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Abstract: 22 

Background: Feed cost is the main factor affecting the economic benefits of pig industry. Improving the 23 

feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding 24 

enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates 25 

the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. 26 

MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the 27 

modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA 28 

profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related 29 

to feed efficiency. 30 

Results: A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the 31 

pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 32 

miRNAs were significantly differentially expressed in the livers of high-FE pigs and low-FE pigs, of 33 

which 5 were downregulated and 9 were upregulated. KEGG analysis of liver differentially expressed 34 

(DE) miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were 35 

significantly enriched in insulin signaling pathway, GnRH signaling pathway, and mTOR signaling 36 

pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for qRT-37 

PCR. The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data.  38 

Conclusion: DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs 39 

to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by 40 

which the liver miRNAs regulate pig feed efficiency.  41 

Keywords: Feed efficiency, miRNA, pig, liver 42 

1. Introduction 43 
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Feed cost is an important economic expenditure of pig breeding industry, accounting for more than 44 

60% of the entire of pig breeding cost [1, 2]. Improving feed efficiency (FE) is an effective strategy to 45 

reduce feed cost in the pig industry. Residual feed intake (RFI) is widely used to measure the FE [3]. RFI 46 

is defined as the difference between the actual feed intake and the predicted feed intake, the latter is 47 

calculated based on the intake amount required for maintenance and growth during a certain period [4, 48 

5]. The heritability of RFI has been reported to be between 0.10 and 0.42 in pig, 49 

which is moderate heritability [6-8], thus there is much room for raising pig feed efficiency by improving 50 

RFI. Low RFI denotes high efficiency at converting feed into body mass [9, 10].  51 

The selection of RFI in pigs not only improves feed efficiency, but also changes energy metabolism, 52 

which can explain the variation mechanism of RFI in pigs. It has been reported that  low-RFI pigs with 53 

longissimus muscle have high glycogen content and low activities of metabolic enzymes involved in 54 

glycolytic pathway, fatty acid oxidation pathway, and energy balance [11]. In addition, low-RFI pigs 55 

exhibit the low activities of lactate dehydrogenase involved in glucose metabolism and hydroxylacylCoA 56 

dehydrogenase involved in fatty acid oxidation [12]. Mitochondria is the main site for energy metabolism. 57 

Moreover, in the low-RFI line, the ROS (reactive oxygen species) production in the white portion and 58 

red portion of the semitendinosus is  reduced in the mitochondria [13]. Although the effect of RFI 59 

selection on animal metabolism can partly explain the mechanism of RFI variation, the underlying 60 

mechanism of FE remains largely unknown. 61 

MicroRNAs (miRNAs), a class of small endogenous noncoding RNAs with 19 to 25 nucleotides, 62 

play important roles in post-transcriptional regulation [14, 15]. MiRNAs have been reported to be related 63 

to FE. A total of 25 DE miRNAs have been identified in longissimus dorsi of significantly different RFI 64 

pigs, of which, miR-208, miR-29c, and miR-1 are related to skeletal muscle growth and development 65 
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[1]. In cattle, 25 miRNAs are differentially expressed in liver of high and low RFI individuals, among 66 

which, bta-miR-143, bta-miR-122, bta-miR-802, and bta-miR-29b are mainly related to glucose 67 

homeostasis and lipid metabolism [16]. It has been reported that bta-miR-486, bta-miR-7, bta-miR15a, 68 

bta-miR-21, bta-miR-29, bta-miR-30b, bta-miR-106b, bta-miR-199a-3p, bta-miR-204, and bta-miR-296 69 

are mainly involved in such signaling pathways  as insulin, lipid, immune system, oxidative stress 70 

response, and muscle development, and they are also associated with RFI in cattle [17]. In addition, miR-71 

665, miR34a and miR-2899 may regulate cattle RFI by controlling 14-3-3 epsilon and HSPB1 proteins 72 

[18]. These results indicate that miRNAs play an important role in regulating FE.  73 

