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Abstract 7 

Ovotransferrin (OTF), an egg protein known as transferrin family protein, possess strong antimicrobial 8 

and antioxidant activity. This is because OTF has two iron binding sites, so it has a strong metal chelating 9 

ability. The present study aimed to evaluate the improved immune-enhancing activities of OTF 10 

hydrolysates produced using bromelain, pancreatin, and papain. The effects of OTF hydrolysates on the 11 

production and secretion of pro-inflammatory mediators in RAW 264.7 macrophages were confirmed. 12 

The production of nitric oxide (NO) was evaluated using Griess reagent and the expression of inducible 13 

nitric oxide synthase (iNOS) were evaluated using quantitative real-time PCR. And the production of pro-14 

inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) and the phagocytic 15 

activity of macrophages were evaluated using an ELISA assay and neutral red uptake assay, respectively. 16 

All OTF hydrolysates enhanced NO production by increasing iNOS mRNA expression. Treating RAW 17 

264.7 macrophages with OTF hydrolysates increased the production of pro-inflammatory cytokines and 18 

the phagocytic activity. The production of NO and pro-inflammatory cytokines induced by OTF 19 

hydrolysates was inhibited by the addition of specific MAPK inhibitors. In conclusion, results indicated 20 

that all OTF hydrolysates activated RAW 264.7 macrophages by activating MAPK signaling pathway. 21 

 22 

Keywords: ovotransferrin, hydrolysates, immune-enhancing activity, MAPK pathway 23 

 24 
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Introduction 27 

The immune system protects the body from foreign bacterial or viral infections and reduces 28 

their susceptibility to diseases [1]. Therefore, improving immune activities using natural 29 

bioactive compounds is an effective strategy to defend the body [2-5]. Many natural bioactive 30 

compounds are known to activate macrophages that play various roles, such as secretion of 31 

cytokines, phagocytosis, wound repair, and antigen presentation, in the immune system [6]. The 32 

increased production of inflammatory mediators, such as cyclooxygenase (COX)-2, nitric oxide 33 

(NO), and inflammatory cytokines (e.g., interferon (IFN)-γ, interleukin (IL)-6, IL-8, IL-10, IL-1β, 34 

and tumor necrosis factor (TNF)-α) in macrophages, help to eliminate foreign particles [7]. 35 

Egg proteins are a good natural source for producing functional peptides [8]. Egg contains 36 

various functional proteins such as ovotransferrin, ovalbumin, lysozyme, ovoinhibitor, 37 

ovomucoid, phosvitin, lipovitellin, livetins, etc. [9]. Some of them are reported to have immune-38 

modulatory activity by stimulating the production of cytokines, activating signaling pathways, 39 

and activating immune cells [2,10-12]. Ovotransferrin (OTF) is the second major egg white 40 

protein and is reported to account for about 12~13% of egg white protein [13]. OTF has a 41 

molecular weight of 78 kDa and has 15 disulfide bonds in a protein structure consisting of 686 42 

amino acids. OTF has antimicrobial activity because of possessing two iron-binding sites where 43 

iron ions can bind [14]. OTF is also known to have antiviral [15], anticancer [16], antioxidative, 44 

and immunomodulatory activities [17].  45 

Enzymatic hydrolysis is a common method to produce functional peptides from proteins [18], 46 

because the same peptides in the native proteins do not show biological activities [19]. It is 47 

known that the functional activity of peptides depends on the characteristics of peptide, such as 48 

amino acid sequence, length, and the hydrophobic to hydrophilic amino acids ratio in the peptide 49 

[20]. Thus, producing functional peptides using a variety of proteolytic enzymes is a better 50 
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strategy than using a single enzyme. While many researchers purified and identified specific 51 

peptides to observe their functionalities, some researchers investigated the functional activity of 52 

crude enzymatic hydrolysates [16,21]. Our previous study found that OTF enhanced the immune 53 

activity of macrophages by activating the MAPK pathway [13]. In present study, we determined 54 

the enhancement of the immune-enhancing activity of OTF after enzymatic hydrolysis. 55 

 56 

Materials and Methods 57 

Materials and reagents 58 

Bromelain (from the pineapple stem), pancreatin (from the porcine pancreas), and papain 59 

(from the papaya latex) for enzymatic hydrolysis were obtained from Sigma-Aldrich (St. Louis, 60 

MO, USA). Dulbecco modified Eagle medium (DMEM), antibiotics (containing penicillin and 61 

streptomycin), fetal bovine serum (FBS), and phosphate-buffered saline (PBS) were obtained 62 

from Hyclone (Logan, MI, USA). Mouse IL-6 and TNF-α ELISA kits were obtained from AB 63 

frontier (Seoul, Korea). SB 202190, PD 98059, and SP 600125 were purchased from Abcam 64 

