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Abstract 8 

The aims of this study were to develop a milk protein-based probiotic delivery system using a 9 

modified rennet-induced gelation method and to determine how the skim milk powder 10 

concentration level and pH, which can affect the rennet-induced intra- and inter-molecular 11 

association of milk proteins, affect the physicochemical properties of the probiotic delivery 12 

systems, such as the particle size, size distribution, encapsulation efficiency, and viability of 13 

probiotics in simulated gastrointestinal tract. To prepare a milk protein-based delivery system, 14 

skim milk powder was used as a source of milk proteins with various concentration levels from 15 

3% to 10% (w/w) and rennet was added to skim milk solutions followed by adjustment of pH 16 

from 5.4 or 6.2. L. rhamnosus GG was used as a probiotic culture. In confocal laser scanning 17 

microscopic images, globular particles with a size ranging from 10 μm to 20 μm were observed, 18 

indicating that milk protein-based probiotic delivery systems were successfully created. When 19 

the skim milk powder concentration was increased from 3% to 10% (w/w), the size of the 20 

delivery system was significantly (p < 0.05) increased from 27.5 μm to 44.4 μm, while a 21 

significant (p < 0.05) increase in size from 26.3 μm to 34.5 μm was observed as the pH was 22 

increased from 5.4 to 6.4. An increase in skim milk powder concentration level and a decrease in 23 

pH led to a significant (p < 0.05) increase in the encapsulation efficiency of probiotics. The 24 

viability of probiotics in a simulated stomach condition was increased when probiotics were 25 

encapsulated in milk protein-based delivery systems. An increase in the skim milk powder 26 

concentration and a decrease in pH resulted in an increase in the viability of probiotics in 27 

simulated stomach conditions. It was concluded that the protein content by modulating skim milk 28 

powder concentration level and pH were the key manufacturing variables affecting the 29 

physicochemical properties of milk protein-based probiotic delivery systems. 30 

 31 

 32 

Keywords (3 to 6): milk protein, probiotics, delivery system, rennet 33 

 34 

Introduction 35 

Probiotics can be defined as “live microorganisms which, when administered in adequate 36 

numbers, confer a health benefit on the host” (FAO/WHO, 2002). Owing to the beneficial effects 37 

of probiotics, such as reduction in the incidence and duration of childhood diarrhea, 38 

improvement in symptoms of the irritable bowel syndrome, and regulation of intestinal immunity, 39 
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demands for probiotic-formulated food products are increasing across the world [2, 3]. Probiotics 40 

have been incorporated in various foods including dairy products (e.g., yogurt, cheese, and ice 41 

cream) and non-dairy products (e.g., chocolate, cereals, and juices) and global probiotic market 42 

is expected to reach US$46.55 billion by 2020 [4-6]. However, there remain problems on the 43 

viability of probiotics when probiotics have been used in foods [4]. To provide their beneficial 44 

effects on the host, it is necessary that probiotics survive through the upper gastrointestinal tracts 45 

and sufficient numbers of probiotics reach the intestine alive [7]. To reach a sufficient number of 46 

viable probiotics to the intestinal epithelium, probiotic foods should contain at least 106 - 107 47 

cfu/g at the time of consumption [8-10]. However, the number of viable cell in the intestinal 48 

epithelium is often low because the number of probiotic can be easily decreased under adverse 49 

and harsh conditions during food processing (e.g., heat treatment), storage, and digestion (e.g., 50 

acidic pH of stomach) [11]. Therefore, it is important to protect probiotics and keep them alive 51 

until reaching the intestine. 52 

 Microencapsulation technologies, such as spray-drying, spray-congealing, extrusion, and 53 

coacervation, have been used for the protection and delivery of probiotics [4, 12, 13]. Spray 54 

drying is regarded as a low cost process since it is suitable for high-volume production and 55 

requires low energy input., Therefore, spray drying has been widely used to encapsulate 56 

probiotics in various matrixes and to produce microparticles delivering probiotics [4]. However, 57 

high heat temperature (e.g., > 130°C) during spray drying negatively affected the viability of 58 

encapsulated probiotics [11, 14, 15]. Moreover, non-dairy origin delivery materials, such as 59 

alginate, gellan-gum, and xanthan, cannot be applied to dairy foods in some countries [11, 16]. 60 