Liver, as a complex metabolicorgan, affects the distribution of nutrients, and it regulates the muscle 74 

and lipid generation by affecting energy metabolism, thus it is an important organ for regulating feed 75 

efficiency [19, 20]. In this study, miRNA-sequencing was performed to comprehensively analyze a 76 

miRNA expression in the liver of high- and low- FE pigs. Subsequently, the relationship between our DE 77 

miRNAs and the previously reported differentially expressed genes analyzed. Our study may provide an 78 

insight into the molecular mechanism of feed efficiency in pigs. 79 

2. Materials and Methods 80 

2.1  Sample preparation and RNA isolation 81 

In this study, 236 castrated boars from population of Yorkshire pigs were raised in ACEMA64 (ACEMO, 82 

Pontivy, France) automated individual feeding systems in the Agricultural Ministry Breeding Swine 83 

Quality Supervision Inspecting and Testing Center (Wuhan, China) [1]. Based on the feed efficiency 84 

measurements, the performances of 30 animals with the lowest RFI (high FE) and 30 animals with the 85 

highest RFI (low FE) were compared (Table 1). On average, pigs in the high-FE group consumed 86 

significantly less feed per day than pigs in the low-FE group, and there was a reduction in fat deposition, 87 
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which is consistent with the results reported in other literatures[12, 21-23]. The individuals with extreme 88 

FE differences (3 vs. 3) were selected based on the RFI value for miRNA sequencing, and there was no 89 

difference in body weight between these individuals (Table S1). Liver tissue samples of each pig were 90 

collected after slaughter, immediately frozen in liquid nitrogen within 30 minutes, and stored at -80℃. 91 

Total RNA was extracted from the frozen liver samples using TRIzol regent for miRNA sequencing 92 

(Invitrogen, Carlsbad, CA, USA). All experimental protocols were approved by the Ethics Committee of 93 

Huazhong Agricultural University (HZAUMU2013-0005).   94 

2.2 Library construction and miRNA sequencing 95 

The total RNA of each liver sample was used for small RNA library construction. The miRNA 96 

sequencing library of each sample was prepared with TruSeq○R Small RNA library Kit (Illumina Inc., 97 

San Diego, CA, USA) according to manufacturer’s instructions. After quality control, six miRNA 98 

libraries were sequenced on Illumina HiSeq3000 platform at the Genergy Biotechnology, shanghai, 99 

China. 100 

2.3 MiRNA sequencing analysis 101 

The clean reads of miRNA were obtained from raw data after trimming adapters and filtering low-102 

quality reads. Then, clean reads were mapped to the reference genome of Sus scrofa v. 11.1 103 

(http://ftp.ensembl.org/pub/release-104/fasta/sus_scrofa/dna/) with miRdeep2 [24]. The reference 104 

genome was downloaded from Ensembl (EMBL-EBI, Hinxton, Cambs, UK), and the miRNA reference 105 

sequences were obtained from the miRBase database (version 22) (The University of Manchester, 106 

Manchester, MC, UK). The expression level of each miRNA was normalized according to the following 107 

formula: Normalized read count = Actual miRNA count/Total clean read count ×1000000 [25-27]. The 108 

known miRNAs were verified and novel miRNAs were predicted by the MiRDeep (v2.0.0.7) software 109 
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(Max Delbrück Center for Molecular Medicine, Berlin, Germany) [28]. The sequences mapped to the 110 

pig reference genome were considered as potential miRNA sequences. The miRNAs whose sequences 111 

matched those of mature miRNAs in miRBase20.0 were identified as known miRNAs. Novel miRNAs 112 

were predicted based on unmatched sequences by MiRDeep2, and the secondary structures of novel 113 

miRNA were predicted by RNAfold (v2.0.1) (University of Vienna, Vienna, Austria) [29].  114 

2.4 Differential expression analysis and qRT-PCR validation of miRNAs 115 

The R package of DESeq (v4.0.3) (European Molecular Biology Laboratory, Heidelberg, Germany) 116 

[30]was used to analyze the differences in miRNA expression level between the high-FE and low-FE 117 

pigs. The Fold change between high-FE and low-FE was calculate according to the following formula: 118 

|log2 (Fold change)|= log2(high-FE/low-FE). The p-value between the two groups was calculated using 119 

the following formulas: p(x|y) = (
𝑁2

𝑁1
)𝑦 (𝑥+𝑦)!

