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Abstract 8 

We aimed to investigate candidate proteins related to long-term caloric restriction and feed efficiency in 9 

bovine longissimus dorsi muscle (LM). A total of 31 Korean native steers were randomly distributed to 10 

ad libitum (n = 16) or caloric restriction group (n = 15) to conduct two feeding trials for 13 mo. In the 11 

first trial (10-18 mo of age), steers were fed with 100% ad libitum (NEg = 0.63 Mcal / kg) or caloric 12 

restriction (80% of the previous day’s feed intake of ad libitum group). In the second trial (18-23 mo of 13 

age), the energy value of 100% ad libitum diet was 1.13 Mcal / kg NEg and those in caloric restriction 14 

group diet was 0.72 Mcal / kg NEg. At the endpoint of this experiment, in each group, 6 animals were 15 

selected with high (n = 3) or low feed efficiency (n = 3) to collect muscle tissue samples (6 16 

animals/group). From muscle tissues of 23 mo of age, we excavated 9 and 12 differentially expressed 17 

(two-fold or more) proteins in a nutritional group and feed efficiency group using two-dimensional 18 

electrophoresis, respectively. Of these proteins, heat shock protein beta-6 was up-regulated in both the 19 

caloric restriction and the low feed efficiency group. In bovine embryonic fibroblasts, the mRNA 20 

expression of heat shock protein beta-6 increased after adipogenic differentiation, however, decreased 21 

after myogenic differentiation. Our data provide that heat shock protein beta-6 may be an adipogenic 22 

protein involved in the mechanism of caloric restriction and feed efficiency in the LM of the steer. 23 

 24 

Keywords: Caloric restriction, Feed efficiency, Heat shock protein beta-6, Longissimus dorsi muscle, 25 

Proteomics, Steer 26 

 27 

Introduction 28 

Intramuscular fat (IMF) is an important carcass trait in beef production. Many farmers have been raising 29 

beef cattle with high-energy diets until 32 to 36 mo of age to maximize IMF deposition even though feed 30 

prices today are rising gradually. Energy restriction and feed efficiency (FE) are essential ways to 31 

minimize costs and maximize profits. Previous studies have reported that both of them could affect the 32 

composition of muscle cells and adipocytes in the longissimus dorsi muscle (LM) [1,2]. Roberts et al. [3] 33 

reported that energy restriction can decrease the subcutaneous fat thickness and improve nutrients 34 

utilization in cattle. Additionally, the number and size of intramuscular adipocyte cells are increased by 35 

suppressing muscle development in caloric restricted pigs [4]. The high content of IMF is found in low 36 

feed efficient animals rather than in high feed efficient animals since higher feed consumption of low feed 37 
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efficient animals can be sufficient energy to deposit IMF [5,6]. It can be partially explained by the rate of 38 

muscle growth of inefficient animals is slower, which might help the IMF development. Intramuscular fat 39 

deposition is positively affected by the reduced rate of muscle growth and weight gain [7,8]. For example, 40 

castration and vitamin A restriction increase IMF content by reducing the growth rate [9]. Moreover, 41 

nutrient restriction and FE can control the regulation of adipogenic transcription factor, such as PPARγ 42 

[10,11]. Taken together, we hypothesize that long-term energy restriction and feed efficiency would alter 43 

the profiling of muscle proteomes associated with muscle development and intramuscular fat 44 

accumulation. In this study, we investigated the global protein profiles related to caloric restriction (CR) 45 

and FE in LM of steer. Additionally, we made predictions about the roles of identified genes during 46 

myogenesis and adipogenesis of spontaneously immortalized bovine embryonic fibroblasts. 47 

 48 

Materials and Methods 49 

 50 

Animals, diets, experimental design, and sample collection 51 

This feeding trial was performed at the Center for Animal Science Research, Chungnam National 52 

University, South Korea. Animal use and the protocols for this experiment were reviewed and approved 53 

by the Animal Research Ethics Committee at Chungnam National University Animal Research Ethics 54 

