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Abstract 10 

Human activities have caused an increase in greenhouse gas emissions, resulting in climate change that affects 11 

many factors of human life including its effect on water and food quality in certain areas with implications for 12 

human health. CH4 and N2O are known as potent non-CO2 gases. The livestock industry contributes to direct 13 

emissions of CH4 (38.24%) and N2O (6.70%) through enteric fermentation and manure treatment, as well as 14 

indirect N2O emissions via NH3 volatilization. NH3 is also a secondary precursor of particulate matter. Several 15 

approaches have been proposed to address this issue, including dietary management, manure treatment, and the 16 

possibility of inhibitor usage. Inhibitors, including urease and nitrification inhibitors, are widely used in 17 

agricultural fields. The use of urease and nitrification inhibitors is known to be effective in reducing nitrogen loss 18 

from agricultural soil in the form of NH3 and N2O and can further reduce CH4 as a side effect. However, the 19 

effectiveness of inhibitors in livestock manure systems has not yet been explored. This review discusses the 20 

potential of inhibitor usage, specifically of N-(n-butyl) thiophosphoric triamide, dicyandiamide, and 3,4-21 

dimethylpyrazole phosphate, to reduce emissions from livestock manure. This review focuses on the application 22 

of inhibitors to manure, as well as the association of these inhibitors with health, toxicity, and economic benefits. 23 

Keywords: Livestock emissions, GHG emissions, Urease inhibitor, Nitrification inhibitor, Particulate matter 24 

  25 
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1. Introduction 26 

Anthropogenic activities have led to the production of large amounts of greenhouse gases (GHGs) such as carbon 27 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O), which has resulted in climate change and global warming. 28 

Human activities are estimated to have caused global warming of approximately 1 °C above pre-industrial levels, 29 

ranged between 0.8 °C to 1.2 °C [1]. The total amount of GHG emissions in 2018 for developed countries (Annex 30 

1 parties) was 16,794,455.9 kt CO2 equivalent (CO2-eq) [2]. CH4 is an extremely potent GHG, responsible for 31 

approximately 30% of warming since pre-industrial times [3]. It has a global warming potential of 38 CO2-eq over 32 

a 100-year time horizon, making it an important non-CO2 GHG. Human-caused CH4 emissions are predominantly 33 

from three sectors: fossil fuels, waste, and agriculture. N2O is another potent GHG because of its 100-year global 34 

warming potential of 100 CO2-eq. N2O damages the environment and is known to contribute to the depletion of 35 

the ozone layer.  36 

 Global climate change affects human health, livelihoods and ecological and human systems, resulting 37 

in global monetary damage. The IPCC [1] indicated five reasons for concern that point up the risk of global 38 

warming at different level, including its impact on human, economies, and ecosystem. At present, the risk 39 

transitions of global warming range from moderate to high risk, between 1 °C and 2 °C. The Paris Agreement in 40 

2015 was adopted to set the long-term goals to limit the global temperature increase to 2ºC in this century while 41 

also attempting further limitation to 1.5 ºC [4]. To be on track toward the Paris Agreement, global GHG emissions 42 

should reduce by 7.6% each year between 2020 and 2030 [3]. 43 

According to Annex I countries’ CH4 and N2O emissions, livestock sector (manure management and enteric 44 

fermentation) was responsible for 38.24% and 6.70% of total CH4 and N2O emissions, respectively, where CH4 45 

from livestock sector was responsible of approximately 95.4% of the total agricultural CH4 emissions [2]. Also 46 

NH3 emitted from livestock sector was the source of indirect N2O emissions and NH3 is a secondary precursor of 47 

particulate matter (PM) and contributes to the overall PM burden [5]. The sustainability of livestock production 48 

is necessary for continuity of human life and by targeting non-CO2 for mitigation, agricultural CH4 and N2O 49 

emissions could be reduced; therefore, the mitigation of GHG emissions from this sector is crucial and in urgent 50 

need of being addressed.  51 

 52 

2.  Emissions from the Livestock Sector 53 

2.1.  Direct Emissions 54 
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 Agriculture is one of the main contributing sectors of CH4 and N2O. Agriculture contributed 55 

approximately 9.27% of the total global emissions in 2019 (Annex 1 parties) [2]. Among the emissions from 56 

agriculture, 50.18% came from livestock. Emission from the livestock industry is a by-product of the digestive 57 

system of ruminants, in the form of CH4 through enteric fermentation and as CH4 and N2O through manure 58 

handling. Livestock product demand is predicted to grow by 70% in 2050, resulting in significant increase in GHG 59 

emissions from livestock [6]. Therefore, it is important to mitigate emissions from the livestock industry. 60 