𝑥!𝑦!(1+
𝑁2

𝑁1
)(𝑋+𝑌+1)

  , among them N1 and N2 represent the total 120 

count of clean reads in miRNA libraries of high-FE and low-FE liver tissue samples, respectively; x and 121 

y represent the normalized expression levels of a given miRNA in miRNA library of high-FE and low-122 

FE liver tissue samples, respectively [31]. The differentially expressed (DE) miRNAs were identified 123 

according to the criteria of p-value<0.05 and |log2 (Fold change)| ≥1.   124 

The relative expression levels of the DE miRNA in liver tissues were quantified by real-time 125 

quantitative PCR (qRT-PCR). Three high-FE samples and three low-FE samples were used for qRT-PCR 126 

analysis. The specific primers of miRNAs are listed in Table S2. The miRNA reverse transcription was 127 

performed with Thermo Scientific Revert Aid First Strand cDNA synthesis Kit (Thermo Fisher Scientific 128 

Inc., Waltham, MA, USA). The pig U6 snRNA was used as the internal control. The miRNAs were 129 

quantified on Roche Lightcycler 480 Sequence Detection System (Roche Holding AG, Basel, 130 

Switzerland) according to the instruction manual. The 2−ΔΔCt method was used to analyze the relative 131 
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expression levels of miRNAs, and the Student’s t-test was used to analyze the expression difference 132 

between the high-FE and low-FE pigs. 133 

2.5 MiRNA target gene prediction and GO enrichment analyses 134 

To explore the functions of significantly DE miRNAs between high-FE and low-FE pig, the miRNA 135 

target genes were predicted using DIANA miRPath (http://snf-515788.vm.okeanos.grnet.gr/) (University 136 

of Thessaly, Volos, Greece) with homologous human miRNAs.  137 

The GO enrichment analysis (with EASE < 0.01), and KEGG pathway analysis (with EASE scores 138 

=0.1) were performed using DAVID Bioinformatics Resources (https://david.ncifcrf.gov/) (National 139 

Cancer Institute at Frederick, Frederick, MD, USA）.  140 

2.6 MiRNA-mRNA regulation network construction 141 

We selected the DEGs in livers of High and Low FE pigs, which were also targeted by DE miRNAs, 142 

based on our previous study results [32]. These genes were considered as the potential core genes. To 143 

identify all possible miRNA-mRNA interactions, the regulatory networks between DE miRNAs and their 144 

target mRNA were visualized using an open source software—Cytoscape v3.6.1 (Institute for Systems 145 

Biology, Seattle, Washington, USA.) [33]. 146 

3. Results 147 

3.1 Mapping and annotation of miRNA sequencing data 148 

To identify differentially expressed miRNAs between high and low FE groups (n=3 in each group, 149 

Table S1), six small RNA libraries of the liver tissues from high and low FE pigs were constructed for 150 

solexa sequencing. After sequencing, 15.78~38.56 million raw reads per sample were obtained. After 151 

eliminating the adaptor sequences and filtering low quality reads and short fragments (less than 18nt), 152 

15.24~32.20 million clean reads per sample were obtained, accounting for 83.48%~97.32% of the raw 153 

http://snf-515788.vm.okeanos.grnet.gr/
https://david.ncifcrf.gov/
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reads (Table 2). The length distribution of most clean reads ranged from 21 to 23 nt, and the length 154 

distribution peak was 22 nt (Figure S1). This result was consistent with the length range of miRNA. 155 

3.2 Identification of conserved and novel miRNAs using miRDeep2  156 

The clean reads were aligned to the precursor and mature miRNAs in the miRBase 22.0 database. 157 

In total, 218, 213, 212, 222, 215, and 221 mature annotated porcine miRNAs were identified in the High-158 

FE-126, High-FE-130, High-FE-160, Low-FE-302, Low-FE-306, and Low-FE-307 respectively (Table 159 