Therefore, it is necessary to produce an effective delivery system for probiotics using dairy 61 

origin delivery materials, such as milk proteins with mild heat treatment. 62 

Rennet is an enzymatic mixture with a protease activity. Chymosin, the major component of 63 

rennet, can hydrolyze (peptide bond between phenylalanine (residue 105) and methionine 64 

(residue106) in κ-casein [17]. The cleavage of κ-casein on the surface of casein micelles results 65 

in a decrease in the net negative charge and an increase in their hydrophobicity, which leads to 66 

aggregation of casein micelles and form a gel [11]. Heidebach et al. [11] produced dairy-based 67 

probiotic delivery system using the emulsification and rennet-induced gelation of skim milk. 68 

This method is relatively simple and suitable for both lab-scale and high volume manufacturing 69 

since specialist equipments are not necessary to use. However, in the study of Heidebach et al. 70 

(2009), very high concentration level (35%, w/w) of skim milk powder was used for the 71 
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encapsulation of probiotics, which can increase the production cost and lead to form larger 72 

particles (~69 μm). Although an increase in the size of delivery system could increase the 73 

encapsulation efficiency and viability of probiotics in previous studies [18, 19], larger delivery 74 

system may negatively affect the textural and sensorial properties of foods [4, 18]. Compared 75 

with spray drying method performed at high temperature above > 100°C, sub-ambient 76 

temperature treatment between 5 and 25°C was used in rennet-induced gelation method, which 77 

could make it advantageous to minimize heat-induced damage for probiotics [20]. Moreover, 78 

milk proteins have lower viscosity than highly viscous non-dairy delivery materials including 79 

alginate, gellan-gum, and xanthan. Because of high viscosity of those non-dairy delivery 80 

materials even at low concentration, the developing non-dairy based gel networks can have the 81 

low density, which cannot offer efficient protection for encapsulated materials [11]. Therefore, 82 

rennet-induced gelation of milk proteins can be used as an ideal method for the encapsulation of 83 

probiotics. 84 

To produce cost-effective probiotic delivery systems, the concentration level of skim milk 85 

powder should be reduced (e.g., below 10%). Moreover, to understand how the manufacturing 86 

processes can modulate the physicochemical characteristics of probiotic delivery systems 87 

including size and zeta potential, it is necessary to study the relationships between the 88 

manufacturing variables and physicochemical properties of probiotic delivery systems. In this 89 

study, we hypothesized that the manufacturing variables, such as milk protein concentration level 90 

and pH, that affect the rennet-induced gelation, may play important roles on the physicochemical 91 

properties of probiotic delivery systems, the encapsulation efficiency of probiotics, and viability 92 

of probiotics during gastrointestinal digestion. 93 

 The objectives of this study were to produce probiotic delivery system using rennet-induced 94 

gelation of milk proteins and to study how manufacturing variables, such as skim milk powder 95 

concentration level and pH, affect the physicochemical properties of probiotic delivery systems 96 

and the viability of encapsulated probiotics during in vitro gastrointestinal digestion. 97 

 98 

Materials and Methods 99 

Chemicals and Reagents 100 

Skim milk powder with protein content of 35% (w/w) and rennet (Natural standard plus 290) 101 

were purchased from Maeil Dairies Co. Ltd. (Korea) and Hansen pty Ltd. (Newzealand), 102 

respectively. CaCl2, Tween 80, Span 80, NaCl, KCl, NaHCO3, pepsin from porcine gastric 103 
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mucosa, bile extract porcine, and Acridine orange were purchased from Sigma-Aldrich (St. 104 

Louis, USA).  105 

 106 

Microbial culture 107 

Probiotic strain, L. rhamnosus GG, was cultured in de Man, Rogosa, and Sharpe (MRS) media 108 

(Difco Laboratories, USA) at 37°C for 18 h. After two subcultures in MRS media, cell 109 

suspension was centrifuged at 1,500 g, 4ºC for 5 min. The pellet was washed twice with sterile 110 

0.9% (w/v) sodium chloride solution and used for further encapsulation process. 111 

 112 

Manufacture of probiotic delivery systems 113 

Probiotic delivery systems were produced using the modified rennet-induced gelation of milk 114 

proteins described in Heidebach et al. [11]. Skim milk solutions (3, 5, and 10% w/w) 115 

reconstituted in sterile water were adjusted to pH 5.4 and 6.2 using 1 M HCl and cooled to 5ºC. 116 