(Cambridge, UK). Thiazolyl blue tetrazolium bromide (MTT), lipopolysaccharides (LPS), 65 

Neutral Red, and Griess reagent were obtained from Sigma-Aldrich. Ethyl alcohol, acetic acid, 66 

and dimethyl sulfoxide (DMSO) were obtained from Samchun (Seoul, Korea). All other 67 

chemical reagents used in this study were of analytical grade. 68 

 69 

OTF and OTF hydrolysates preparation 70 

OTF was isolated from egg white according to the method of Abeyrathne et al. [22]. The yield 71 

and purity of isolated OTF were greater than 83 & 85%, respectively. To produce OTF 72 

hydrolysates, we have used various enzymes such as alcalase, bromelain, flavourzyme, neutrase, 73 

pancreatin, papain, pepsin, and protamex. However, except for bromelain, pancreatin, and papain 74 
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enzyme hydrolysates, other enzyme hydrolysates were found to have no ability to promote NO 75 

production in macrophages, confirming that they had no immune-enhancing activity. Therefore, 76 

bromelain, pancreatin, and papain were used in this study. The lyophilized OTF (2 g) was 77 

dissolved in DW (100 mL), the pH adjusted to pH 7.0 for bromelain, pancreatin and to pH 6.5 78 

for papain, and then incubated at 50 ℃ for bromelain, pancreatin and at 65 ℃ for papain. Each 79 

enzyme was added in a 1:50 ratio (enzyme:substrate), and incubated for 4 h. After incubation, 80 

the hydrolysis was terminated by heating at 100 ℃ for 10 min. Finally, the hydrolysate was 81 

centrifuged, and the supernatant was lyophilized. The OTF hydrolysates produced by bromelain, 82 

pancreatin, and papain were named as OTH-Bro, OTH-Pan, OTH-Pap, respectively. 83 

 84 

Cell culture and cell viability 85 

RAW 264.7 cells were purchased from Korean Cell Line Bank (Seoul, Korea) and cultured in 86 

DMEM medium supplemented with 1% antibiotics and 10% FBS at 37˚C humidified 5% CO2 87 

incubator.  88 

MTT assay was used to determine cell viability [23]. Briefly, RAW 264.7 cells were cultured 89 

in 96-well plate at a density of 2 × 105 cells/well, and the cells were treated with OTF 90 

hydrolysates (250 and 500 μg/mL) for 24 h. Subsequently, cells were treated with a MTT 91 

solution (2.5 mg/mL) and further cultured for 4 h. After removing the supernatant, DMSO was 92 

added to each well and the absorbance was measured by microplate reader (Bio-Rad) at 570 nm. 93 

 94 

NO and iNOS production 95 

The Griess reagent was used to determine the effects of OTF hydrolysates on NO production 96 

of RAW 264.7 cells [24]. Briefly, RAW 264.7 cells were cultured in a 96-well plate at a density 97 

of 2 × 105 cells/well, and the cells were treated with OTF hydrolysates (250 and 500 μg/mL) for 98 

24 h. After transferring the supernatant to a new 96-well plate, Greiss reagent was added and 99 
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reacted for 15 min. The absorbance was measured at 540 nm. NO concentration was calculated 100 

from a standard curve obtained using sodium nitrate. 101 

The quantitative real-time PCR (qRT-PCR) assay was used to measure the effects of OTF 102 

hydrolysates on iNOS production of RAW 264.7 cells. Briefly, RAW 264.7 cells were cultured 103 

in a 6-well plate at a density of 1 × 106 cells/well, and incubated for 24 h. Thereafter, the cells 104 

were incubated with OTF hydrolysates (250 and 500 μg/mL) for an addition 24 h. The RNA was 105 

isolated from the cells using an RNA isolation kit (Qiagen, Milan, Italy) and the isolated total 106 

RNA was synthesized into cDNA using the cDNA synthesis kit (Thermo Fisher Scientific, 107 

Carlsbad, CA, USA). The iNOS mRNA expressions were analyzed using the SYBR Green 108 

reagent (PhileKorea, Daejeon, Korea) on a qRT-PCR system (PikoReal™, Thermo Fisher 109 