S3). A total of 188 miRNAs were co-expressed in these six individual pigs, of which 77 mature miRNAs 160 

were abundantly expressed in livers of High-FE and low –FE pigs, and 2 miRNAs (ssc-miR-7139-5p, 161 

ssc-miR-144) were specifically expressed in the low-FE group (Figure S2). The top 20 mature miRNAs 162 

with largest read count were listed in Figure 1. 163 

The miRDeep2 was used to identify novel miRNAs from sequencing data (Table S4, Figure S3), 164 

and predict their precursor sequences and hairpin structure (Figure S4). In total, 136, 151, 113, 184, 281, 165 

and 242 novel miRNAs were identified to be homologous to human or mouse in the six individuals 166 

(High-FE-126, High-FE-130, High-FE-160, Low-FE-302, Low-FE-306, and Low-FE-307). Among 167 

these newly identified miRNAs, 28 miRNAs were co-expressed in all six individuals, and one miRNA 168 

was specifically expressed in in high-FE pigs and 24 miRNAs were specifically expressed in low-FE 169 

pigs. Since the expression levels of most novel miRNAs were relatively low in our results, they were not 170 

further analyzed.  171 

3.3 Identification of 14 DE miRNAs in high-FE and low-FE pigs 172 

To explore the relationship of miRNAs and feed efficiency in liver, we compared the expression 173 

patterns of the miRNAs in liver between high-FE and low-FE pigs. In our study, 14 DE miRNAs were 174 

identified between high-FE group and low-FE group, of which five miRNA were downregulated and 175 
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nine miRNA were upregulated in high-FE pigs relative to low-FE pigs (Figure 2, Table 3). Two of these 176 

identified DE miRNAs (ssc-miR-10386 and ssc-miR-1839-5p) were not homologous with those of 177 

human, but the remaining 12 miRNA were homologous with 12 human miRNAs (Table 3). Cluster 178 

analysis of these 14 DE miRNAs exhibited the expression patterns of miRNAs in different samples 179 

(Figure 3).  180 

3.4 Validation of sequencing data by qRT-PCR 181 

To verity the reliability of the miRNA sequencing data, five DE miRNAs (ssc-miR-26b-5p, ssc-182 

miR-155-5p, ssc-miR-185, ssc-miR-125b, ssc-miR-193a-5p) were randomly selected for qRT-PCR 183 

analysis. Compared with that in high-FE liver, the expression level of ssc-miR-26b-5p and ssc-miR-155-184 

5p in low-FE liver was significantly downregulated, whereas the expression level of ssc-miR-185, ssc-185 

miR-125b, and ssc-miR-193a-5p was significant upregulated. These qRT-PCR results were consistent 186 

with the miRNA-sequencing data, indicating the reliability of miRNA sequencing data (Figure 4).   187 

3.5 Prediction of miRNA target genes 188 

To examine the functions of the DE miRNAs in the comparison of high-FE pigs vs. low-FE pigs, 189 

the target genes of the DE miRNAs homologous to human were predicted. The results indicated that 190 

7025 target genes of DE miRNAs were predicted which included 5118 unique genes (Table S5). Among 191 

these target genes, FASN, LAMP3 and ELOVL7 have been reported to be differentially expressed in liver 192 

tissues of high-FE and low-FE pigs [32]. 193 

3.6 GO enrichment and KEGG pathway analyses of target genes 194 

The GO enrichment analysis showed 5118 target genes were mainly enriched in 3 GO categories 195 

(biological processes, cellular components, and molecular functions). The 515 GO terms were 196 

significantly enriched in biological processes, 127 GO terms were significantly enriched in cellular 197 
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components, and 162 GO terms significantly enriched in molecular functions (Table S6). The top 20 198 

biological processes in which the target genes were enriched were related to transcription (DNA-199 

templated), regulation of transcription (DNA-templated), positive regulation of transcription from RNA 200 

polymerase II promoter, and negative regulation of transcription from RNA polymerase II promoter. The 201 

cellular components in which most target genes were enriched were mainly associated with nucleus, 202 

cytoplasm, cytosol, nucleoplasm, and membrane. The molecular functions in which most target genes 203 

were enriched were mainly related to protein binding, metal ion binding, DNA binding, ATP binding, 204 

and transcription factor activity (sequence-specific DNA binding). The top 20 significant GO terms in 205 

each of 3 GO categories were shown in Figure 5.  206 

The miRNA target gene KEGG pathway analysis showed that the target genes of miRNAs were 207 