CH4 production is caused by microbial fermentation that hydrolyze carbohydrates, and is an energy loss [7]. 61 

Methanogenesis generates CH4 and methanogens, a group of obligate anaerobic archaebacteria that are 62 

chemoautotrophs [8], are responsible for this process [9]. These methane producers are strict anaerobes and pH 63 

sensitive, with an optimum pH range of 6.8 to 7.4, and function best at 95 °F [10]. 64 

In 2018, the contribution of GHG emissions from enteric fermentation reached 85% of the total livestock’s GHG 65 

emissions [11]. CH4 from enteric fermentation is a byproduct of the digestive system in ruminants and is released 66 

during eructation; approximately 87%–90% is formed in the rumen and the remaining 13%–10% in the large 67 

intestine [12]. CH4 emissions from cattle is seven times higher than that from sheep and nine times higher than 68 

that from goats [12]. CH4 production in the rumen is affected by dietary factor and genetic factor [13]. 69 

 Nitrification is a process that converts NH4
+ to NO3

- through microbial action [14]. This is a two-step 70 

chemolithotrophic process whereby NH4
+ is first oxidized to NO2

- by NH3-oxidizing bacteria, followed by 71 

oxidation to NO3
- by nitrate-oxidizing bacteria [14]. Denitrification requires the conversion of NO3

- to NO2
- in the 72 

absence of oxygen by the enzyme nitrate reductase, then nitric reductase converts NO2
- to NO. Then, NO is 73 

converted to N2O by nitric oxide reductase, and finally, N2O is converted to N2 gas by nitrous oxide reductase. 74 

Low pH inhibits reductase enzyme and compare to the other enzymes, it is even more sensitive to oxygen in the 75 

denitrification pathway [9]. 76 

Manure handling and storage are the source of livestock CH4 and N2O emissions. However, on pastures or 77 

rangeland, N2O losses is more considerable than CH4 emissions that can be very low [15]. However, CH4 78 

emissions may be highly significant in housed indoor house or on feedlots, and manure storage may be required. 79 

N2O emissions originate largely from denitrification of N soils arising from fertilizers and urinary deposits, and 80 

to a lesser extent from sources of N resulting from leaching, runoff, and volatilization. 81 

 82 

2.2.  Indirect Emissions 83 
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In addition to direct emissions, livestock also contributes to indirect emissions in the form of N2O emissions. 84 

Indirect N2O emissions account for one-third of the total global agricultural N2O sources. In theory, indirect 85 

emissions consist of five different sources, including volatilization and subsequent atmospheric deposition of NH3 86 

and NOx [16]. Indirect N2O emissions may arise through deposition of NH3 volatilized from manure. The indirect 87 

N2O emissions, however, may also arise from the NH3 deposited and NO emitted during manure management and 88 

application [17]. NH3 is generated through urea hydrolysis during manure deposition. Urea is very stable, and it 89 

degrades so slowly without urease that its degradation is negligible. Urea in synthetic fertilizer does not come into 90 

contact with urease until it is applied to the field [18]; therefore, the application of livestock manure as an organic 91 

fertilizer is likely to accelerate NH3 volatilization because of the urease present in feces. Urea hydrolysis also 92 

occurs in the presence of urease produced by bacteria in the soil, which results in the emission of NH3. Urea 93 

hydrolysis occurs when urinary urea is catalyzed by urease in feces, resulting to the conversion of urea to NH3 94 

and CO2. Urinary urea N is the source of NH3-N, and microbial urease in feces hydrolyzes it to NH3 and CO2 [19]. 95 

The mixing of feces and urine promotes hydrolysis [20] and occurs rapidly within 1 to 2 days of excretion [21]. 96 

Urease concentration is known to be the highest in chicken manure, compared to that in pig and cattle manure, 97 

during the initial composting process [22]. The concentration of urea N ranges between 50% and 90% of the total 98 

N [21,23]. 99 

Ruminants excrete nitrogen in which can be loss as NH3 for more than 50%. This significant amount of NH3 100 

emissions is attributed to the formation of PM with an aerodynamic diameter smaller than 2.5 µm (PM2.5) [24]. 101 

