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Abstract 10 

Antibiotics have been used in livestock production for not only treatment but also for increasing the 11 

effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when 12 

immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use 13 

of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have 14 

shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the 15 

number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were 16 

collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). 17 

Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun 18 

sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to 19 

Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional 20 

analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an 21 

increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the 22 

experiment. 23 

 24 
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Introduction 36 

Antibiotics have been used in livestock production for a longtime [1]. They have been employed in intensive 37 

farming to boost productivity. In animals, antibiotics is commonly used for not only treatment but also for 38 
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increasing the effectiveness of animal feed, promoting animal growth, and preventing diseases at a time when 39 

their immunity is low due to stress [2]. However, careless usage of antimicrobials lead to a rise in antibiotic-40 

resistant bacteria and genes [3, 4]. Increased antibiotic resistance can raise disease incidence and cause chronic 41 

health problems in livestock. So, the use of antibiotics for fostering growth in livestock is no longer permitted in 42 

the EU and South Korea [5].  43 

Antibiotic-resistant bacteria can be discharged into the surrounding environment, the soil and water which can 44 

act as sources for transmission of antibiotic-resistant bacteria [2]. In addition, there are reports of transmission 45 

of antibiotic-resistant genes in a surrounding environment adjacent to the pig farm [6]. During the weaning 46 

period, piglets are exposed to a variety of stressors, such as changes in feed composition and environment [7, 8]. 47 

Prior researches have shown that these stressors alters the piglet gut microbiome during nursing and weaning 48 

phases [9]. However, it is uncertain whether the gut microbial shifts are associated with the increased antibiotic-49 

resistant genes in pigs during the weaning transition. In addition, from pre-weaning to weaning pigs are 50 

gradually exposed to more environment such as soil and water. Due to such environmental exposure, antibiotic 51 

resistance in piglets can increase and remain in animal-derived products for human consumption, so antibiotic-52 

resistant gene is observed as “One Health subject” [2]. Therefore, the whole metagenome shotgun sequencing 53 

was used in this study to evaluate changes in microbiome and antibiotic-resistant genes during weaning 54 

transition. 55 

 56 

 57 

Materials and Methods 58 

Piglet fecal sampling 59 

Fecal samples were collected from 8 piglets in a gap of 1 week, firstly just before weaning (21 d of age) and 60 

secondly one week after weaning (28 d of age) and placed in sterile test tubes and stored at -80 oC. After 61 

weaning, the piglets were fed a conventional nursery feed based on soybean meal and corn, that complied with 62 

National Research Council standards [10, 11]  of nutrient requirements of weaned piglets. The piglets had 63 

unrestricted access to feed and water. The piglets received no additional supplements or antibiotics through the 64 

whole duration of the experiment. 65 

Fecal DNA extraction 66 

200 mg of feces per sample were used for the total DNA extraction, using QIAamp Fast DNA Stool Mini Kit 67 
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(QIAGEN, Hilden, Germany), as per the instructions provided by the manufacturer. Cell lysis was achieved by 68 

bead-beating the samples twice for 2 min at 300 rpm, followed by a 5-minute incubation period in a water bath at 69 

70oC between beatings. A Colibri Microvolume Spectrometer (Titertek Berthold, Pforzheim, Germany) was used 70 

to measure the concentrations of DNA and only the samples that had OD260/280 ratio between 1.80 and 2.15 71 

underwent further processing. 72 

Whole metagenome shotgun sequencing  73 

The paired-end shotgun sequencing using the Illumina Hi-Seq 2000 platform was used to sequence the extracted 74 

DNA representing the fecal microbial communities. The whole metagenome shotgun sequencing was carried out 75 

at Macrogen Inc. (Seoul, Republic of Korea). 76 

Whole metagenome shotgun sequence analysis 77 

Whole metagenome shotgun sequencing was carried out on a subset of eight samples randomly chosen (four 78 

samples from the same piglets at 21 and 28 days of age) to examine the microbial diversities and fecal microbial 79 

functions present in the piglet fecal samples. For the microbial functional analysis, the obtained raw sequence data 80 

in FASTQ format were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) 81 

pipeline. All the classified subsystem reads were normalized in MG-RAST. To account for differences in 82 

sequencing depth of samples, DESeq was utilized within the analysis pipeline [12]. MG-RAST pipeline was used 83 

for removing artificial duplicate reads [13]. MG-RAST also removed sequence reads that matched the host’s 84 

genome through Bowtie.  [14]. The Reference Swine Genome (Sus scrofa, NCBI v10.2) available in MG-RAST 85 

was used to filter out the host-derived metagenomic reads [13]. The SEED Subsystems database, which is a 86 

collection of functionally related protein families, was used for the functional annotation of the sequence reads 87 