mainly enriched in 88 pathways (Table S7), and the top 20 pathways were shown in Figure 6. Most of 208 

these enrichment pathways were associated with the growth and development such as PI3K-Akt 209 

signaling pathway, insulin signaling pathway, mTOR signaling pathway, Wnt signaling pathway, GnRH 210 

signaling pathway, TGF-beta signaling pathway, and Hypertrophic cardiomyopathy (HCM). Hierarchical 211 

clustering analysis was further performed to elaborate the relationship between DE miRNAs and their 212 

target pathways (Figure 7). The miRNAs with the similar functions were clustered together.   213 

3.7 miRNA-mRNA association analysis 214 

To clarify the molecular mechanisms of the feed efficiency trait, miRNA-mRNA association 215 

analysis of liver tissues in high-FE and low-FE pigs was conducted based on our previous study results 216 

[32]. To explore the potential roles of the miRNA in regulating target gene expression, we examined 217 

532 well annotated DEGs (Table S8) and 14 DE miRNAs. Ninety-eight differentially expressed targets 218 

genes were identified from 11 miRNAs in the livers between high and low FE pigs (Figure 8).  219 
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4. Discussion 220 

High-RFI (low-FE) and low-RFI (high-FE) pigs were chosen to identify the miRNA related to FE. 221 

The low-RFI pigs have higher conversion efficiency and lower energy metabolism, meaning that the 222 

energy intake of low-RFI pigs is mainly used for protein deposition while reducing fat accumulation [11, 223 

12, 34-36]. In addition, phenotypic comparisons between  high-FE and low-FE pigs showed lower feed 224 

intake and fat deposition in low-FE pigs [21].Thus, animals with lower RFI are higher efficient at 225 

converting feed into body mass, whereas those with higher RFI have lower feed efficiency (FE). 226 

Therefore, the improvement of FE could effectively reduce feed intake and feed cost. The miRNAs are 227 

important post-transcriptional regulators of gene expressions and participate in many biological 228 

processes [37]. In this study, we systematically analyzed the miRNA profiles of liver tissues in high-FE 229 

and low-FE pigs. The FE-related differentially expressed miRNAs and important FE-related signaling 230 

pathways were identified in this study. It have been reported that carbohydrate metabolism, lipid 231 

metabolism, hepatic lipid accumulation and Metabolism of xenobiotics by cytochrome P450 and 232 

butanoate and tryptophan Metabolism are associated with feed efficiency in pigs [38-42]. A number of 233 

miRNAs relate to carbohydrate metabolism (miR-135a-5p, miR-29a-3p, miR-15a-5p, miR-96-5p, miR-234 

155-5p, miR-26a-5p, miR-185-5p, and miR-125b-5p), lipid metabolism (miR-16 and miR-135a-5p), 235 

hepatic lipid accumulation (miR-130a, miR-125b, miR-185, and miR-26a) and Metabolism of 236 

xenobiotics by cytochrome P450 and butanoate and tryptophan Metabolism (miR-185, miR-29a, miR-237 

135a, miR-130a, miR-125b, miR-26a, miR-15a, and miR-96, miR-155, and miR-24, miR-130a, miR-238 

26a, miR-15a) were differentially expressed between high FE and low FE pigs. 239 

 The top 2 highly expressed miRNAs were ssc-miR-122-5p and ssc-miR-192 in both high-FE and 240 

low-FE pigs. These two miRNAs have been confirmed to be abundant in liver and to participate in fat 241 
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metabolism [43-47]. The ssc-miR-122 plays an important role in lipid metabolism [48]. It has been 242 

reported that ssc-miR-122 is a liver-specific miRNA, and it is expressed almost exclusively in the liver 243 