The contribution of PM2.5 to air pollution occurs through complex process. Primary particles interact with gaseous 102 

precursors, followed by photochemical transformation pathways and lastly, transport and deposited as PM2.5 by 103 

meteorological process [25]. Organic carbon and sulfate control the formation of PM when NH3 presents in 104 

excessive amount [26]. Livestock operations contribute to PM2.5, and PM10. PM10 is a term for particles with an 105 

aerodynamic diameter ≤ 10 mm. Direct PM10 is emitted as dust, and the reaction of NH3 with nitrate and sulfuric 106 

acids forms indirect PM10 [24]. In the atmosphere, NH3 can bind to other gases, such as SO2 and nitrogen oxides 107 

(NO and NO2) to form NH4
+ containing fine PM [27]. This fine PM affects health when inhaled. PM2.5 formed by 108 

NH3 can penetrate deeper into the respiratory system of humans and animals where they damage tissues[28]. 109 

Although the average effect on lung function is modest, peak exposures of NH3 may cause airway symptoms in 110 

vulnerable subjects [29]. 111 
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Studies on the PM2.5 reduction through NH3 control have been performed. Over the eastern USA in July and 112 

January, a 4% and 9% decrease in PM2.5 was caused by the reduction of NH3 by 50% [30], whereas in Italy, [31] 113 

showed that a reduction of 50% in NH3 emissions from agriculture could result in a decrease in PM2.5. Pozzer et 114 

al. [25] also showed that a 50% decrease in NH3 emissions could reduce the annual, geographical average of near-115 

surface PM2.5 concentration by 2% to 11%. These studies confirm that the reduction in NH3 emissions is the most 116 

effective control strategy for mitigating PM2.5. 117 

 118 

3. Mitigation of Emissions from Livestock 119 

3.1. Dietary Management 120 

The single most effective way to mitigate GHG emissions is to increase animal productivity. Thus, reducing 121 

animal numbers may provide the same edible product output with a reduced environmental footprint [32]. Dietary 122 

management has been widely used and is the most effective method to reduce CH4 from enteric fermentation. 123 

Overall dietary manipulation by selection and utilization of high quality forages, strategic supplementation of 124 

forages, changing concentrate, proportion with special emphasis on changing carbohydrate composition should 125 

be considered as an immediate and sustainable methane mitigation approach of enteric CH4 emitted from ruminant 126 

livestock [33]. Methane emissions decrease in all regions when amended diets are adopted because more forage-127 

based diets are less digestible than more concentrate grain-based diets [34]. 128 

Haque [33] divides dietary strategies into two categories: 1) improving forage quality and changing the diet 129 

proportion, and 2) dietary supplementation with feed additives. Although these strategies have been demonstrated 130 

to be effective, some obstacles are encountered For instance, adding more grain in ruminant ration can be 131 

profitable because this strategy increases milk production, meat production, and also reduce the environmental 132 

footprint of livestock; however, the sustainability of this approach in the long term is questionable [32]. In some 133 

regions, grazing management may not be the best option to improve animal productivity due to poor pasture 134 

quality, in that case, improvement in productivity must come through feeding preserved forage or concentrate [32]. 135 

Some feed additives, known as inhibitors, are used to reduce methanogenesis by inhibiting methanogen activity. 136 

This includes supplementing with anti-methanogenic agents (e.g., antibiotics that reduce the methanogen 137 

population) or supplementing with electron (H+) acceptors, such as nitrate salts [35]. Among additives, the most 138 

promising results have been with nitrate and 3-nitrooxypropanol; however, more research is needed to fully 139 

document the implications for environmental and animal health [36]. Although demonstrated to be effective in 140 
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reducing CH4 emissions, these strategies may disrupt natural rumen processes, and pose potential health and other 141 

welfare challenges [35]. High-concentrate supplementation increases milk production and utilization of genetic 142 

potential of the animal. However, when the price of milk is lower than feed cost, this system may not be 143 

economically feasible [32].  144 

 145 

3.2. Manure Treatment 146 

 NH3 and GHG emissions from animal facilities are influenced by several factors, i.e method of 147 

collecting manure, type of manure storage, type of housing, manure separation, and manure processing [15]. 148 

Mitigation practice for GHG emissions from stored manure mostly includes reducing storage time, air circulation 149 

(aeration), and stockpiling. These practices are intended to shorten fermentation process before land application 150 

[15]. These practices are found to be effective, but the practices is unclearly economically advantageous [15].  151 

