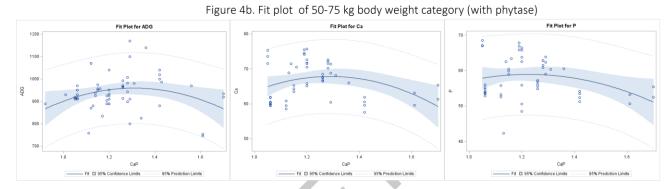
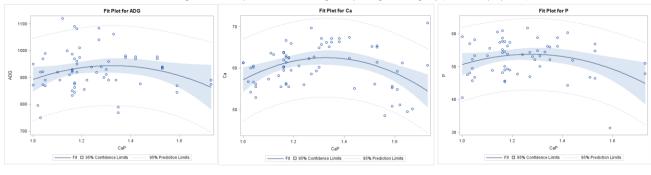
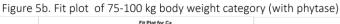
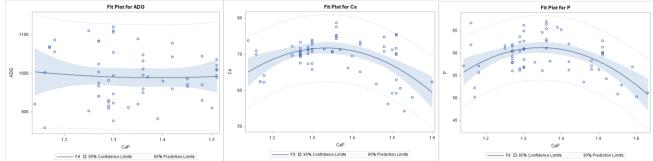





Figure 5a. Fit plot of 75-100 kg body weight category (without phytase)

Table 1. Descriptive statistics in the databases.

Weight			,	With phy	tase		Without phytase						
(kg)	Variable	N	Mean	SD	Min	Max	N	Mean	SD	Min	Max		
7-11	Ca/P ratio	80	1.24	0.17	0.92	1.63	135	1.30	0.18	0.94	1.67		
	ADG	62	289.41	41.72	195.00	377.01	75	265.41	34.80	191.50	351.01		
	ATTD Ca	25	63.20	8.33	42.69	77.58	23	58.11	9.17	33.10	77.30		
	ATTD P	25	57.08	9.22	39.85	79.30	23	50.76	10.03	24.20	75.80		
	CP	48	79.07	1.58	71.22	80.75	63	74.62	2.83	70.36	79.97		
11-25	Ca/P ratio	118	1.29	0.27	0.73	1.90	150	1.25	0.25	0.64	1.90		
	ADG	103	418.80	79.42	256.04	577.00	72	411.22	54.31	295.02	543.30		
	ATTD Ca	114	72.10	9.94	43.00	90.00	76	56.05	9.32	35.00	72.50		
	ATTD P	117	63.76	10.84	30.30	86.00	78	48.34	7.52	30.74	63.19		
	CP	109	79.40	1.03	74.10	81.25	99	73.35	2.72	66.55	79.50		
25-50	Ca/P ratio	54	1.35	0.19	1.00	1.79	105	1.29	0.20	0.83	1.68		
	ADG	53	733.22	74.10	540.30	860.90	53	686.60	98.33	412.01	819.00		
	ATTD Ca	49	67.79	11.44	45.60	85.60	56	53.56	9.50	35.40	73.80		
	ATTD P	49	61.70	8.39	45.80	78.20	56	46.35	9.81	24.80	72.90		
	CP	51	79.46	3.73	70.19	88.60	62	73.19	2.49	69.50	78.75		
50-75	Ca/P ratio	52	1.21	0.15	0.92	1.61	63	1.29	0.21	0.94	1.83		
	ADG	61	927.21	70.62	746.03	1070.02	59	900.2	61.41	757.02	1050.01		
	ATTD Ca	52	69.96	6.88	58.52	82.36	42	62.87	7.08	49.00	79.80		
	ATTD P	52	57.72	6.04	42.30	68.50	42	49.92	9.02	33.46	71.90		
	CP	60	78.57	2.68	71.25	83.21	47	74.65	5.07	61.28	82.47		
75-100	Ca/P ratio	68	1.34	0.12	1.14	1.70	67	1.29	0.25	1.00	2.19		
	ADG	59	993.51	70.90	859.03	1170.03	64	920.31	81.52	710.01	1120.03		
	ATTD Ca	56	70.58	3.53	61.28	78.69	60	61.42	3.95	52.96	69.68		
	ATTD P	56	60.08	3.65	50.19	66.99	60	52.55	5.50	31.30	61.75		
	СР	59	78.85	3.87	70.62	86.28	67	74.18	2.95	65.25	79.33		