Committee (Approval number: CNU-00347). A total of 32 Korean native steers (292 ± 6.95 kg) at 10 mo 55 

of age were randomly allotted to 16 pens (2 animals/pen) and the experiment last for 13 mo. One steer 56 

aged 15 mo in the CR group was removed by a mechanical accident.  57 

Two trials were conducted to investigate adipogenic proteins related to long-term CR and FE in 58 

bovine LM. In the first trial (10-18 mo of age), steers were randomly distributed to 100% ad libitum (NEg 59 

= 0.63 Mcal / kg; n = 16) or CR (80% of the previous day’s feed intake of ad libitum group, n = 15) 60 

groups. In the second trial (18-23 mo of age), the energy value of 100% ad libitum diet was 1.13 Mcal / 61 

kg NEg and those in the CR group diet was 0.72 Mcal / kg NEg. At the endpoint of this experiment, 62 

animals in each group were divided into groups with high (n = 6) and low (n = 6) FE regardless of the 63 

nutritional level. Energy value in experimental diets was calculated using the NASEM (National 64 

Academies of Science, Engineering, and Medicine) [12] (Table 1). Feed was provided twice daily at 65 

08:00 h and 17:00 h for all periods, and were given access to mineral blocks and water ad libitum. 66 
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Individual daily feed intake was recorded using an automated feeding machine (TMR FEEDER; Dawoon, 67 

Incheon, Korea) and body weight (BW) was recorded monthly (Table 2).  68 

 69 

Protein extraction and two-dimensional gel electrophoresis 70 

Protein extraction and proteome analysis of LM tissues were conducted as previously described [13]. 71 

Tissue samples were collected at 23 mo of age from biopsy (Biotech Nitra, Republic of Slovakia) as 72 

follows: ad libitum group (n = 10), CR group (n = 10), low feed efficiency (LF) group (n = 6), and high 73 

feed efficiency (HF) group (n = 6). These were immediately frozen in liquid nitrogen and stored at -30°C 74 

before the experiment. The extracted protein samples were quantitatively pooled by group. Differentially 75 

expressed spots with at least a 2-fold change in intensity were used for electrospray ionization and 76 

quadrupole time-of-flight mass spectrometry analysis.  77 

 78 

Blood parameters 79 

Blood parameters were performed to assess animal health and illness and to compare differences in steer 80 

classified by two different nutritional levels and FE. whole blood samples were taken via jugular 81 

venipuncture after morning meal and placed in 10 mL tubes with EDTA (Becton and Dickson, New 82 

Jersey, USA) for the analysis of blood cell count with the HM2 instrument (VetScan, Abaxis, USA) [14]. 83 

 84 

Cell culture 85 

Two bovine cell lines were used in this study, MyoD-overexpressing (BEFS-MyoD) and PPARγ2-86 

overexpressing BEFS cells (BEFS-PPARγ2), which are derived from immortalized bovine embryonic 87 

fibroblasts (BEFS). Two cell lines were grown and maintained in growth media containing DMEM 88 

(Hyclone, Loga, UT), 10% (v/v) fetal bovine serum (Hyclone), 1% penicillin/streptomycin (Gibco, 89 

Carlsbad, CA), and 2 mM L-glutamine (Gibco). To induce the myogenesis of confluent BEFS-Myod cells, 90 

growth media was switched to myogenic induction media containing DMEM, 2% (v/v) horse serum 91 

(HyClone), 1.7 μM insulin, and 2 μM doxycycline (Calbiochem, San Diego, CA, USA). BEFS-PPARγ2 92 

was grown on plates for 2 d post-confluence in the growth media. Adipogenesis was then induced with 93 

differentiation media (growth media containing 0.17 μM insulin, 1 μM dexamethasone, 0.5 mM isobutyl-94 