 152 

3.3. Inhibitors 153 

In recent years, mitigation technologies, including the use of inhibitors such as urease inhibitors and nitrification 154 

inhibitors, have been explored to reduce emissions and nitrogen losses from agricultural fertilizer usage, and 155 

inhibitors have already been approved and are currently in the market [37]. Livestock manure is a rich source of 156 

organic compounds. Owing to this nutritional content, livestock manure is commonly used as fertilizer on 157 

agricultural soil or land. However, this practice may accelerate NH3 volatilization because of the higher urease 158 

content in the manure than in the soil, which promotes the formation of indirect N2O. The loss of nitrogen affects 159 

the nitrogen content of the soil, which may result in low yield production. Due to significant nitrogen losses from 160 

manure management systems, estimating the remaining amount of nitrogen in the manure is important, mainly 161 

for soil application or other purposes such as feed, fuel, or construction [38]. According to IPCC [38], N2O 162 

emissions generated by manure in the pasture system, range, and paddock occur directly and indirectly from the 163 

soil.  164 

  165 

4. Urease and Nitrification Inhibitors 166 

4.1. Urease Inhibitors 167 

The main principle of urease inhibitors is to deactivate urease, which hydrolyses urea into NH4
+, so that the 168 

hydrolysis of urea is delayed; hence, in the interim, several treatments can be performed to reduce the potential of 169 
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nitrogen loss. There are several types of urease inhibitors. N-(propyl) thiophosphoric triamide (NPPT) is known 170 

to improve NH3 volatilization; however, the application of NPPT is mostly in combination with N-(n-butyl) 171 

thiophosphoric triamide (NBPT), and several studies have revealed that NPPT is suspected to be a reproductive 172 

toxin [37]. N (2-nitrophenyl) phosphoric triamide (2-NPT) is a new urease inhibitor that is under development. 173 

The application of NPT has been shown to lower NH3 volatilization by 89% after 19 days of incubation [39], and 174 

depending on the soil characteristics, it also has greater longevity than NBPT [40]; therefore, the inhibitory effect 175 

of 2-NPT may last longer than that of NBPT. However, currently, 2-NPT is still on a laboratory-scale production; 176 

therefore, it is not easily available in the market and for field purposes.  177 

NBPT is currently the most widely used urease inhibitor. NBPT blocks three active sites of the urease enzyme to 178 

form a tridentate bond. This bond consists of two nickel centers and one oxygen atom from the carbamate bridge 179 

linking both metal ions, which reduces the probability of urea reaching the active nickel center of the urease 180 

enzyme. NBPT must be converted into N-(n-butyl) phosphoric triamide (NBPTo), as it is not a direct inhibitor. 181 

The factors influencing this conversion are not clear, but the reaction is rapid in soils under aerobic conditions 182 

(occurring in minutes or hours) but can take days under anaerobic conditions. The direct application of NBPTo is 183 

inefficient because it degrades faster than NBPT.  184 

NBPT is pH labile, and chemical hydrolysis appears to be an essential function of its breakdown under acidic 185 

conditions. This study concluded that under acidic conditions, chemical hydrolysis is likely the dominant pathway 186 

for NBPT and NBPTo breakdown. Under alkaline conditions, the biotic breakdown of these compounds via 187 

microorganisms became more significant [37].  188 

NBPT mitigates NH3 volatilization by controlling the rise in pH that occurs during urea hydrolysis, resulting in 189 

the production of two units of NH4
+ and CO2 and reducing the soil concentration of NH4

+ around the urea granule 190 

[37]. These processes affect the equilibrium of NH4
+ (soil), NH3 (soil), and NH3 (gas), which results in slow urea 191 

hydrolysis and ultimately allows ample time for the fertilizer to be incorporated into the soil via rainfall or 192 

irrigation, thereby protecting the applied N from volatilization [37]. Inhibition of urease by NBPT usually lasts 3 193 

to 7 days as new urease enzyme production overwhelms the inhibitor [37].  194 

The NBPT shows a relatively short period of protection. The ideal situation for the performance of urease 195 

inhibitors is through mechanical incorporation, followed by rain or irrigation occurring within 5 to 7 days after 196 

fertilization with NBPT-contained urea. In this period, depending on soil moisture or temperature, inhibitory 197 
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potential of NBPT is still high [41]. The results of field studies showed reductions of > 85% in NH3 volatilization 198 

as a result of NBPT application and rain event within 5 days after urea application [41].  199 