Ca/P ratio	372	1.28	0.20	0.73	1.90	520	1.28	0.22	0.64	2.19
ADG	338	623.72	297.41	195.04	1170.00	323	605.41	284.03	191.52	1120.01
ATTD Ca	296	69.14	9.01	42.69	90.00	257	58.34	8.64	33.10	79.80
ATTD P	299	60.55	8.71	30.30	86.00	259	49.61	8.64	24.20	75.80
СР	327	79.09	2.68	70.19	88.60	338	74.00	3.22	61.28	82.47
	ADG ATTD Ca ATTD P	ADG 338 ATTD Ca 296 ATTD P 299	ADG 338 623.72 ATTD Ca 296 69.14 ATTD P 299 60.55	ADG 338 623.72 297.41 ATTD Ca 296 69.14 9.01 ATTD P 299 60.55 8.71	ADG 338 623.72 297.41 195.04 ATTD Ca 296 69.14 9.01 42.69 ATTD P 299 60.55 8.71 30.30	ADG 338 623.72 297.41 195.04 117000 ATTD Ca 296 69.14 9.01 42.69 90.00 ATTD P 299 60.55 8.71 30.30 86.00	ADG338623.72297.41195.04117000323ATTD Ca29669.149.0142.6990.00257ATTD P29960.558.7130.3086.00259	ADG 338 623.72 297.41 195.04 117000 323 605.41 ATTD Ca 296 69.14 9.01 42.69 90.00 257 58.34 ATTD P 299 60.55 8.71 30.30 86.00 259 49.61	ADG 338 623.72 297.41 195.04 117000 323 605.41 284.03 ATTD Ca 296 69.14 9.01 42.69 90.00 257 58.34 8.64 ATTD P 299 60.55 8.71 30.30 86.00 259 49.61 8.64	ATTD Ca 296 69.14 9.01 42.69 90.00 257 58.34 8.64 33.10 ATTD P 299 60.55 8.71 30.30 86.00 259 49.61 8.64 24.20

332 SD, standard deviation; Ca/P, calcium to phosphorus ratio; ADG, average daily gain; ATTD, apparent total digestibility, Ca, calcium; P, phosphorus; CP, crude protein.

Table 2. Responses of pigs to calcium and phosphorus ratio to variations in ADG, ATTD of Ca, ATTD of P, and CP in different body weight categories.