1-methylxanthine, and 4.5 μM troglitazone for 48 h. Next, cells were maintained in the differentiation 95 

maintenance media (growth media supplemented with 0.17 μM insulin and 4.5 μM troglitazone) for 14 d 96 
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by replacing the media every 2 d. Insulin, dexamethasone, isobutyl-1-methylxanthine, and troglitazone 97 

were purchased from Sigma Aldrich.  98 

 99 

Oil-red O staining 100 

Cells were fixed onto plates with 10% formalin (Sigma Aldrich) in 1X Phosphate Buffered Saline 101 

(Biosesang, Seongnam, Korea) for 1 h, gently washed with 60% isopropanol (Merck Millipore, 102 

Darmstadt, Germany), completely dried, and stained with Oil red O staining solution (0.5% Oil-red O in 103 

isopropanol diluted 3:2 in water and mixed for 20 min at room temperature followed by filtering with a 104 

0.22 μm filter) for 10 min at room temperature. After removing the staining solution, cells were washed 105 

four times with water and photographed using the inverted microscope (IX51, Olympus, Tokyo, Japan). 106 

 107 

Total RNA extraction and real-time PCR analysis 108 

Total RNA was isolated with ice-cold Trizol Reagent (Invitrogen, Carlsbad, CA, USA). The 109 

concentration of RNA was measured using an ND-1000 spectrophotometer (NanoDrop Technologies, 110 

Wilmington, DE, USA). The A260/A280 ratios of all RNA samples were above 1.8. RNA integrity was 111 

assessed with the RNA 6000 Nano LabChip kit and Agilent 2100 Bioanalyzer (Agilent Technologies). 112 

RNA from tissues and cell lines had a median RNA integrity number of 7.6 ± 0.3 and 9.7 ± 0.5, 113 

respectively (data not shown). First-strand cDNA was synthesized using RNA (1 μg) and iScript cDNA 114 

synthesis kit (Bio-Rad, Hercules, CA, USA) according to the manufacturer's instructions. Real-time PCR 115 

was performed in a total reaction volume of 20 μL in 96-well plates using Chromo4™ four-color Real-116 

time detector (MJ Research, Waltham, MA, USA). The reaction mixture contained 100 ng cDNA, 10 μL 117 

of 2X SYBR Green PCR Master Mix (Bio-Rad), and 0.6 μL of 10 μM primers (Bioneer, Daejeon, Korea) 118 

in RNA/DNA free water. Thermal cycling conditions were as follows: an initial incubation at 95°C for 3 119 

min followed by 40 cycles of denaturation at 95°C for 10 s, annealing at 60°C for 30 s, and extension at 120 

72°C for 30 s, after which samples were heated at 95°C for 10 s, cooled to 65°C for 5 s and then heated to 121 

95°C at a rate of 0.5 °C/s. We used the National Centre for Biotechnology Information Primer-BLAST 122 

for primer design (Table 3). Relative fold-changes were determined using the 2-ΔΔCT method [15]. All data 123 

were normalized against β-actin as a housekeeping gene. 124 

 125 

Statistical analysis 126 
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All values given in each table or figure were presented as mean ± SEM. The independent sample t-test 127 

was used for the analysis of data from growth performance comparing i) the ad libitum and CR groups 128 

and 2) HF and LF groups, and for the data from qPCR analysis using muscle samples and from blood 129 

analysis. Data from in vitro experiments were compared using the Tukey test. Statistical analyses were 130 

performed using SPSS 18 software (SPSS, Chicago, IL). The level of statistical significance was set at p 131 

< 0.01 or p < 0.05. 132 

 133 

Results 134 

Growth performance 135 

Growth performance (BW, daily feed intake, average daily gain, and FE) of the ad libitum group was 136 

higher than that of the CR group (Table 2). Even though the HF group consumed 20% less feed on 137 

average than steers in the LF group, the average daily gain in HF group was significantly higher than that 138 

in LF group during the whole period. As a result, there was a difference in BW (p < 0.05). Therefore, 139 

animals with HF efficiently used more nutrients than animals with LF (53.6 g/kg vs 32.8 g/kg for HF vs 140 