A study conducted by Engel et al. [42] showed that application of urea of wet or damp soil, NH3 loss was 200 

significant. This study indicates that NH3 loss was significantly affected by water conditions. Application of NBPT 201 

delayed the peaks of NH3 loss until 7 to 9 days, whereas without NBPT application, the highest loss occurred on 202 

day 3. Not only delayed the peak of NH3 loss, NBPT also reduced the peaks of NH3 loss [43]. The conversion of 203 

urea to NH3 is prevented by the addition of NBPT, resulting to urea buildup in the manure. NBPT, on the other 204 

hand, has limited effect as time passes, therefore, in order to hydrolyze the build-up urea, more NBPT may be 205 

required [44]. Previous research has shown that high temperature affects the inhibiting ability of NBPT; Pereira 206 

et al. [45] reported that at a temperature of 20 °C, NBPT was inhibited in a short time.  207 

 208 

4.2. Nitrification Inhibitors 209 

Nitrification inhibitors are chemical compounds that delay the bacterial oxidation of NH4
+ to NO2

- in the soil, 210 

called nitrification. Nitrification inhibitors work by slowing down nitrifying bacteria that produce ammonia 211 

monooxygenase, hydroxylamine oxidoreductase, and nitric oxide reductase [37]. Delays in nitrification result in 212 

less NO3
- formation, which is considered to be the source of nitrogen losses through leaching and denitrification 213 

(N2O); therefore, the use of nitrification inhibitors not only reduces environmental problems but also increases 214 

the efficiency of nitrogen-based fertilizer. Several studies also demonstrated that CH4 emissions could be reduced 215 

as a side effect of nitrification inhibitor application (Table 1). 216 

Some examples of nitrification inhibitors are dicyandiamide (DCD), 3-4, dimethylpyrazole phosphate (DMPP), 217 

nitrapyrin, and thiosulfate. Thiosulfate may delay urea hydrolysis for up to 4 days and retard the conversion of 218 

NO2-N to NO3-N, thus resulting in a substantial amount of NO2-N in the soil. However, to achieve a significant 219 

reduction in N2O, high concentrations need to be applied, making it inefficient in reducing N2O emissions. 220 

Nitrapyrin is widely used in the United States. It has been shown to reduce GHG emissions by 30%–50% [46]. It 221 

can also be retained in water for 7 to 10 days, whereas in soil it remains for 3 to 35 days [47], which implies that 222 

it can inhibit GHG emission production over an extended period. Even so, the use of nitrapyrin should be limited 223 

because of its low water solubility, and the results of nitrapyrin application differ depending on environmental 224 

conditions. Nitrapyrin is categorized as a moderate oral toxin and moderate dermal irritant [47]. 225 
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There are conflicting results regarding the influence of nitrification inhibitors on CH4 emissions. Bronson and 226 

Mosier [48] and Crill et al. [49] reported that nitrification inhibitors may increase CH4 emissions, whereas Weiske 227 

et al. [50] reported that the addition of DCD either reduced the emissions or had no effect on CH4 emissions. 228 

Another study by Villarrasa-Nogué [51] showed that the application of DMPP tended to reduce CH4 oxidation, 229 

resulting in high CH4 emissions. 230 

  231 

4.2.1. Dicyandiamide 232 

The breakdown of DCD results in NH3, NO3, H2O, and CO2, which may also contribute to increased N availability 233 

for microbial growth, as indicated by augmented CO2 [52]. The kinetics of DCD degradation are highly influenced 234 

by temperature [52]. Minet et al. [53] found that DCD was still active after 6-month post application. Moreover, 235 

DCD did not affect the composition of the slurry during the period and cumulative N2O -N emissions from DCD 236 

treatment was 88% lower than without DCD, which implies that DCD effectively reduced N2O emission. 237 

The stability of the DCD (during the 6-month period) indicates that DCD does not degrade when the slurry is 238 

stored under anaerobic conditions. Mixing stored slurry with DCD could be a means to mitigate N2O emissions 239 

at high-risk times such as in autumn, winter, and early spring, where N2O emissions could be at their highest. 240 

DCD addition to slurry could be highly preferred, cost-effective, and efficient for widespread adoption of N2O 241 

mitigation using nitrification inhibitors by the agricultural sector [54]. 242 

DCD was more effective in reducing N2O emissions and NO3
- leaching from urine depositions during autumn 243 

than during summer or spring [55]. DCD in solid form is suggested to be applied at rates of 0.44% to 0.88% of 244 

the dry matter of composting piles (swine slurry with sawdust) with reapplication within 15 to 23 days to prevent 245 

later N2O emissions as DCD concentrations decrease during the composting process [52]. The application of DCD 246 

with urine in both autumn and winter was effective in reducing the peak N2O fluxes and the total amount of N2O 247 

from urine application [56]. Increased DCD application rates would be required to sustain DCD concentrations in 248 

the surface soil above the critical level for extended periods in order to achieve a significant reduction in N2O 249 

emissions from urine patches [56]. Application of DCD through mixing with animal urine prolonged the presence 250 

of NH4
+ in the soil by approximately 3 to 6 weeks, which led to a reduction in the concentration of NO3