The cell pellet was mixed with 15 mL of skim milk solutions with various concentration levels (3, 117 

5, and 10%, w/w) and pH (5.4 and 6.2) to obtain probiotic/skim milk mixtures with at least 9.0 118 

log CFU/mL of L. rhamnosus GG. Next, 51.7 μL of rennet was added to 15 mL of 119 

probiotic/skim milk mixtures and kept at 5ºC for 60 min. Seventy-five microliters of 1 M CaCl2 120 

were added to 15 mL of probiotic/skim milk/rennet mixtures. The final concentration of CaCl2 in 121 

the mixture was 5 mM. To form oil-in-water (O/W) emulsions, 15 mL of those mixtures were 122 

added to 160 g of corn oil containing 5% (w/w) span 80 and then homogenized at 8,000 rpm for 123 

5 min using a probe-type homogenizer (Daihan scientific Co., Ltd., Korea). To prevent rennet-124 

induced gelation of milk proteins, temperature was kept at 5ºC during homogenization. After the 125 

formation of O/W emulsions, the temperature of emulsions was controlled to 25ºC and kept for 126 

10 min to induce the rennet-induced gelation of milk proteins. To obtain probiotic delivery 127 

systems, O/W emulsions were centrifuged at 15,000 g, 4ºC for 1 min and then oils at top layer 128 

were removed. After washing 3 times with distilled water to remove residual oils, probiotic 129 

delivery systems were collected and freeze dried. 130 

 131 

Morphological properties of probiotic delivery systems 132 

Formation and morphological properties of probiotic delivery systems were determined using 133 

a confocal laser scanning microscope (CLSM, Olympus FV-1000, Japan). To monitor probiotic 134 

delivery systems, acridine orange, a fluorescent dye, was used to stain milk proteins. Prior to the 135 
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production of delivery systems, 90 μL of 0.2% (w/w) acridine orange was added to 15 mL of 3, 5, 136 

and 10% (w/v) skim milk solutions and adjusted to pH 5.4 and 6.2 with 1 M HCl followed by 137 

cooling to 5ºC. Probiotic delivery systems were manufactured according to methods described 138 

above. After freeze drying, 0.15 g of probiotic delivery systems were placed on a concave 139 

confocal microscope slide. The excitation and emission wavelengths were set at 488 and 526 nm, 140 

respectively. 141 

 142 

Particle size and size distribution of probiotic delivery systems 143 

Particle size analyzer (1090LD shape, CILAS Co., Ltd., France) was used to measure the 144 

particle size (volume-mean diameter, D43) and size distribution (span value) of probiotic 145 

delivery systems. Prior to measure the size, 0.15 g of freeze-dried probiotic delivery systems 146 

were dispersed in 45 mL of 10% (w/w) tween 80 solution followed by sonication at 50 W for 3 147 

min. Span value was calculated by following equation [21]  148 

Span value = 
D (0.9) – D (0.1) 

D (0.5) 

where D (0.9), D (0.1), and D (0.5) are particle diameter at cumulative size of 90%, 10%, and 149 

50%, respectively. A low span value indicates uniformity in size distribution. 150 

 151 

Encapsulation efficiency of probiotics 152 

The encapsulation efficiency of probiotics in milk-protein based delivery systems was 153 

evaluated by counting viable cells in delivery systems using a standard plate method on MRS 154 

agar. Freeze-dried probiotic delivery systems were dispersed in 10% tween 80 solution and the 155 

number of viable cells was determined. To determine the number of viable cells in milk protein-156 

based delivery systems, reconstituted delivery systems were enzymatically hydrolyzed using the 157 

modified method of Heidebach et al. [11]. Reconstituted delivery systems were diluted 10 times 158 

with Protease N “Amano” (0.0024 g/10 mL) and kept at 40ºC for 30 min with constant agitation 159 

at 150 rpm using a shaking water bath. After reaction with Protease N “Amano”, viable cells 160 

were enumerated using a standard plate method on MRS agar. Encapsulation efficiency was 161 

calculated by following equation [22]. 162 

Encapsulation efficiency = N / N0 × 100 163 

  where N0 is the initial number of L. rhamnosus GG added in the preparation process and N is 164 

the total number of L. rhamnosus GG encapsulated in probiotic delivery systems. 165 

 166 
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Viability of encapsulated probiotics under simulated gastrointestinal conditions  167 