Weight	Independent		•	With phytase				Without phytase						
(kg)	Variable	Obs	Estimates	SE	t	p-value	Obs	Estimate s	SE	t	p-value			
	Intercept		-1034.10	281.20	-3.68	< 0.001		-2.19	197.40	-0.01	0.991			
	ADG	62	1964.20	443.60	4.43	< 0.001	75	382.40	303.40	1.26	0.216			
	ADG^2		-717.50	172.50	-4.16	0.001		-135.40	115.10	-1.18	0.243			
	Intercept	25	-13.06	122.80	-0.11	0.916		-76.59	104.60	-0.73	0.472			
	ATTD Ca		124.01	197.60	0.63	0.536	23	208.81	162.40	1.29	0.213			
c 11	ATTD Ca ²		-50.30	78.50	-0.64	0.527		-79.53	61.87	-1.29	0.213			
6-11	Intercept	25	25.27	119.00	0.21	0.833		-46.58	100.60	-0.46	0.648			
	ATTD P		43.45	191.4	0.23	0.822	23	151.84	156.10	0.97	0.342			
	ATTD P^2		-15.14	76.03	-0.20	0.843		-57.73	59.49	-0.97	0.343			
	Intercept		83.55	11.94	6.99	< 0.001		71.27	19.37	3.68	< 0.001			
	CP	48	-4.13	19.05	-0.22	0.829	63	4.90	29.83	0.16	0.869			
	$\mathbb{C}\mathrm{P}^2$		0.58	7.49	0.08	0.938		-1.72	11.30	-0.15	0.879			
	Intercept		-272.40	219.30	-1.24	0.217		19.90	445.50	0.04	0.964			
	ADG	103	965.40	334.60	2.86	0.005	72	540.80	704.50	0.77	0.445			
	ADG^2		-338.27	125.50	-2.69	0.008		-198.10	274.40	-0.72	0.472			
	Intercept		58.70	22.60	2.60	0.010		22.14	31.14	0.71	0.479			
	ATTD Ca	114	26.10	34.90	0.75	0.456	76	63.74	46.17	1.38	0.171			
	ATTD Ca ²		-13.00	13.10	-0.99	0.323		-27.76	16.65	-1.67	0.099			
11-25	Intercept		66.28	26.98	2.46	0.015		35.27	31.43	1.12	0.265			
	ATTD P	117	-2.22	41.45	-0.05	0.957	78	33.48	46.65	0.72	0.475			
	ATTD P ²	11,	-0.34	15.52	-0.02	0.982	, 0	-18.54	16.83	-1.1	0.274			
	Intercept		80.05	3.04	26.28	< 0.001	-	55.98	8.22	6.81	<0.001			
	СР	109	-1.37	4.67	-0.29	0.769	99	25.77	12.40	2.06	0.042			
	CP^2	10)	0.52	1.75	0.30	0.767	,,,	-9.01	4.61	-1.95	0.053			
	Intercept		-288.20	460.10	-0.63	0.533		-443.20	590.40	-0.75	0.456			
	ADG	53	1413.20	685.70	2.06	0.044	53	1721.30	903.80	1.9	0.063			
	ADG^2	33	-482.10	252.90	-1.91	0.062		-642.00	340.90	-1.88	0.065			
	Intercept		-41.50	95.10	-0.44	0.665	-	-117.40	59.10	-1.99	0.052			
	ATTD Ca	49	161.00	147.50	1.09	0.28	56	262.80	91.50	2.87	0.066			
	ATTD Ca ²	47	-58.80	56.50	-1.04	0.303	30	-99.10	34.90	-2.84	0.006			
25-50	Intercept	_	-8.29	67.82	-0.12	0.903		-52.66	64.31	-0.82	0.416			
	ATTD P	49	102.74	105.10	0.98	0.333	56	154.10	99.40	1.55	0.127			
	ATTD P ²	47	-37.30	40.28	-0.93	0.359	30	-58.84	37.95	-1.55	0.127			
	Intercept		24.99	18.89	1.32	0.192		42.04	13.910	3.02	0.004			
	СР	51	84.44	28.20	2.99	0.192	62	48.21	21.20	2.28	0.004			
	CP ²	31	-32.06	10.44	-3.07	0.004	02	-18.25	7.92.00	-2.30	0.024			
	Intercept		-83.50	455.60	-0.18	0.855		-176.80	444.90	-0.40	0.692			
	ADG	61	1592.90	700.00	2.28	0.056	59	1823.90	717.30	2.54	0.014			
	ADG^2	01	-608.20	265.20	-2.29	0.025	3)	-761.00	286.90	-2.65	0.014			
	Intercept		-16.72	36.70	-0.46	0.023		2.33	24.00	0.10	0.011			
	•	52	131.20		2.36		42	2.33 88.50		2.70	0.923			
50-75	ATTD Ca ATTD Ca ²	52	-50.91	55.70 20.80	-2.45	0.022 0.047	42	-31.50	32.70	-2.93	0.010			
			6.75		0.17	0.047	-		10.70		0.006			
	Intercept	50		39.86			42	-13.84	29.90	-0.46				
	ATTD P	52	85.17	60.46	1.41	0.165	42	93.44	40.78	2.29	0.057			
	ATTD P ²		-34.76	22.58	-1.54	0.13		-32.76	13.33	-2.46	0.018			
	Intercept	60	48.74	15.20	3.20	0.002	47	-3.51	19.95	-0.18	0.861			