[49, 50]. In addition, ssc-mir-122 has been identified as a candidate miRNA of average daily gain trait in 244 

pigs [51]. Thus, the high expression of mir-122 in the porcine liver might also play a role in regulating 245 

the feed efficiency. The functional investigation reveals that ssc-miR-192 can promote hepatic lipid 246 

accumulation [52]. It has also been demonstrated that miR-192 is abundant in the liver [53]. The KEGG 247 

pathway analysis of these two abundant liver miRNAs indicates that their predicted target genes are 248 

enriched in glucagon signaling pathway, glycolysis / gluconeogenesis, citrate cycle (TCA cycle), insulin 249 

signaling pathway, AMPK signaling pathway, and biosynthesis of amino acids. Therefore, miRNAs with 250 

high abundance in the liver of porcine may be an important regulator for energy metabolism and lipid 251 

metabolism. 252 

Lipid metabolism in liver tissue has been reported to affect feed efficiency in pigs [41, 54]. Two 253 

miRNAs involved in lipid metabolism (ssc-miR-16 and miR-135a-5p) have been found to be 254 

differentially expressed in liver in high-FE vs. low-FE pigs comparison. The ssc-miR-16 (hsa-miR-15a-255 

5p) was up-regulated in the liver of high-FE pigs. One previous study has reported that miR-15a 256 

participates in multiple physiological processes, including adipocyte differentiation and lipid 257 

accumulation [55]. Moreover, the miR-15a/16 has been found to be negatively correlated with trglyceride 258 

and total cholesterol in liver tissue of pigs [56]. The ectopic overexpression of miR-15a strongly up-259 

regulates the expression level of FASN mRNA, and this FASN mRNA has been found to be up-regulated 260 

in liver of high-FE pigs relative to low-FE pigs [57-60]. LAMP3, a predicted target gene of miR-15a, has 261 

been found to be down–regulated in liver of high-FE pigs compared with that in low-FE pigs [32]. 262 

LAMP3 can regulate lipid metabolism of liver [61]. It should be noted that miR-15a has been reported to 263 
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be associated with feed efficiency in bovine [17, 62]. The miR-135a-5p, which can suppress adipogenesis 264 

by activating canonical Wnt/β-catenin signaling, is up-regulated in the liver of high-FE pigs, relative to 265 

low-FE pigs [63, 64]. The KEGG pathway analysis indicates that the predicted target genes of miR-135a-266 

5p are mainly enriched in thyroid hormone signaling pathway, insulin secretion, and cAMP signaling 267 

pathway. In addition, ELOVL7, a predicted target gene of miR-135a-5p, is down-regulated in liver of 268 

high-FE pigs. ELOVL7 is a key enzyme gene responsible for polyunsaturated fatty acid (PUFA) synthesis, 269 

and this gene has been reported to be associated with feed efficiency [65-68].  270 

The miR-130a plays a key role in the fine-tuning of liver metabolic processes, and its expression is 271 

significantly up-regulated in the livers of high-FE pigs. It’s has been reported that miR-130a can inhibit 272 

lipid accumulation by down-regulating FASN, and both RNA-seq and qRT-PCR data indicate this gene 273 

is up-regulated in liver of high-FE pigs [69, 70]. The miR-24 has been identified to be upregulated in 274 

liver of High-FE pigs, and knockdown of miR-24 results in the reduced hepatic lipid accumulation and 275 

the decreased plasma triglycerides [71]. In addition, miR-125b, miR-185, and miR-26a have been 276 

reported to participate in the lipid accumulation in liver [72-75].  277 

Previous studies have shown that the DEGs between high-FE and low-FE pigs were significantly 278 

enriched in “carbohydrate metabolism” and “uptake and conversion of carbohydrates” [41]. In our study, 279 

the target genes of miR-135a-5p, miR-29a-3p, miR-15a-5p, miR-96-5p, miR-155-5p, miR-26a-5p, miR-280 

185-5p, and miR-125b-5p were enriched in the GO terms of carbohydrate digestion and absorption. 281 

Sufficient evidence indicates that miRNAs (miR-135a, miR-29a, miR-15a, and miR-96) participate in 282 

glucose metabolism and GLUT4 (Glucose Transporter 4) pathway which plays a crucial role in insulin 283 

resistance and is closely associated with T2DM [76-78]. The miR-29a can decrease fasting blood glucose 284 

levels by negatively regulating hepatic gluconeogenesis and inhibit insulin-stimulated glucose transport 285 
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in adipocytes [79, 80]. The miR-155 can positively regulate glucose uptake and glycolysis [81]. The 286 

miR-26a can regulate insulin signaling and metabolism of glucose and lipids [82]. The miR-185 in mice 287 

and diabetic patients is significantly downregulated, and this miRNA is associated with blood glucose 288 