[15]. Using an e-value of less than 1 x 10-5, minimum identity of 60%, and a minimum alignment length of 15 88 

amino acids for protein, the similarity search between sequence reads and the SEED databases was performed. 89 

For the taxonomic assignment of the sequences, the Greengenes reference database was utilized. Significant 90 

variations in functional profiles and taxonomic compositions between the nursing and weaned pigs were 91 

determined based on Multiple t-test, using STAMP and GraphPad Prism version 7.00 (La Jolla, CA, USA). 92 

 93 

 94 

Results & Discussion 95 

Microbial functional characteristics of the piglet gut metagenome associated with “Resistance to antibiotics 96 

and toxic compounds”  97 
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In general, a total of 50,440,732 sequences was obtained by the whole metagenome shotgun sequencing using 98 

HiSeq Illumina platform. After microbial functional analysis using MG-RAST pipeline, 28 level 1 SEED 99 

subsystems were identified in both nursing and weaned piglet metagenome, and the functional gene groups 100 

associated with level 2 SEED subsystem “Resistance to antibiotics and toxic compounds” within the level 1 SEED 101 

subsystem “Virulence, disease, and defense” (Fig. 1a) were studied further. At the level 3 SEED subsystems 102 

within the level 2 SEED subsystem “Resistance to antibiotics and toxic compounds”, gene families related to 103 

“Resistance to vancomycin”, “Resistance to tetracycline”, “Multidrug resistance_efflux pumps” and “Methicillin 104 

resistance in S. aureus (MRSA)” tended to increase, although not significantly in the weaned piglets than nursing 105 

ones (Fig. 1b). In the “Resistance to vancomycin”, the vancomycin binding blocking protein “B-type resistance 106 

protein VanW” was significantly enriched (p < 0.05), and “response regulator VanR” and “Sensor histidine kinase 107 

VanS (EC 2.7.3.-) tended to increase (Fig. 2a). In “Resistance to tetracycline”, only ribosomal protection proteins 108 

(RPPs) related genes were detected and increased on average (Fig. 2b). In the “Multidrug resistance_efflux 109 

pumps”, “Multi antimicrobial extrusion protein MATE family of MDR efflux pumps” and “RND efflux 110 

membrane fusion protein” that related in extrusion of toxic substrates into the cellular environment were largely 111 

present in the weaned piglets (Fig. 2c). In the “Methicillin resistance in S. aureus (MRSA), “UDP-N-112 

acetylmuramoylalanyl-D-glutamate--2, 6-diaminopimelate ligase (murE)”, “D-alanyl transfer protein DltB”, 113 

“Poly D-alanine transfer protein DltD”, “Methicillin resistance and cell wall biosynthesis protein FmtB” and “D-114 

alanine-poly ligase subunit 2 (DltC) (EC 6.1.1.13)” which function as methicillin resistance and cell wall 115 

biosynthesis were slightly higher in the weaned piglets than nursing piglets (Fig. 2d).  116 

Vancomycin is a β-lactam glycopeptide antibiotics that binds to acyl-D-ala-D-ala of the peptidoglycan cell wall 117 

to inhibit cell wall biosynthesis, but acts only on gram-positive bacteria because it cannot pass through the lipid 118 

bilayer of gram-negative bacteria [16]. There are two types of glycopeptide resistance through conversion to D-119 

ala-D-lac [17, 18]. As a results of detection, B-type proteins were higher which is resistance to vancomycin and 120 

vulnerable to teicoplanin. Tetracycline prevents the binding of aminoacyl-tRNA and ribosome with 30S 121 

prokaryotic ribosomal subunit as a target, resulting in translation inhibition [19, 20]. Mainly, TetQ is found in 122 

anaerobic gram-negative species with a limited host range, TetM is located in specific part of Enterococcus 123 

faecalis and TetO is found in Gram-positive species such as Streptococcus pyogenes [21-23]. These RPPs restore 124 