LF groups, respectively). 141 

 142 

Differentially expressed proteins in longissimus dorsi muscle according to nutritional level and feed 143 

efficiency 144 

Nine spots were selected between ad libitum and CR groups (Fig. 1). Compared to the ad libitum group, 145 

in the CR group, 6 proteins had higher expression whereas 3 proteins had lower expression (Table 4). In 146 

the LF group, the expression of 7 proteins was higher, however, that of 5 proteins was lower than the HF 147 

group (Table 5). Notably, in our proteomic study, heat shock protein beta-6 (HSPB6) was commonly up-148 

regulated in both CR and LF groups. The transcriptional levels of HSPB6 also revealed statistical 149 

significance in the LM of the CR group and the LF group (p > 0.05) (Fig. 2). 150 

 151 

mRNA expression of heat shock protein beta-6 during bovine myogenesis or adipogenesis 152 

To make predictions about the roles of HSPB6 during myogenesis and adipogenesis, BEFS-MyoD and 153 

BEFS-PPARγ2 cell line system was used. Oil red O staining and mRNA expression of desmin and 154 

PPARγ2 were used as a myogenic- and adipogenic differentiation marker. The mRNA expression of 155 
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HSPB6 was decreased after initial- and post- myogenic differentiation (P < 0.05), while that of HSPB6 156 

was increased after initial- and post- adipogenic differentiation (p < 0.05) (Fig. 3). 157 

 158 

Complete blood cell counts according to nutritional level and feed efficiency 159 

Blood cell counts were analyzed to conduct a proteomic experiment in a situation characterized by CR 160 

and FE shown in the blood. As shown in Table 6, the CR group had a significantly higher white blood 161 

cell count than the ad libitum group (p < 0.05). The counts of hemoglobin and hematocrit were lower in 162 

HF group than LF group (p < 0.05), consistent with positive regressions between residual feed intake and 163 

these parameters [16]. These levels were within the normal range for cattle. Thus, our blood results 164 

showed that CR did not harm animal health. 165 

 166 

Discussion 167 

In the present study, the ad libitum group with lower expression of HSPB6 at transcription and protein 168 

level has higher feed intake than the CR group. Peng et al. [17] reported that increased feed intake has 169 

been observed in HSPB6-KO mice, which showed a role of HSPB6 in regulating feed intake.  170 

Notably, in our proteomic study, HSPB6 was commonly up-regulated in both CR and LF groups. 171 

Up-regulation of stress proteins can help cells survive nutritional restriction against oxidative stress and 172 

ultimately fortify its resistance to further oxidative stress [18,19]. In human and C. elegans studies, 173 

glucose restriction and CR promotes mitochondrial activity, causing an increase in reactive oxygen 174 

species (ROS) production [20]. In rodents, short and long-term CR increased the expression of PPARγ 175 

and C/EBPβ in epididymal adipose tissue [21]. Caloric restriction increased the number of intramuscular 176 

adipocytes about 40% compared to ad libitum Holstein steers during growing phase and the lipid content 177 

of LM at the end of the finishing phase, but it was not significantly different [6,22]. 178 

In porcine skeletal muscle, by protein and energy restriction gene expression related to 179 

mitochondrial function were up-regulated and accumulation of IMF was increased [4,23]. Gondret & 180 

Lebret [24] reported that lipid content in longissimus lumborum muscle and the number of clustered 181 

adipocytes were significantly increased in limit-fed pigs compared to control. The number and size of 182 

intramuscular adipocyte cells were increased by suppressing muscle development in CR pigs [4].  183 

Interestingly, the greater abundance of HSPB6 was in LF animals compared to HF animals. 184 

Previous studies revealed that heat shock protein is associated with FE in livestock. At protein and 185 
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mRNA level of heat shock protein beta-1 (HSPB1) was upregulated in the skeletal muscle of cattle with 186 