[83]. The miR-125b can decrease glucose uptake and inhibit insulin signaling pathway [84-86].  289 

Metabolism of xenobiotics by cytochrome P450 and butanoate and tryptophan Metabolism have 290 

been found to influence feed efficiency [42]. Cytochrome P450 can regulate synthesis of lipids, steroids, 291 

and hormones, and the members of cytochrome P450 family have been found (CYP1A1, CYP2J2, 292 

CYP26A1) to be differentially expressed in liver of high-FE and low-FE pigs [32, 87, 88]. Butanoate is 293 

a dietary fiber metabolite and it is closely related to energy metabolism [89]. In this study, the target 294 

genes of miR-185, miR-29a, miR-135a, miR-130a, miR-125b, miR-26a, miR-15a, and miR-96 were 295 

enriched in metabolism pathways of xenobiotics by cytochrome P450; the target genes of miR-26a, miR-296 

96, miR-155, miR-125b, and miR-24 were enriched in butanoate metabolism pathway; and the target 297 

genes of miR-130a, miR-26a, miR-96, miR-15a, miR-185, and miR-24 were enriched in tryptophan 298 

metabolism pathway.  299 

5. Conclusion 300 

Overall, a total of 212~221 known porcine miRNAs and 136~281 novel miRNAs were identified.    301 

The 14 miRNAs were identified to be significantly differentially expressed in the comparison of high-302 

FE vs. Low-FE pig liver, of which 12 miRNAs were homologous to human miRNAs. The KEGG 303 

pathway enrichment analysis indicated that these DE miRNAs might influence feed efficiency by 304 

regulating the pathways related to lipid metabolism, carbohydrate digestion and absorption, metabolism 305 

of xenobiotics by cytochrome P450, butanoate and tryptophan Metabolism. Our findings provide an 306 

insight into the role of miRNAs in the regulation of pig feed efficiency.  307 
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Table 570 

Table 1 Animal performance of Yorkshire pigs with FE extreme individual. 571 

 high-FE low-FE p-value 

n 30 30  

FCR 2.25±0.23 2.81±0.21 3.01626E-14 

RFI(kg/day) -0.28±0.17 0.19±0.097 1.92944E-19 

DFI 1.90±0.29 2.40±0.25 2.44119E-09 

ADG 0.85±0.13 0.86±0.13 0.75 

Initial BW (kg) 39.64±3.42 40.28±2.40 0.40 

Final BW (kg) 89.06±0.13 90.38±5.14 0.27 

AMBW 22.61±0.61 22.87±0.81 0.17 

ABF (mm) 19.15±2.75 22.08±2.58 7.95454E-05 

LMA (cm2) 46.40±5.37 46.65±7.35 0.66 

DFI - daily feed intake. ADG - average daily gain over the assessed feeding period. BW - body weight. 572 

ABF - average of back fat thicknesses (mm) measured at three points between 6th and 7th ribs (6th–7th 573 

BF) and at the10th rib (10th BF). LMA - loin muscle area (cm2) measured between the 10th and 11th. p-574 

value as calculated by t-test. 575 
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Table 2 Summary of miRNA sequences present in high and low feed efficiency libraries. 577 

Reads High-FE-

126 

High-FE-

130 

High-FE-

160 

Low-FE-

302 

Low-FE-

306 

Low-FE-307 

Total Reads 26112409 20763517 15781729 38569212 33339689 28127726 

Clean reads 24835910 20143193 15198953 32095751 28058316 24174860 

Qualified% 0.951115 0.970124 0.963073 0.83216 0.841589 0.859467 

mapped 10664822 9412307 5532788 9730647 9953581 9409661 

unmapped 14171088 10730886 9666165 22365104 18104735 14765199 

mapped% 0.429 0.467 0.364 0.303 0.355 0.389 

unmapped% 0.571 0.533 0.636 0.697 0.645 0.611 

 578 
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Table 3 Differentially expressed miRNAs identified by miRDeep2 in liver between divergent feed 580 