The viability of encapsulated L. rhamnosus GG under simulated gastric and intestinal 168 

conditions was evaluated by the modified method of Chávarri et al. [23] and García-Sartal et al. 169 

[24]. To prepare simulated gastric juice (SGJ), pepsin (0.3%, w/v) was dissolved in 0.9% (w/v) 170 

NaCl solution and adjusted to pH 2.0. Simulated intestinal juice (SIJ) was prepared with 0.65% 171 

(w/v) NaCl, 0.0835% (w/v) KCl, 0.022% (w/v) NaHCO3, and 0.3% (w/v) bile extraction porcine 172 

and then was adjusted to pH 7.5. SGJ and SIJ was filtered with a 0.45 μm syringe filter.  Free 173 

and encapsulated probiotics (L. rhamnosus GG) were 10-fold diluted with SGJ and SIJ and then 174 

incubated at 37ºC for 120 min with constant agitation at 150 rpm using a shaking water bath 175 

(Daihan scientific Co., Ltd., Korea). After incubation, SGJ was diluted 10 times with 0.05 M 176 

sodium phosphate buffer (pH 7.0) for inactivation of pepsin. To determine the number of viable 177 

cells in milk protein-based delivery systems, delivery systems were enzymatically hydrolyzed 178 

using the modified method of Heidebach et al. [11] described earlier. 179 

 180 

Statistical analysis 181 

All data were expressed as a mean of three replicates. The impacts of manufacturing variables, 182 

such as skim milk concentration level and pH, on the particle size and size distribution of 183 

probiotic delivery systems were determined by one-way analysis of variance (ANOVA) with 184 

Fisher’s significant differences (LSD) test with statistical significance of p < 0.05. Repeated-185 

measures ANOVA was used to determine the effects of manufacturing variables, incubation time, 186 

and their interactions on the survival of L. rhamnosus GG in simulated gastrointestinal 187 

conditions. The statistical analysis system (Version 9.1, SAS Institute Inc., USA) was used to 188 

perform ANOVA. 189 

 190 

 191 

Results and Discussion 192 

Morphological properties of probiotic delivery systems 193 

Modified rennet-induced gelation method [11] was used to manufacture milk protein-based 194 

probiotic delivery systems. The formation and morphological properties of probiotic delivery 195 

systems were determined using CLSM (Figs. 1 and 2). Round shaped particles with a size 196 

ranging from 100 to 200 μm were observed indicating the successful development of probiotic 197 

delivery systems. An increase in the size of probiotic delivery systems was observed with an 198 
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increase in the skim milk powder concentration level from 3 to 10% (w/w) (Fig. 1) and in pH 199 

from 5.4 to 6.2 (Fig. 2). 200 

 201 

Particle size and size distribution of probiotic delivery systems 202 

Impacts of skim milk powder concentration level and pH on the size of probiotic delivery 203 

systems were assessed by using particle size analyzer (Fig. 3). As skim milk powder 204 

concentration level was increased from 3 to 10% (w/w), the size of probiotic delivery system was 205 

significantly (p < 0.05) increased from 27.5 to 44.4 μm (Fig. 3A). The cleavage of negatively 206 

charged κ-casein molecule existed on the surface of casein micelles by rennet result in a 207 

reduction in electrostatic repulsions between casein micelles. It can lead to an increase in the 208 

aggregation of casein micelles resulting in the formation of gels [11]. Since more casein micelles 209 

as building blocks may participate in the production of probiotic delivery system at higher skim 210 

milk powder concentration level, their intermolecular associations could be increased with an 211 

increase in skim milk powder concentration level, which may lead to the formation of thicker 212 

and bigger protein network. This may result in an increase in the size of milk protein-based 213 

probiotic delivery systems. 214 

A decrease in pH from 6.2 to 5.4 resulted in a significant (p < 0.05) decrease in the size of 215 

probiotic delivery systems (Fig. 3B). Because the isoelectric pH of casein micelles is ~4.6, a 216 

decrease in pH from 6.2 to 5.4 lead to a decrease in the net negative charges of casein micelle 217 

and therefore hydrophobic interactions between casein micelles could be increased [11, 17]. An 218 

increase in the hydrophobic interactions between casein micelles may lead to an increase in the 219 

intramolecular associations of protein gel network, which may result in the shrinkage of gel 220 

network and formation of more compact and small particles at pH 5.4 [11, 25]. 221 