CP 44,30 23,37 1,90 0,063 108,80 27,18 4,00 <0,001				_								
Intercept		CP		44.30	23.37	1.90	0.063		108.80	27.18	4.00	< 0.001
ADG 59 -680.20 2046.00 -0.33 0.74 64 1299.40 651.40 1.99 0.056 ADG² 244.80 760.10 0.32 0.748 -490.50 245.20 -2.00 0.050 Intercept -66.60 62.90 -1.06 0.294 6.52 21.70 0.30 0.765 ATTD Ca 56 193.70 93.80 2.06 0.043 60 75.20 33.20 2.26 0.027 ATTD Ca² -67.50 34.80 -1.94 0.048 -24.40 12.50 -1.95 0.036 Intercept -117.27 70.72 -1.66 0.103 -14.94 31.50 -0.47 0.637 ATTD P² -95.05 39.19 -2.43 0.019 -42.45 18.22 -2.33 0.023 Intercept -17.04 82.14 -0.21 0.836 57.08 8.40 6.79 <0.001		$\mathbb{C}\mathbb{P}^2$		-16.11	8.85	-1.82	0.074		-34.65	8.88	-3.90	< 0.001
ADG ²		Intercept		1460.80	1371.00	1.07	0.291		83.80	426.10	0.20	0.844
Intercept		ADG	59	-680.20	2046.00	-0.33	0.74	64	1299.40	651.40	1.99	0.056
ATTD Ca 56 193.70 93.80 2.06 0.043 60 75.20 33.20 2.26 0.027 ATTD Ca² -67.50 34.80 -1.94 0.048 -24.40 12.50 -1.95 0.036 Intercept -117.27 70.72 -1.66 0.103 -14.94 31.50 -0.47 0.637 ATTD P 56 260.55 105.50 2.47 0.017 60 108.04 48.28 2.24 0.029 ATTD P² -95.05 39.19 -2.43 0.019 -42.45 18.22 -2.33 0.023 Intercept -17.04 82.14 -0.21 0.836 57.08 8.40 6.79 <0.001 CP 59 143.14 122.50 1.17 0.247 67 24.49 11.59 2.11 0.038 CP² -52.99 45.52 -1.16 0.249 -8.47 3.84 -2.20 0.031 Intercept -2141.40 581.60 -3.68 <0.001 -76.60 765.50 -0.10 0.920 ADG 338 41110.10 887.70 4.63 <0.001 323 1188.80 1187.00 1.00 0.317 ADG² -1493.70 335.00 -4.46 <0.001 -503.60 454.80 -1.11 0.269 Intercept 48.60 16.50 2.94 0.004 12.23 14.83 0.82 0.410 ATTD Ca 296 33.40 25.29 1.32 0.187 257 71.70 21.58 3.32 0.001 ATTD Ca 296 33.40 25.29 1.32 0.187 257 71.70 21.58 3.32 0.001 Intercept 66.32 17.04 3.89 <0.001 14.85 15.19 0.98 0.329 ATTD P 299 -8.47 26.02 -0.33 0.745 259 58.12 22.12 2.63 0.009 ATTD P² 30.50 9.81 0.31 0.755 -23.90 7.88 -3.03 0.003 Intercept 71.90 4.59 15.64 <0.001 52.79 5.03 10.50 <0.001 CP 327 11.19 7.01 1.60 0.112 338 30.61 7.25 4.22 <0.001		ADG^2		244.80	760.10	0.32	0.748		-490.50	245.20	-2.00	0.050
Name	•	Intercept		-66.60	62.90	-1.06	0.294		6.52	21.70	0.30	0.765
Total		ATTD Ca	56	193.70	93.80	2.06	0.043	60	75.20	33.20	2.26	0.027
Intercept	75 100	ATTD Ca ²		-67.50	34.80	-1.94	0.048		-24.40	12.50	-1.95	0.036
ATTD P2	/3-100	Intercept		-117.27	70.72	-1.66	0.103	_	-14.94	31.50	-0.47	0.637
Intercept		ATTD P	56	260.55	105.50	2.47	0.017	60	108.04	48.28	2.24	0.029
CP 59 143.14 122.50 1.17 0.247 67 24.49 11.59 2.11 0.038 CP² -52.99 45.52 -1.16 0.249 -8.47 3.84 -2.20 0.031 Intercept -2141.40 581.60 -3.68 <0.001		ATTD P ²		-95.05	39.19	-2.43	0.019		-42.45	18.22	-2.33	0.023