--N by 251 

approximately 70%–85% [56]. 252 

Theoretically, inhibiting nitrification with DCD might also inhibit CH4 oxidation to CO2; however, the result from 253 

Minet et al. [53] showed that DCD application to slurry displayed lower CH4 cumulative net flux than slurry 254 



ACCETED

12 

 

without DCD application. The application of NBPT, phosphoroamide (PPD), and DMPP together with pig manure 255 

resulted in significantly reduced cumulative CH4 emissions, because the addition of inhibitors further influenced 256 

the existing forms of nitrogen, which is beneficial to the growth of methanotrophic organisms and results in 257 

increased CH4 oxidation [57]. Anaerobic conditions may prolong DCD persistence, and although the reasons for 258 

this are unclear, DCD degradation is unlikely to occur under anaerobic conditions [53]. 259 

 260 

4.2.2. 3-4 Dimethylpyrazole Phosphate 261 

The DMPP with non-split application resulted in a more efficient reduction of N2O losses than split application 262 

[58]. The DMPP treatment seemed to stimulate CH4 oxidation more than DCD treatment because the soil clearly 263 

acted as a CH4 sink rather than as a source [50]. Significant reduction due to inhibition of nitrification may take 264 

more than a week after DMPP addition [59]. DMPP could increase soil N retention, improve plant N use efficiency, 265 

and potentially stimulate the shoot yield of tea trees [59]. Although data related to DMPP are limited, DMPP has 266 

potential as an alternative nitrification inhibitor. 267 

The application of DMPP was found to be more efficient than that of DCD. Compared to DCD, DMPP applied at 268 

very low rates (one-third application rate) resulted in comparable or improved inhibitory effects on N2O emission 269 

[60]. DMPP decreased the amount of N2O released on average by 49%, whereas DCD reduced N2O emissions by 270 

only 26%, although DMPP was applied at rates ca. 10 times lower than that of DCD [50]. At high N doses, 271 

mitigation of DMPP was not observed, possibly because nitrogen has a priming effect that if microbial activity 272 

increases sufficiently, the surplus N threshold is reached above which the effectiveness of DMPP application is 273 

lost [51]. 274 

 275 

4.3. Toxicity and Safety Concerns 276 

4.3.1. Toxicity in Plants 277 

DMPP is safe and without any phytotoxic damage. A study conducted by Zerulla et al. [61] revealed that an 278 

overdose of DMPP (8 times higher than the recommended application rate) did not cause any symptoms, while 279 

pronounced symptoms were found in the plant with overdose application of DCD. Tindaon et al. [62] concluded 280 

that the use of DCD and DMPP is environmentally compatible and safe. In addition, the recommended application 281 

rate of DCD is 10 kg DCD per ha per application and that for DMPP is 1.84 kg active ingredient/mg urea or 0.71 282 
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microgram DMPP/kg soil [62]. Both DCD and DMPP may affect non-target microbial soil only at high 283 

concentrations.  284 

 285 

4.3.2. Residues in Agricultural and Animal Products 286 

Despite the fact of benefits associated with the use of urease and nitrification inhibitors, safety related to their 287 

residues in agriculture and animal products is debatable. In 2013, food safety concerns were raised regarding the 288 

use of DCD, which appeared as a residual contaminant in dairy products (Table 2) [37]. The MPI [63] reported 289 

that low-level residues of DCD were found in milk powder; however, there were no other reports on residues in 290 

other animal products. A study demonstrated that administration of DCD to dairy cows at 3 or 30 g DCD/cow/day 291 

was predominantly recovered in urine (61%–82%), feces (10%–19%), and milk (1.2%) [64]. This may be because 292 

of the residence time of DCD in plants. The residence time of DCD in plants was long in tall plants and under low 293 

rainfall conditions; therefore, the consideration in plant height and rainfall should be taken when selecting DCD 294 

application time to maximize the effectiveness of DCD [65]. Thus, contamination of animal products with DCD 295 

may be avoided when the animal eats the grass after DCD is fully degraded. Cai et al. [55] recommends to apply 296 

inhibitors before urine excretion. This method would be more efficient than other application method, i.e. at other 297 

timing. 298 

In contrast, the NBPT is safe and has no influence on animal products (Table 2). A study conducted by Van De 299 