The size distribution of probiotic delivery systems was shown in Fig. 4. Span value is a 222 

statistical parameter that can be useful to evaluate the distribution of particle size. Smaller the 223 

span value indicates narrower size distribution (homogeneous) [21, 26]. In all conditions, span 224 

values of probiotic delivery systems were ranged from 1.5 to 3.0 indicating that probiotic 225 

delivery systems had narrow size distribution and formation of homogeneous particles [27].   226 

 227 

Encapsulation efficiency of probiotics 228 

Fig. 5 shows the effects of skim milk powder concentration level and pH on the encapsulation 229 

efficiency of probiotics. An increase in the skim milk powder concentration level from 3 to 10% 230 
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(w/w) resulted in a significant (p<0.05) increase in the encapsulation efficiency of probiotics 231 

from 76.0 to 88.5% (Fig. 5A). An increase in skim milk powder concentration level may lead to 232 

the formation of bigger and thicker milk protein-based delivery systems (Fig. 3A). Therefore, it 233 

could provide more effective barriers to encapsulated probiotics resulting in an increase in the 234 

encapsulation efficiency of probiotics. Similar results were reported by Sheu et al. [18] and Lee 235 

et al. [28]. They reported that more probiotics were encapsulated in bigger delivery systems. 236 

Although the particle size of probiotic delivery systems was decreased as pH was decreased 237 

from 6.2 to 5.4, encapsulation efficiency of probiotics was significantly (p<0.05) increased from 238 

88.3 to 97.8% with a decrease in pH (Fig. 5B). Because same protein concentration level (5%, 239 

w/w) was used to manufacture those probiotic delivery systems at different pH, an increase in 240 

encapsulation efficiency may be due to increased intramolecular associations between protein 241 

molecules in rennet-induced milk protein gel networks. It is known that chymosin has the 242 

optimum pH for the hydrolysis of κ-casein, which is 5.1-5.3 [29, 30]. Imafidon and Farkye [31] 243 

also reported that the κ-casein cleavage by chymosin was greatest at pH 5.3-5.6. These results 244 

indicate that a decrease in pH from 6.2 to 5.4 could lead to an increase in the activity of 245 

chymosin on the hydrolysis of κ-casein. Since an increase in the hydrolysis of κ-casein could 246 

contribute to a decrease in electrostatic repulsions and an increase in hydrophobic attractions 247 

between casein micelles, more compact and denser protein networks could be formed at lower 248 

pH resulting in an increase in the encapsulation efficiency of probiotics [11, 32, 33]. 249 

 250 

Viability of probiotics in simulated gastrointestinal conditions 251 

Impacts of encapsulation in milk protein-based delivery systems on the viability of probiotic 252 

stain, L. rhamnosus GG, during incubation under gastrointestinal conditions were presented in 253 

Table 1. Repeated measures ANOVA exhibited that encapsulation in milk protein-based delivery 254 

system (treat, p < 0.0001), incubation time (time, p = 0.0005), and their interaction (p < 0.0001) 255 

in simulated gastric juice (SGJ) had a significant effect on the viability of L. rhamnosus GG 256 

(Table 1). The number of viable cells was decreased during incubation in SGJ. A decrease in the 257 

viability of probiotics can be attributed to the high acidity of gastric juice under gastric 258 

conditions. When L. rhamnosus GG was encapsulated in milk protein-based delivery system, 259 

overall mean viable cell number was significantly (p = 0.0005) increased from 7.35 to 7.88 260 

CFU/mL. It implies that encapsulation in milk protein-based delivery system is a useful method 261 

to enhance the viability of L. rhamnosus GG in gastric condition. When free and encapsulated L. 262 
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rhamnosus GG were exposed to simulated intestinal juice (SIJ), the repeated measures ANOVA 263 

results presented that encapsulation (treat, p = 0.0934), incubation time (time, p = 0.8153), and 264 

their interaction (p = 0.7306) were not significant indicating that bile salts and intestinal pH did 265 

not affect the viability of L. rhamnosus GG was not affected under intestinal juice condition, 266 

such as bile salts and intestinal pH. 267 

Table 2 shows the impacts of manufacturing variables, such as skim milk powder 268 

concentration level and pH on the viability of encapsulated probiotics, L. rhamnosus GG, in 269 