CP² -52.99 45.52 -1.16 0.249 -8.47 3.84 -2.20 0.031 Intercept -2141.40 581.60 -3.68 <0.001	•	Intercept		-17.04	82.14	-0.21	0.836	_	57.08	8.40	6.79	< 0.001
Intercept		CP	59	143.14	122.50	1.17	0.247	67	24.49	11.59	2.11	0.038
ADG 338 41110.10 887.70 4.63 <0.001 323 1188.80 1187.00 1.00 0.317 ADG² -1493.70 335.00 -4.46 <0.001		\mathbb{CP}^2		-52.99	45.52	-1.16	0.249		-8.47	3.84	-2.20	0.031
ADG² -1493.70 335.00 -4.46 <0.001 -503.60 454.80 -1.11 0.269 Intercept 48.60 16.50 2.94 0.004 12.23 14.83 0.82 0.410 ATTD Ca 296 33.40 25.29 1.32 0.187 257 71.70 21.58 3.32 0.001 ATTD Ca² -13.65 9.57 -1.43 0.154 -27.20 7.69 -3.54 <0.001		Intercept		-2141.40	581.60	-3.68	< 0.001		-76.60	765.50	-0.10	0.920
Overall Intercept 48.60 16.50 2.94 0.004 12.23 14.83 0.82 0.410 ATTD Ca 296 33.40 25.29 1.32 0.187 257 71.70 21.58 3.32 0.001 ATTD Ca ² -13.65 9.57 -1.43 0.154 -27.20 7.69 -3.54 <0.001		ADG	338	41110.10	887.70	4.63	< 0.001	323	1188.80	1187.00	1.00	0.317
Overall ATTD Ca 296 33.40 25.29 1.32 0.187 257 71.70 21.58 3.32 0.001 ATTD Ca ² -13.65 9.57 -1.43 0.154 -27.20 7.69 -3.54 <0.001		ADG^2		-1493.70	335.00	-4.46	< 0.001		-503.60	454.80	-1.11	0.269
Overall ATTD Ca^2 -13.65 9.57 -1.43 0.154 -27.20 7.69 -3.54 <0.001 Intercept 66.32 17.04 3.89 <0.001	•	Intercept		48.60	16.50	2.94	0.004		12.23	14.83	0.82	0.410
Overall Intercept 66.32 17.04 3.89 <0.001 14.85 15.19 0.98 0.329 ATTD P 299 -8.47 26.02 -0.33 0.745 259 58.12 22.12 2.63 0.009 ATTD P² 3.05 9.81 0.31 0.755 -23.90 7.88 -3.03 0.003 Intercept 71.90 4.59 15.64 <0.001		ATTD Ca	296	33.40	25.29	1.32	0.187	257	71.70	21.58	3.32	0.001
Intercept 66.32 17.04 3.89 <0.001 14.85 15.19 0.98 0.329 ATTD P 299 -8.47 26.02 -0.33 0.745 259 58.12 22.12 2.63 0.009 ATTD P² 3.05 9.81 0.31 0.755 -23.90 7.88 -3.03 0.003 Intercept 71.90 4.59 15.64 <0.001	Overell	ATTD Ca ²		-13.65	9.57	-1.43	0.154		-27.20	7.69	-3.54	< 0.001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Overall	Intercept		66.32	17.04	3.89	< 0.001		14.85	15.19	0.98	0.329
Intercept 71.90 4.59 15.64 <0.001 52.79 5.03 10.50 <0.001 CP 327 11.19 7.01 1.60 0.112 338 30.61 7.25 4.22 <0.001		ATTD P	299	-8.47	26.02	-0.33	0.745	259	58.12	22.12	2.63	0.009
CP 327 11.19 7.01 1.60 0.112 338 30.61 7.25 4.22 <0.001		ATTD P ²		3.05	9.81	0.31	0.755		-23.90	7.88	-3.03	0.003
	•	Intercept		71.90	4.59	15.64	< 0.001		52.79	5.03	10.50	< 0.001
CP^2 -4.26 2.64 -1.61 0.108 -10.45 2.56 -4.09 <0.001		CP	327	11.19	7.01	1.60	0.112	338	30.61	7.25	4.22	< 0.001
		CP ²		-4.26	2.64	-1.61	0.108		-10.45	2.56	-4.09	< 0.001

Obs, number of observations; SE, standard error; Ca/P, calcium to phosphorus ratio; ADG, average daily

gain; ATTD, apparent total digestibility, Ca, calcium; P, phosphorus; CP, crude protein