Ligt et al. [66] showed that there was no residue found in milk and bovine tissue from dairy cows fed with 1, 3, 300 

and 10 mg/kg body weight NBPT. The dose of NBPT was assumed from the maximum tolerable amount of urea 301 

(approximately 1 g/kg body weight) that a cow can consume on a daily basis and the maximum concentration of 302 

commercial NBPT for urea (0.1 % w/w NBPT in urea) [67]. 303 

 304 

4.3.3. Hazards to Animal and Human Health 305 

Urease and nitrification inhibitors are not considered harmful, either to animals or humans; however, several 306 

precautions are needed when handling the substance owing to its possible hazard risk (Table 2). A study by Van 307 

De Ligt et al. [66] concluded that a high dose of NBPT fed to dairy cattle did not result in any harm. The possibility 308 

of urea toxicity to occur is rare, despite the fact that consuming NBPT in high level causes urea toxicity [36].  309 

In 2006, NICNAS [67] reported that two workers became ill after handing NBPT with the trade name 310 

AGROTAIN®  with the following symptoms: nausea and nose bleed. The following investigation revealed that 311 
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there was no mechanical exhaust in the room during installation and calibration of AGROTAIN® -urea spray 312 

application system. Although the workers were wearing respirators with the recommended cartridge, they reported 313 

that after several hours of work, they could smell the product. The work was continued, and the same cartridges 314 

were used for two and half days. The ensuing investigation revealed that because of the saturated cartridges, the 315 

respirator failed to perform. No exposures were reported by the employees, and no symptoms were reported by 316 

the production workers. Following the event, the company amended the current product label to read “Apply 317 

product with coarse spray only. Do not atomize.” 318 

The ECHA [68] lists DCD under the name cyanoguanidine. According to ECHA [66], DCD is relatively low-319 

hazardous for short-term or long-term exposure. However, caution is needed because it is an eye irritant. DMPP 320 

is non-hazardous, but it is considered to be low-hazardous if swallowed (oral exposure) and an eye irritant. 321 

Therefore, increased caution is needed. However, even though NBPT is low-hazardous, it is considered safe to 322 

use.  323 

The DCD has a log octanol-water partition coefficient of -1 and is highly water soluble; therefore, it is unlikely 324 

to be taken up by fish gills or across other biological membranes [68]. However, DCD is not regarded as readily 325 

biodegradable in water; thus, the accumulation of DCD may occur, which may harm aquatic life. Information on 326 

bioaccumulation in aquatic environments or sediments is unavailable; thus, further research is needed to meet 327 

these criteria. NBPT is not considered to have a low potential for bioaccumulation [68]. 328 

 329 

4.4. Potential Use of Inhibitors in the Livestock Sector 330 

The global population is estimated to increase to 9 billion people by 2050, and to ensure global food security, 331 

global agricultural production is expected to increase by approximately 100% [69,70]. Chemical fertilizers and 332 

organic manure are often applied in exceeding amount, leading to nitrogen loss, accounting for approximately 55% 333 

of the total applied N [71]. A significant amount of nitrogen loss not only has major consequences on human and 334 

environmental health, but also a significant economic loss for farmers. 335 

The use of enhanced efficiency fertilizers prepared with coatings of low-permeability materials with an inhibitor 336 

attached as an additive may be used to reduce nitrogen loss and increase N uptake by plant and soil microbial 337 

populations [71]. Several studies have shown that with the addition of urease or nitrification inhibitors, plant yield 338 

is increased more than that without the use of such inhibitors. Adding DMPP at a rate of 120 kg/N resulted in a 339 

7% increase in rice yield [72] and a 13% increase in wheat yield [73]. Other studies have shown that the addition 340 
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of NBPT increased rice yield by approximately 1%–3% [74] and increased wheat yield by as much as 1%[75]. 341 

The addition of DCD also increased yield. Kakabouki et al. [76] concluded that cotton yield increased by 342 

approximately 364 kg/ha or 8% more than that without DCD. The addition of inhibitors is not only a feasible 343 

mitigation option, but also economically beneficial if applied correctly. Laboski [77] showed that when N is 344 

relatively inexpensive, if a 20% nitrogen loss occurs, the return would be maximized with additional N application; 345 

however, in a situation where N is expensive, adding NBPT (AGROTAIN®) is more likely to be profitable. 346 