simulated gastrointestinal conditions. Repeated measures ANOVA revealed significant effects on 270 

the skim milk powder concentration level (treat, p = 0.0001), incubation time (p < 0.0001), and 271 

their interaction (p < 0.0001) on the viability of L. rhamnosus GG in SGJ while no significant 272 

effects were observed in SIJ (Table 2). As skim milk powder concentration level was increased 273 

from 3 to 10% (w/w), the overall viability of L. rhamnosus GG in SGJ was increased from 7.34 274 

to 7.69 CFU/mL indicating that skim milk powder concentration level can be a key factor to 275 

enhance the viability of probiotics in gastric condition. An increase in protein content by 276 

increasing skim milk powder concentration level may enhance the intermolecular associations 277 

between casein micelles resulting in the production of thicker protein networks. Those thicker 278 

protein gel networks could reduce the diffusion of gastric juice with very high acidity into the 279 

probiotic delivery systems [34]. Therefore, delivery systems prepared with higher milk protein 280 

concentration level can provide better protections for probiotics in harsh gastric conditions 281 

compared with delivery systems treated with lower milk protein concentration level. Similar 282 

results were reported by Shi et al. [34] who presented that probiotic delivery systems produced 283 

with higher milk concentration could provide better protections for L.bulgaricus in SGJ 284 

In repeated measures ANOVA, a significant effect of pH (treat, p < 0.0001), incubation time 285 

(p < 0.0001), and their interaction (p = 0.0003) on the viability of of L. rhamnosus GG in SGJ 286 

was observed while there were no significant effects observed in SIJ (Table 2). Overall viability 287 

of L. rhamnosus GG in SGJ was increased from 7.88 to 8.33 CFU/mL as pH was decreased from 288 

6.2 to 5.4. As we described earlier, a decrease in pH 6.2 to 5.4 may enhance hydrophobic 289 

attractions between casein micelles forming more compact and denser protein gel networks. The 290 

production of denser protein gel networks could reduce acid diffusions into milk protein-based 291 

delivery systems in SGJ, which may contribute to higher viability of L. rhamnosus encapsulated 292 

in milk protein-based delivery system prepared at pH 5.4. 293 
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In conclusion, probiotic strain, L. rhamnosus GG, was successfully encapsulated in milk 294 

protein-based delivery systems using a modified rennet-induced gelation method. Skim milk 295 

powder concentration level and pH were major manufacturing variables affecting the 296 

physicochemical properties of milk protein-based probiotic delivery systems, such as a particle 297 

size, size distribution, encapsulation efficiency, and viability of probiotics in simulated 298 

gastrointestinal tract. It can be attributed to intra- and intermolecular associations between milk 299 

protein molecules during rennet-induced gelation. Milk protein-based delivery systems can be 300 

used for enhancing the viability of probiotics and these food-grade probiotic delivery systems 301 

can be useful to apply probiotics to various foods. 302 
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 Time (min) Free probiotic Encapsulated probiotic 2 
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SGJ 3 0 8.97  8.91  

 30 7.92  8.01 

 60 6.70  7.63  

 120 5.82  6.98  

 Overall (0-120) 5 7.35  7.88  

 Pooled SD 6 0.11  

 P-value   

 Treat 7 0.0005  

 Time 8 < 0.0001  

 Treat × Time 9 < 0.0001  

    

SIJ 4 0 8.97  8.91  

 30 8.87  8.94  

 60 8.84  8.92  

 120 9.02  8.91  

 Overall (0-120) 8.93  8.92  

 Pooled SD 0.15  

 P-value   

 Treat 0.9034  

 Time 0.8153  

 Treat × Time 0.7306  
  416 

1 Data are mean values of triplicates and are expressed as log10 CFU/mL. 417 

2 Probiotics (L. rhamnosus GG) were encapsulated in milk protein-based delivery system 418 

prepared with 5% (w/w) skim milk powder at pH 6.2.  419 

2 SGJ: simulated gastric juice. 420 

3 SIJ: simulated intestinal juice. 421 

4 Overall (0-16): mean values of overall incubation period. 422 

5 Pooled SD: pooled standard deviation 423 

6 Treat: probiotic encapsulation in milk protein-based delivery systems. 424 

7 Time: incubation time in minutes.  425 

8 Treat × Time: interaction between treat and time. 426 

 427 

Table 2. Impacts of skim milk powder concentration level and pH on the viability of 428 

encapsulated probiotics during incubation in simulated gastric juice and simulated intestinal juice 429 