A-site delivery of aminoacyl-tRNA to give resistance to tetracycline [24]. According to sources of energy utilized 125 

(ATP or Hydrogen/sodium ions) and amino acid sequences, efflux pumps are classified into five major active 126 

super families: Major facilitator superfamily (MFS), Resistance nodulation cell division superfamily (RND), 127 
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Multidrug and antimicrobial extrusion protein (MATE), ATP Binding cassette transporter (ABC) and Small 128 

multidrug resistance (SMR) [25]. All bacteria contain several efflux pumps, which extrude not only antibiotic 129 

substrates but also non-antibiotic substrates such as heavy metals, dyes, detergents and organic solvents [26-28]. 130 

There are reports of fluoroquinolone transported by MATE in mammals, and RNDs were distributed in gram-131 

negative bacteria to export β-lactams out of outer-membrane [29-33]. The murE and fmtB gene detected in MRSA 132 

are associated with cell-wall peptidoglycan biosynthesis, and nothing else is known about the fmtB gene [34, 35]. 133 

The lipoteichoic acid, which constitutes the cell wall of gram-positive bacteria, is made through D-alanylation of 134 

LTA through DltA-D [36]. Due to the mechanism of methicillin, which binds to PBP2a to biosynthesis of cell 135 

wall, it is considered that methicillin resistance increased as the number of genes associated with cell wall 136 

biosynthesis increased.  137 

 138 

Taxonomic classification of the bacteria using whole metagenome shotgun sequences  139 

Using the whole metagenome shotgun sequences, the relative abundance of the gut microbiota was compared at 140 

the phylum and genus levels during the weaning transition (Fig. 3). The results from total sequence analysis 141 

confirmed significant change in bacterial composition after the weaning transition. At the phylum level, nursing 142 

piglet showed presence of Bacteroidetes (43.18%), Firmicutes (40.5%), Spirochaetes (5.21%), Proteobacteria 143 

(2.8%), Actinobacteria (1.47%), Tenericutes (1.2%) and other 6 phylum (0.8%) (Fig. 3a). After weaning transition, 144 

piglet gut microbiota were consisted of Bacteroidetes (71.5%), Firmicutes (22.46%), Spirochaetes (0.57%), 145 

Proteobacteria (0.43%), Actinobacteria (0.71%), Tenericutes (0.28%) and other phylum (0.26%) (Fig. 3a). 146 

Compared to before the weaning transition, Bacteroidetes increased significantly from 40.5% to 71.5% on average 147 

(p < 0.01). At the genus level, Prevotella showed the largest amount of abundance, and enriched on average 16.57% 148 

to 61.09% that significantly increased after weaning (p < 0.001). Streptococcus increased only by a small amount 149 

from 0.13% to 0.28%. The relative abundances of other genera were shown in Fig. 3b. The genus Prevotella, 150 

which has the ability to break down protein and carbohydrate in feed, increased significantly with the change in 151 

diet from milk to grain feed during the weaning transition [37]. Unlike the tendency of antibiotic resistance genes 152 

to increase after weaning, there were no significant increase in the relative abundance of major antibiotic resistant 153 

bacteria such as Staphylococcus aureus, Enterococcus and Mycobacterium tuberculosis. The data from this study 154 

showed that changes in diet and environment can be a potential health risk factor and may affect piglets.  155 

 156 

 157 
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Tables and Figures 269 

 270 

 271 

Fig. 1. Comparison of the functional capacities between nursing and weaned pigs. (a) Level 2 272 

SEED subsystems within the level 1 SEED subsystem "Virulence, disease and defense". (b) 273 

Level 3 SEED subsystems  within the level 2 SEED subsystem "Resistance to antibiotics and 274 

toxic compounds". 275 
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 278 

Fig. 2. Comparison of normalized sequence abundance at the level 4 SEED subsystem 279 

associated with (a) Resistance to vancomycin. (b) Resistance to tetracycline. (c) Multidrug 280 

resistance_efflux pumps. (d) Methicillin resistance in S. aureus (MRSA). 281 
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 284 

Fig. 3. Comparison of gut microbiome relative abundance at the (a) phylum and (b) genus 285 

levels during the weaning transition 286 