HF [25,26], whereas gene expression of HSPB7 and protein expression of HSP60 and HSP70 were higher 187 

in skeletal muscle of broiler and pig with LF [27,28]. Moreover, increased ROS production and greater 188 

protein carbonyl levels have been associated with LF in steers [29,30]. Fan et al. [31] also reported that an 189 

elevated level of HSPB6 in mouse cardiomyocytes effectively reduced oxidative stress. Heat shock 190 

protein expression increased in the low-feed efficient phenotype in response to increased mitochondrial 191 

ROS to stabilize oxidatively damaged proteins in LF. Inefficient steers had more intramuscular fat 192 

content but HF beef heifers had 3.2% less intramuscular fat [5,32]. It can be partially explained by the 193 

rate of muscle growth of inefficient animals is slower, which might help IMF development because an 194 

intramuscular fat deposition is positively affected by the reduced rate of muscle growth and weight gain 195 

[7,8]. 196 

Both CR and LF delay the rate of muscle growth and weight gain. The growth rate affected the 197 

partitioning of fat, and high rates of weight gain result in relatively more subcutaneous fat instead of 198 

intermuscular fat [33]. The reduced rate of muscle growth and weight gain is accompanied by IMF 199 

accumulation and adipogenic differentiation [7,8,34]. An increase in intramuscular lipid content occurred 200 

with increased oxidative damage in aged human and older mice [35,36]. The production of ROS is a 201 

factor in promoting differentiation from human mesenchymal stem cells and 3T3-L1 cells to adipocyte 202 

and is increased during adipogenesis [37-40]. Considering these points, we cautiously postulate that 203 

increased HSPB6 expression in CR and LF animals may be associated with intramuscular adipogenesis 204 

and ROS generation in steer. 205 

In the proteome study of human adipose-derived stem cells, HSPB6 and HSPB1 were induced with 206 

adipogenesis [41]. Wang et al. [42] reported that mRNA expression of HSPB1 was increased with IMF 207 

development in cattle. Heat shock protein beta-1 interacts with MAP kinase and PIP kinase B/Akt 208 

pathway induced by insulin-induced activation of the IGF-receptor 1, which influences adipogenic 209 

differentiation [43]. 210 

Moreover, mRNA expression of HSPB6 was decreased after myogenic differentiation in BEFS-211 

MyoD but increased after adipogenic differentiation in BEFS-PPARγ2, which shows that HSPB6 may 212 

play a role in both bovine adipogenesis and myogenesis. Heat shock protein beta-6 has been considered to 213 

play roles in protein intracellular transport and the protection of structural proteins, such as desmin, actin, 214 

and titin [44,45]. During myogenic differentiation of C2C12 myoblast, the reduction in the mRNA 215 
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expression of HSPB6 was observed [46], which is consistent with our results. HSPB6 interacts with other 216 

small heat shock proteins, such as HSPB1 and HSPB5 in skeletal and smooth muscle. This interaction is 217 

thought to be a functional one, with HSPB6 regulating the function of HSPB1 [47]. HSPB1 abundance 218 

was higher also during the IMF accumulating phase [48]. In addition to our previous study, caloric 219 

restriction up-regulated HSPB1 [25]. Thus, we assume that HSPB6 can be closely interacted with HSPB1 220 

in the LM of beef steer. 221 

Recently, HSPB6 knockout mice increased both visceral and subcutaneous fat mass [17]. Also, the 222 

mRNA expression of HSPB6 was decreased during adipogenesis of mesenchymal stem cells derived 223 

from bone marrow from the bovine fetus [49]. These different results with ours probably indicate that 224 

many factors influence the mechanisms of HSPB6 involved in adipogenesis. Thus, further study is needed 225 

to clarify the more detailed functional role of HSPB6 on intramuscular adipogenesis related to CR and LF 226 

in a steer. 227 

In conclusion, our study is an initial step of an ongoing larger effort to investigate key proteins 228 