Scientific). The amplified data were analyzed using the comparative cycle threshold method and 110 

were normalized using the expression level of β-actin. The primer sequences (5'-3') were shown 111 

as follows: iNOS, forward CCCTTCCGAAGTTTCTGGCAGCAGC, reverse 112 

GGCTGTCAGAGCCTCGTGGCTTTGG'; and β-actin, forward 113 

GTGGGCCGCCCTAGGCACCAG, reverse GGAGGAAGAGGATGCGGCAGT. 114 

 115 

Pro-inflammatory cytokine production 116 

The effects of OTF hydrolysates on pro-inflammatory cytokine (TNF-α and IL-6) production 117 

of RAW 264.7 cells were determined by using an ELISA assay. Briefly, RAW 264.7 cells were 118 

cultured in a 12-well plate at a density of 4 × 105 cells/well and incubated for 24 h. Thereafter, 119 

the cells were incubated with OTF hydrolysates (250 and 500 μg/mL) for an addition 24 h. The 120 

amounts of pro-inflammatory cytokines were measured by an ELISA kit according to the 121 

manufacturers' instructions. 122 

 123 

Phagocytic activity 124 
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The neutral red uptake method was used to measure the effects of OTF hydrolysates on the 125 

phagocytic activity [25]. Briefly, RAW 264.7 cells were cultured in a 24-well plate at a density 126 

of 2 × 105 cells/well and incubated for 4 h. Thereafter, the cells were incubated with OTF 127 

hydrolysates (250 and 500 μg/mL) for an additional 24 h. After removing the supernatant, 128 

neutral red solution (0.075%, dissolved in PBS) was added to cells and incubated for another 1 h. 129 

The cells were washed 3 times with PBS, the neutral red was dissolved by adding the lysis 130 

reagent. The absorbance was measured at 540 nm. 131 

 132 

Blocking assay 133 

The blocking assay using specific inhibitors of p38, ERK, or JNK pathway (SB 202190, PD 134 

98059, and SP 600125) was conducted [2]. Briefly, RAW 264.7 cells were cultured in a 12-well 135 

plate at a density of 4 × 105 cells/well and incubated for 24 h. Thereafter, the cells were 136 

incubated with 500 μg/mL of OTF hydrolysates and each 10 μM specific inhibitors for 8 h. The 137 

cells were then incubated for an additional 24 h after being replaced with a fresh medium. The 138 

amounts of production of NO, TNF-α, and IL-6 were determined as described above. 139 

 140 

Statistical analysis 141 

The data were analyzed with SPSS statistics 18.0 (SPSS Inc., Chicago, IL, USA) and 142 

presented as the mean ± standard deviation from triplicate measurements of the analyses. The 143 

student's t-test and one-way analysis of variance (ANOVA, followed by Duncan’s multiple 144 

comparison procedure) were used to measure the differences. 145 

 146 

Results and Discussion 147 

Cell viability and the production of NO and iNOS in macrophages 148 
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The effects of OTF hydrolysates on cell viability are shown in Figure 1. The viability of RAW 149 

264.7 cells was not affected by the OTF hydrolysates. All treatment groups showed over 95% 150 

cell viability, indicating that OTF hydrolysates (250 and 500 μg/mL) exhibited no toxic effect on 151 

the RAW 264.7 cells. In contrast, cell viability was significantly reduced at concentration of 152 

OTF hydrolysates higher than 500 μg/mL (data not shown).  153 

NO is one of the most important molecules in immune response, which is secreted as a free 154 

radical when macrophages are activated. Furthermore, it is well known to be lethal to 155 

intracellular parasites and bacteria [3]. Our previous study indicated that OTF stimulated NO 156 

production in RAW 264.7 cells [13]. The results showed that all the OTF hydrolysate groups 157 

increased the production of NO (Fig. 2A). At 500 μg/mL level, the OTF-treated RAW 264.7 158 

cells produced NO at 17.96 ± 3.76 μM. However, the OTF-hydrolysates-treated groups (OTH-159 

Bro, OTH-Pan, and OTH-Pap) produced more NO (24.22 ± 3.63, 30.15 ± 3.26, and 27.50 ± 2.85 160 

μM, respectively.) than the OTF-treated group. At lower concentrations (250 μg/mL), the OTF-161 

hydrolysates-treated groups also produced more NO than the OTF-treated group.  162 

NO is synthesized by a family of nitric oxide synthase (NOS) with three isoforms: endothelial 163 

NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS) [26]. Among them, nNOS and 164 

eNOS regulate NO concentration under normal conditions. However, iNOS induces a higher 165 

amount of NO under inflammatory situations [27]. Therefore, iNOS is strongly related to the 166 

increased NO production. 167 

OTF hydrolysates increased the mRNA expression level of iNOS in RAW 264.7 cells (Fig. 2B, 168 