efficiency pigs.  581 

mature SSC id Ref miRNA FC(H/L) p-value Mature sequence 

ssc-miR-10386  -5.86  1.05E-41 gucguccucucccucccuccu 

ssc-miR-26b-5p hsa-miR-26a-5p 1.04  2.41E-05 uucaaguaauucaggauagguu 

ssc-miR-1839-5p  -1.61  6.92E-05 aagguagauagaacaggucuug 

ssc-miR-155-5p hsa-miR-155-5p 1.15  0.000556 uuaaugcuaauugugauagggg 

ssc-miR-454 hsa-miR-130a-3p 1.57  0.00074 uagugcaauauugcuuauagggu 

ssc-miR-455-5p hsa-miR-455-5p 1.02  0.003295 uaugugccuuuggacuacaucg 

ssc-miR-185 hsa-miR-185-5p -1.07  0.016294 uggagagaaaggcaguuccuga 

ssc-miR-193a-5p hsa-miR-193a-5p -1.17  0.020914 ugggucuuugcgggcgagauga 

ssc-miR-24-2-5p hsa-miR-24-3p 1.00  0.021422 gugccuacugagcugauaucagu 

ssc-miR-29a-5p hsa-miR-29a-3p 2.16  0.021715 acugauuucuuuugguguucag 

ssc-miR-16 hsa-miR-15a-5p 1.11  0.027376 uagcagcacguaaauauuggcg 

ssc-miR-125b hsa-miR-125b-5p -1.03  0.032728 ucccugagacccuaacuuguga 

ssc-miR-135 hsa-miR-135a-5p 1.35  0.037177 uauggcuuuuuauuccuauguga 

ssc-miR-96-5p hsa-miR-96-5p 1.27  0.04017 uuuggcacuagcacauuuuugcu 

  582 

file:///C:/Users/Admin/Desktop/


ACCETED

Figure 583 

 584 

Figure 1. The top 20 most abundant miRNAs in the high and low feed efficiency sequence libraries 585 

from liver tissues in pigs. 586 
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 589 

Figure 2. Volcano plot displaying differentially expressed miRNAs identified using miRNA-seq in high 590 

and low feed efficiency pigs. The x-axis represents the log2-fold change value and the y-axis displays 591 

the mean expression value of -log10(p-value). The green dots indicate down-regulated miRNAs; the red 592 

dots indicate up-regulated miRNAs; the black dots indicate the miRNAs with no significant change in 593 

expression.  594 
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 595 

Figure 3. Hierarchically clustered heat map of 14 DE miRNA. Red and blue represent up and down-596 

regulated expression in liver respectively. Color density indicated level of fold change. 597 
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 600 

Figure 4. qRT-PCR validation of genes from RNA-seq results between High-FE and low-FE pigs. All 601 

samples were normalized to U6 snRNA. (A) Five liver DE miRNAs validated by qRT-PCR. (B) Line fit 602 

plot of qRT-PCR results and RNA-Seq data showing the expression difference of the selected five 603 

miRNAs between High-FE and Low-FE pigs. Linear regression model and R-Squared shown in the 604 

figure 4. 605 
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Figure 5. GO classification of the target genes of different expression miRNA between High and low 608 

feed efficiency pigs. 609 
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Figure 6. KEGG pathway enrich pathway enrichment of the target genes of DE miRNA. The abscissa 612 

represents the miRNA number. The –log10(P_value) indicates the significance of the enrich pathway, 613 

and the size of circle indicates the number of the target genes. 614 
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Figure 7. Heat map and Cluster patterns of the DE miRNAs and pathways relate to target gene. Heat 617 

map of miRNA with pathways, miRNAs are clustered together with similar pathway patterns, and 618 

pathways are clustered together with related miRNAs. Because the current version of DIANA miRPath 619 

does not contain porcine genes, human miRNAs were used for prediction.  620 
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Figure 8. miRNA/mRNA network analysis. The interaction of 11 differentially expressed miRNA and 623 

mRNA target genes was analyzed using Cytoscape based on miRNA target prediction results by 624 

DIANA-microT and DEGs reported in previous study. 625 