associated with IMF development involved in CR and FE. At protein and transcription levels, HSPB6 229 

was increased by CR and LF in LM. Additionally, the mRNA expression HSPB6 increased during bovine 230 

adipogenesis. Taking all of these results into consideration, increased HSPB6 may have a key role in the 231 

mechanism of IMF formation related to energy utilization in a steer. Further experiments to examine the 232 

function of HSPB6 on bovine adipogenesis are in progress in our research group. 233 
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Table 1. Diet formulation and chemical composition (g / kg DM or as stated) of 404 

experimental diets 405 

 14 mo of age 23 mo of age 

 Ad libitum Ad libitum Caloric restriction 

Ingredients    

Barley straw pellet 26   

Corn silage 108   

Klein grass hay 203   

Rice straw 80   

Wheat bran 62   

Corn, Flaked 191   

Corn gluten feed 38   

Tapioca 75   

Alfalfa hay 21 68 100 

Timothy hay 72 268 397 

Ryegrass hay 126   

Bluegrass hay   201 298 

Oat straw  139 205 

Wheat straw    

Corn, Fine  140  

Soybean meal  8  

Wheat, Fine  164  

Limestone, Fine  11  

Mineral Vitamin Mix  1  

Chemical compositiona)    

DM (g/kg) 636 609 637 

Crude protein 95 125 98 

Ether extract 24 32 25 

Neutral detergent fibre 585 301 573 

Acid detergent fibre 413 201 343 

Acid detergent lignin 61 39 68 

NDICP 30 4 0 

ADICP 17 1 0 

Ash 82 51 54 

Net energy for gain (Mcal/kg) 0.63 1.13 0.72 
a)NDICP, neutral detergent insoluble crude protein; ADICP, acid detergent insoluble crude protein. 406 
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Table 2. Effects of caloric restriction and feed efficiency on growth performance 407 

 
Nutritional levela) Feed efficiencyb) SEMc) p-valuesd) 

Trait Age Normal Restriction HF LF N FE N FE 

Initial BW (kg) 10 294.4 289.3 288.2 318.7 9.80 14.10 ns ns 

Medium BW (kg) 14 370.9 338.1 355.2 380.7 12.29 20.81 * ns 

Final BW (kg) 23 538.8 451.0 522.0 498.2 13.57 39.76 *** * 

Daily feed intake (kg / d) 10-14 12.7 11.4 10.8 13.4 0.49 62.12 ** ns 

 15-23 13.8 11.5 11.1 14.1 0.67 67.64 *** ns 

 10-23 13.6 11.8 11.0 13.9 0.55 72.84 *** ns 

Average daily gain (g / d) 10-14 642.9 410.1 563.0 521.0 45.44 1.06 *** ns 

 15-23 604.2 405.7 594.7 425.7 36.78 1.52 *** * 

 10-23 616.1 407.3 587.1 454.7 29.43 1.22 *** * 

Feed efficiency (g gain / kg feed) 10-14 51.0 36.6 52.9 38.2 4.39 5.27 *** ns 

 15-23 43.6 36.6 54.4 30.5 3.89 4.64 ns ** 

 10-23 45.6 36.6 53.6 32.8 3.45 4.73 * ** 
a) Steers were fed ad libitum group (n = 16) or caloric restriction group (n = 15). 408 

b) Steers were assigned to groups with high (HF, n = 6) and low feed efficiency (LF, n = 6) regardless of nutritional level. 409 

c) N, nutritional level; FE, feed efficiency. 410 

d) Probability values for the effect of nutritional level (N) and feed efficiency (FE); (* P < 0.05, ** P < 0.01, *** P < 0.001, and ns = non-significant). 411 
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Table 3. Primer sequences specific for the target genes used for real time PCR 

Genea) Accession numberb) Sequence (5′ to 3′) Length (bp) 