1. 430 

 Time (min) 

skim milk powder concentration level (%, 

w/w) 2 

pH3 

3 5 10 5.4 6.2 
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SGJ 4 0 8.94  8.91  9.00  8.96  8.91  

 30 7.81  8.01 8.01  8.72  8.01 

 60 6.57  7.63  6.84  7.96  7.63  

 120 6.04  6.98  6.92  7.70  6.98  

 Overall (0-120) 6 7.34  7.88  7.69  8.33  7.88  

 Pooled SD 7 0.11   0.09  

 P-value      

 Treat 8 0.0001   <0.0001  

 Time 9 < 0.0001   < 0.0001  

 Treat × Time 10 < 0.0001   0.0003  

       

SIJ 5 0 8.94  8.91  9.00  8.96  8.91  

 30 8.87  8.94  8.94  8.72  8.94  

 60 9.07  8.92  9.01  7.96  8.92  

 120 8.92  8.91  9.00  7.70  8.91  

 Overall (0-120) 8.95  8.92  8.99  8.33  8.92  

 Pooled SD 0.11   0.10  

 P-value      

 Treat 0.2581   0.3575  

 Time 0.6490   0.8375  

 Treat × Time 0.8613   0.8949  
1 Data are mean values of triplicates and are expressed as log10 CFU/mL. 431 
2 Probiotics (L. rhamnosus GG) were encapsulated in milk protein-based delivery system 432 

prepared with various skim milk powder concentration levels (3, 5, and 10%, w/w) at pH 6.2.  433 
3 Probiotics (L. rhamnosus GG) were encapsulated in milk protein-based delivery system 434 

prepared with skim milk powder concentration level of 5% (w/w) at various pH (5.4 and 6.2).  435 
4 SGJ: simulated gastric juice. 436 
5 SIJ: simulated intestinal juice. 437 
6 Overall (0-16): mean values of overall incubation period. 438 
7 Pooled SD: pooled standard deviation 439 
8 Treat: probiotic encapsulation in milk protein-based delivery systems. 440 
9 Time: incubation time in minutes.  441 
10 Treat × Time: interaction between treat and time. 442 

 443 

 444 

Fig. 1. Morphological properties of probiotic delivery systems prepared with various skim 445 

milk powder concentration level. Probiotic delivery systems were manufactured with 3 (A), 5 446 

(B), and 10% (w/w) (C) of skim milk powder concentration levels at pH 6.2. Scale bar = 20 μm. 447 

 448 

449 
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 450 

Fig. 2. Morphological properties of probiotic delivery systems prepared at various pH. 451 

Probiotic delivery systems were manufactured 5% (w/w) of skim milk powder concentration 452 

level at pH 6.2 (A) and 5.4 (B). Scale bar = 20 μm. 453 

454 
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 455 

Fig. 3. Impacts of skim milk powder concentration level and pH on the size of probiotic delivery 456 

systems: (A) Probiotic delivery systems were manufactured with 3, 5, and 10% (w/w) skim milk 457 

powder concentration level at pH 6.2. (B) Probiotic delivery systems were manufactured with 458 

5% (w/w) skim milk powder concentration level at pH 5.4 and 6.2. Different letters on a column 459 

indicate significant (p<0.05) differences. 460 

 461 

462 
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 463 

 464 

Fig. 4. Effects of skim milk powder concentration level and pH on the span value of probiotic 465 

delivery systems: (A) Probiotic delivery systems were manufactured with 3, 5, and 10% (w/w) 466 

skim milk powder concentration level at pH 6.2. (B) Probiotic delivery systems were 467 

manufactured with 5% (w/w) skim milk powder concentration level at pH 5.4 and 6.2. Different 468 

letters on a column indicate significant (p<0.05) differences. 469 

470 
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 471 

Fig. 5. Impacts of skim milk powder concentration level and pH on the encapsulation efficiency 472 

of probiotics: (A) Probiotic delivery systems were manufactured with 3, 5, and 10% (w/w) skim 473 

milk powder concentration level at pH 6.2. (B) Probiotic delivery systems were manufactured 474 

with 5% (w/w) skim milk powder concentration level at pH 5.4 and 6.2. Different letters on a 475 

column indicate significant (p<0.05) differences. 476 