P < 0.05). Compared with the control, all OTF-hydrolysate-treated groups showed increased 169 

iNOS mRNA expression. At 500 μg/mL concentration, OTH-Bro showed the most increased 170 

iNOS mRNA (8.99-fold) expression level. The OTH-Pap and OTH-Pan groups showed an 8.65-171 

fold and 7.99-fold increase in the level of iNOS mRNA, respectively. At lower concentrations 172 

(250 μg/mL), the OTH-Pap showed the highest iNOS mRNA expression level (7.82-fold), which 173 
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was similar to that at 500 μg/mL level. OTH-Bro and OTH-Pan showed a 6.63-fold and 5.48-174 

fold increase in iNOS mRNA, respectively. These results indicated that all OTF hydrolysates 175 

increased the expression level of iNOS mRNA, resulting in increased NO production in RAW 176 

264.7 cells. 177 

 178 

Production of pro-inflammatory cytokines in macrophages 179 

Pro-inflammatory cytokines, the key regulators of the immune response, are produced in the 180 

macrophages when they are activated [28]. Treating RAW 264.7 cells with OTF hydrolysates 181 

increased TNF-α and IL-6 production (P < 0.05) (Fig. 3). At 500 μg/mL OTF hydrolysates level, 182 

all OTF hydrolysates increased TNF-α production more than 50 ng/mL (OTH-Bro: 54.60 ± 5.23, 183 

OTH-Pan: 53.46 ± 6.76, OTH-Pap: 54.14 ± 6.13 ng/mL) in the RAW 264.7 cells, but no 184 

significant difference was found among the hydrolysates. At 250 μg/mL concentration, OTH-Pap 185 

showed significantly higher (P < 0.05) TNF-α production than other hydrolysates. Treating 186 

RAW 264.7 cells with OHT-Pap and OTH-Pan showed higher IL-6 production than OTH-Bro at 187 

all concentrations. The 500 μg/mL of OTH-Pap and OTH-Pan increased the IL-6 production 188 

(22.94 ± 2.80 and 22.18 ± 2.09 ng/mL, respectively), while the amount produced was 14.63 ± 189 

0.94 ng/mL with OTH-Bro treatment. 190 

Cytokines are linked to innate and adaptive immunities and play important roles in the 191 

activation of macrophages [29]. The TNF-α is one of the cytokines released first when 192 

macrophages are activated. It upregulates cell adhesion molecules that initiate the migration of 193 

inflammatory cells into tissues and activate the secretion of other cytokines and the reactive 194 

oxygen species [30]. The IL-6, which serve to promote the differentiation of lymphocytes, is a 195 

pivotal cytokine in immune response [31]. Previous studies showed that many natural materials 196 

derived from plants, animals, and fishes have immune-enhancing or stimulating activity by 197 

boosting the production of pro-inflammatory cytokines in various immune cells [1,2,24,31]. 198 
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Thus, OTF hydrolysates boost the immune system by promoting the secretion of pro-199 

inflammatory cytokines. 200 

 201 

Phagocytic activity of macrophages 202 

Phagocytic activity is one of the characteristics of macrophages to defend the host against 203 

pathogens [32]. The neutral red uptake assay was used to confirm the effect of OTF hydrolysates 204 

on phagocytic activity of macrophages. All OTF hydrolysate groups showed increased 205 

phagocytic activity compared than the control group (P < 0.05) (Fig. 4). The OTH-Pan group 206 

(500 μg/mL) showed the highest phagocytic activity (123.27% of the control), whereas the OTH-207 

Pap group (250 μg/mL) showed the lowest phagocytic activity (107.18% of the control), 208 

suggesting that OTF hydrolysates help eliminate foreign pathogens and improve the immune 209 

function of the host [4]. 210 

 211 

The inhibition of pro-inflammatory mediator production by the MAPK-specific 212 

inhibitors 213 

To investigate the activation mechanism of macrophages by OTF hydrolysates further, we 214 

conducted specific inhibitor studies using MAPK signaling pathway inhibitors [2]. The inhibitors 215 

used were SB 202190, PD 98059, and SP 600125, which inhibit p38, ERK, and JNK, 216 

respectively. As shown in Fig. 5A-C, all OTF hydrolysates (500 μg/mL) increased the 217 

production of NO in macrophages. However, the macrophages treated with specific inhibitors 218 

(SB 2002190 and SP 600125) had a lower level of NO production than the control (without 219 

treated any inhibitors) (P < 0.001). SP 600125 treatment, which inhibits the JNK, showed the 220 

highest decrease in the rate among the specific inhibitors. However, PD 98059, which inhibits 221 

the ERK, showed an increased NO production level than the control (P < 0.001). Similar to our 222 

study, Youn et al. [33] reported that PD 98059 did not affect NO production. For TNF-α, all 223 