HSPB6 NM_001076027 F: GGTGTTGCTGGATGTGAAAC 117 

  R: GCAATGTATCCGTGCTCATC  

PPARγ2 Y12420 F: CATAATGCCATCAGGTTTGG 102 

  R: GTCAGCAGACTCTGGGTTCA  

Desmin NM_001081575 F: GGACCTGCTCAATGTCAAGA 109 

  R: GGAAGTTGAGGGCAGAGAAG  

Beta-actin NM_173979 F: GCGTGGCTACAGCTTCACC 54 

  R: TTGATGTCACGGACGATTTC  
a) HSPB6, heat shock protein beta-6. 

b) Database protein names and accession numbers: NCBI (http://www.ncbi.nlm.nih.gov). 
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Table 4. Characterization of candidate proteins affected caloric restriction in Korean native steers 1 

      Spot intensity  

Spota) Nameb) 
Accession 

numberb) 
MW / pIc) Score 

Sequence 

coverage (%) 
Normal Restricted 

Fold 

changed) 

1 Inner membrane protein, mitochondrial A7E3V3 83.05 / 6.37 51.03 31.38 0.01 0.03 0.47 

2 SuLFEotransferase, estrogen-preferring P19217 34.62 / 6.67 72.35 20.00 0.03 0.07 0.44 

3 Myosin 1 Q9BE40 22.29 / 5.57 102.41 14.50 0.25 0.10 2.44 

4 Alpha-1-antiproteinase precursor P34955 46.10 / 6.05 14.64 16.35 0.22 0.08 2.68 

5 Alpha-1 antiproteinase P34955 46.10 / 6.05 4.55 4.81 0.19 0.08 2.32 

6 
Chain Q, Ca model of bovine Tric CCT 

devrived from A 4.0 AnGSTROM 
3IYG_Q 55.77 / 5.33 27.62 22.85 0.05 0.10 0.46 

7 Apolipoprotein H P17690 38.25 / 8.53 47.64 50.63 0.38 0.80 0.48 

8 Heat shock protein beta-1 Q3T149 22.40 / 5.98 22.18 40.80 0.39 0.82 0.47 

9 Heat shock protein beta-6 Q148F8 17.47 / 5.95 15.43 47.56 0.20 0.43 0.47 

a) The spot number refers to Fig. 1. 2 

b) Database protein names and accession numbers: UniProt (www.uniprot.org). 3 

c) Molecular weight (MW) and isoelectric point (pI) of each protein were determined by 2-DE. 4 

d) The expression ratios of spot intensity at ad libitum group versus caloric restriction group. 5 
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Table 5. Characterization of candidate proteins affected feed efficiency in Korean native 6 

steers 7 

      Spot intensity  

Spota) Nameb) 
Accession 

numberb) 
MW / pIc) Score 

Sequence 

coverage 

(%) 

HF LF 
Fold 

changed) 

1 Tenascin X Q9BE40 22.30 / 5.57 22.43 16.32 0.05 0.13 0.35 

2 EH-domain contaning 2 Q2KJ47 61.22 / 5.95 17.57 15.65 0.01 0.04 0.32 

3 Enolase 1 Q3ZC09 47.10 / 7.60 47.55 28.80 0.14 0.32 0.44 

4 Tropomodulin 4 Q0VC48 39.18 / 4.71 32.59 16.81 0.31 0.11 2.79 

5 Annexin V Q3ZCH0 73.74 / 5.97 47.64 50.63 0.04 0.24 0.19 

6 MyoZ 1 Q8SQ24 31.67 / 9.17 32.44 33.99 0.23 0.09 2.56 

7 
MLC 1/3 skeletal muscle 

isoform 
A0JNJ5 20.93 / 4.96 57.99 60.42 2.08 0.20 10.33 

8 carbonic anhydrase II P00921 29.11 / 6.41 24.75 35.89 0.42 0.09 4.57 

9 Desmoplakin E1BKT9 33.24 / 6.47 101.97 12.63 0.07 0.19 0.40 

10 LRRC20 protein A6qLD3 20.71 / 6.22 11.30 27.17 0.00 0.15  

11 Heat shock protein beta-6 Q148F8 17.47 / 5.95 15.39 28.66 0.52 1.14 0.45 

12 Coflin 2 Q148F1 18.74 / 7.66 16.229 45.18 0.00 0.42  

a) The spot number refers to Fig. 1. 8 

b) Database protein names and accession numbers: UniProt (www.uniprot.org). 9 

c) Molecular weight (MW) and isoelectric point (pI) of each protein were determined by 2-DE. 10 

d) The expression ratios of spot intensity at high feed efficiency (HF) versus low feed efficiency (LF) group. 11 

12 
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Table 6. Analysis of blood variables in Korean native steers 13 

 Nutritional levela) Feed efficiency ± SEM P-valueb) 

Item Normal Restriction HF LF N FE N FE 

Number 16 15  6 6     

Blood cell count         

White blood cell (x 103 / μL)      8.8    10.5 8.3   9.1   0.75   1.10 * ns 

Red blood cell (x 106 / μL)      8.3      7.9     8.6     8.9   0.39   0.82 ns ns 

Hemoglobin (g / dl)    12.6    11.6   11.8   12.5   0.64   1.10 ns * 

Hematocrit (%)    37.1    34.4   34.2   35.8   1.66   3.04 ns * 

MCV (fl)    44.8    43.8   44.0   45.2   1.25   2.30 ns ns 

MCH (pg)    15.2    14.8   14.6   15.8   0.48   0.84 ns ns 

MCHC (g / dl)    33.9    33.8   33.2   34.9   0.56   0.67 ns ns 

Platelet (x 103 / μL)  371.1  318.8 429.4 297.5 45.20 61.87 ns ns 

HF = High feed efficiency; LF = Low feed efficiency; N = Nutritional level; FE = Feed efficiency; MCV = Mean 14 

corpuscular volume; MCH = Mean corpuscular hemoglobin; MCHC = Mean corpuscular hemoglobin concentration. 15 

a) Steers were fed ad libitum group or caloric restriction group. 16 

b) Probability values for the effect of nutritional level (N) and feed efficiency (FE); (* p < 0.05 and ns = non-17 

significant). 18 

19 
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 20 

Fig. 1. 2-DE images derived from longissimus dorsi muscle (LM) of Korean native steer with (a) ad 21 

libitum, (b) caloric restriction (CR), (c) high feed efficiency, and (d) low feed efficiency. Heat shock 22 

protein beta-6 (HSPB6) that was differentially expressed more than two-fold is indicated with arrows. 23 

24 
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 25 

 26 

Fig. 2. mRNA expression of heat shock protein beta-6 (HSPB6) in longissimus dorsi muscle (LM) of 27 

Korean native steer: (a) ad libitum (n = 10) versus caloric restriction (CR, n = 10); (b) high feed 28 

efficiency (HF, n = 6) versus low feed efficiency (LF, n = 6). Values are mean ± SEM. 29 

30 
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 31 

 32 

Fig. 3. mRNA expression of heat shock protein beta-6 (HSPB6) during bovine myogenesis or 33 

adipogenesis. (a) Representative photographs showing phase contrast of BEFS-MyoD. Magnification was 34 

20X (b) mRNA expression of desmin and HSPB6 in BEFS-MyoD cell at the stage of pre- (0 day), initial- 35 

(2 days), and post- differentiation (6 days); (c) Representative photographs showing phase contrast of 36 

BEFS-PPARγ2. The accumulated lipid droplets were stained using Oil-red O solution. Magnification was 37 

20X; (d) mRNA expression of PPARγ2 and HSPB6 in BEFS-PPARγ2 cell at pre- (0 day), initial- (2 38 

days), and post- differentiation (16 days). Values are mean ± SD (n = 3, a, b and c vs control by Tukey’s 39 

test). 40 
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