ACCETED

three MAPK inhibitors affected the TNF-α production induced by OTF hydrolysates (Fig. 5D-F). 224 

SP 600125 treatment group showed the highest decrease (P < 0.001). Unlike NO, TNF-α 225 

production was inhibited by PD 98059 (OTH-Bro, P < 0.001; OTH-Pan, P < 0.001; OTH-Pap, P 226 

< 0.01). The production of IL-6 induced by OTF hydrolysates were also inhibited by all three 227 

MAPK inhibitors (Fig. 5G-I). Similarly, the SP 600125 treatment group significantly inhibited 228 

the production of IL-6 in all OTF hydrolysates-treated groups.  229 

MAPK are reported to activate macrophages and control the production of inflammatory 230 

mediators such as NO and inflammatory cytokines (IL-1β, IL-6, IL-10, IFN-γ, and TNF-α) 231 

[1,13]. When p38, ERK, and JNK were inhibited by specific inhibitors, the production of 232 

inflammatory mediators decreased in macrophages, indicating that the OTF hydrolysates 233 

activated macrophages by the MAPK. When lysozyme boosted the production of inflammatory 234 

mediators, it was suppressed by adding the MAPK inhibitors [2]. A study of polysaccharide from 235 

Ecklonia cava reported that the secretion of IL-2 by polysaccharides was inhibited by adding the 236 

NF-κB or JNK inhibitor, which was similar to our results [34]. 237 

In conclusion, we examined the immune-enhancing activity of OTF hydrolysates using 238 

various assays. We found that OTF hydrolysates promoted phagocytic activity. OTF 239 

hydrolysates increased the production or secretion of NO/iNOS, TNF-α, and IL-6 by activating 240 

macrophages. It was confirmed that macrophages activation by OTF hydrolysates is induced 241 

through the MAPK signaling pathway. The activated macrophages secreted a variety of 242 

cytotoxic proteins to help eliminate virally infected cells, cancer cells, and intracellular 243 

pathogens. These findings suggest that OTF hydrolysates could be used as a functional food 244 

ingredient with immune-enhancing activity in the food industry in the future. 245 

246 
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Fig. 1. 360 

 361 

Figure 1. Effects of OTF hydrolysates on RAW 264.7 cell viability. □: 250 μg/mL of OTF 362 

hydrolysates, ■: 500 μg/mL of OTF hydrolysates. Values are expressed as the means of 363 

triplicates ± standard deviation. Cell viability (%) = absorbance of the sample/absorbance of the 364 

blank × 100. 365 

 366 

 367 
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Fig. 2.  368 

 369 

 370 

Figure 2. OTF hydrolysates upregulate the production of NO (A) and the secretion of iNOS 371 

(B) of RAW 264.7 macrophages. □: 250 μg/mL of OTF hydrolysates, ■: 500 μg/mL of OTF 372 
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hydrolysates. Con: only medium-treated group. Values represent the mean ± standard deviation. 373 

Different letters (a, b, c, etc.) above bars denote statistically significant difference (P < 0.05). 374 

 375 

376 
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Fig. 3. 377 

 378 

 379 

Figure 3. OTF hydrolysates upregulate the production of (A) TNF-α and (B) IL-6 of RAW 380 

264.7 macrophages. □: 250 μg/mL of OTF hydrolysates, ■: 500 μg/mL of OTF hydrolysates. 381 
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Con:  only medium-treated group. Values represent the mean ± standard deviation. Different 382 

letters (a, b, c, etc.) above bars denote statistically significant difference (P < 0.05). 383 

 384 

385 
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Fig. 4. 386 

 387 

 388 

Figure 4. OTF hydrolysates increase the phagocytic activity of RAW 264.7 macrophages. □: 389 

250 μg/mL of OTF hydrolysates, ■: 500 μg/mL of OTF hydrolysates. Con: the only medium 390 

treated group. Values represent mean ± standard deviation. Values represent the mean ± standard 391 

deviation. Different letters (a, b, c, etc.) above bars denote statistically significant difference (P < 392 

0.05). 393 
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Fig. 5. 394 

 395 
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Figure 5. MAPK pathway inhibitors inhibit the production of (A-C) NO, (D-F) TNF-α, and (G-I) IL-6 production of RAW 396 

264.7 macrophages induced by OTF hydrolysates (500 μg/mL). OTH-Bro: (A), (D), (G), OTH-Pan: (B), (E), (H), OTH-Pap: (C), 397 

(F), (I). Values represent mean ± standard deviation. (* = P < 0.05, ** = P < 0.01, *** = P < 0.001 vs. control group) 398 