Modern agricultural practices have been well documented to impart negative impacts on human health as well as 347 

on farms, and the practice of irrational and excessive use of chemical fertilizers and pesticides has inspired the 348 

search for alternatives [78]. The use of manure as fertilizer has become increasingly common in the past few years, 349 

and is known to be environment-friendly because the application of manure as fertilizer can improve soil 350 

composition. Manure plays an important role in regulating plant growth, potential nutrient input, and microbial 351 

decomposition activity. This role can largely mediate the soil nutrient and soil micro-environment, which have a 352 

strong influence on crop growth. In addition, manure could also result in increased microbial biomass and changes 353 

in community structure, which provide an improved environment for crop growth [79]. Hua et al. [80] revealed 354 

that the application of manure resulted in considerable beneficial income, both in terms of yield and N uptake. 355 

This is owing to the increase in nutrient and organic matter availability in the soil as a result of manure as a nutrient 356 

source. Moreover, with long-term applications, the use of organic fertilizer can maintain nutrient balance and soil 357 

physical properties. In tomato plants, the addition of poultry manure significantly influenced tomato stem girth 358 

and the mean weight of the fruit [81]. Long term application of dairy manure (> 5 years) to soil resulted in 359 

significant increases in C, N, and microbial biomass, and changes in the microbial community structure. Practices 360 

that enhance soil carbon and provide slowly mineralizable nutrients may result in a larger and potentially more 361 

robust microbial community.  362 

A laboratory study conducted by Varel [82] implied that the addition of urease inhibitor in cattle and swine waste 363 

was very effective in inhibiting urease activity. The addition of phenyl phosphorodiamidate (PPDA) prevented up 364 

to 70% urea hydrolysis in cattle waste and up to 92% in swine waste [82]. Prolonged inhibition can be obtained 365 

by the weekly addition of inhibitors [82]. This result was validated in a field study indicating that NBPT can be 366 

successfully used to inhibit urease activity in cattle feedlot manure [83], especially because the results obtained 367 

in the study with the open environment of the feedlot surface were encouraging. The open environment is more 368 

difficult to control due to exposed weather elements than other manure-handling systems, such as enclosed 369 
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environments (pits with slotted floors). For instance, NBPT application to pit slurry is less complicated than 370 

application to a feedlot [83]. Application of NBPT causes urea build-up of urea in manure [83]. 371 

Dairy cows fed with DCD resulted in media concentrations of DCD in urine patches and were found to 372 

significantly reduce NO3-N leaching and N2O emissions by ±45% [56]. Slurry in mixture with DCD in long period 373 

of storage weaken the methanogens yet strengthen the methanothrophs [53]. Several manure treatment practices 374 

tend to produce more N2O while reducing CH4, in particular, treatment that includes air infusion, such as aerobic 375 

digestion or composting. N2O emission mitigation by nitrification inhibitors can only be effective when the 376 

nitrification activity is essential, and the control of N2O is in favor of emissions [84]. The addition of nitrification 377 

inhibitors to several manure treatment practices may be useful to reduce N2O emissions and reduce CH4 emissions 378 

as a manure treatment function. 379 

 380 

5. Conclusions 381 

The use of urease and nitrification inhibitors has been recognized as a mitigation tool to reduce nitrogen loss in 382 

agricultural soils. The application of inhibitors in agricultural soils decreases NH3, N2O, and CH4 as a side effect; 383 

and yet, increases plant yield and nitrogen use efficiency. Although several concerns related to health and toxicity, 384 

either to humans, animals, or the environment, have been raised, both inhibitors have potential for long-term 385 

mitigation. However, further studies are required to confirm the safety of these inhibitors. Sufficient number of 386 

studies are lacking to understand the mechanisms of inhibitor application to livestock manure. In contrast, the use 387 

of livestock manure as fertilizer has been shown to be as effective as chemical fertilizers; moreover, such 388 

application is also known to improve soil composition and properties. However, manure application may 389 

accelerate NH3 volatilization and, as a result, promote N2O emissions. Several studies have also shown a positive 390 

effect of the application of inhibitors to manure on reducing emissions from livestock. Therefore, the use of 391 

inhibitors is likely to be effective and is considered to be an alternative mitigation method to reduce emissions 392 

from the livestock industry, either as an additive in organic fertilizer from manure or as an additive to manure 393 

treatment. 394 
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Table 1. Application of nitrification and urease inhibitors in previous studies 

 

 

 

 

 

  

 

 

 

 

 

 

 

NBPT, N-(n-butyl) thiophosphoric triamide; DCD, dicyandiamide; DMPP, 3-4 dimethylpyrazole phosphate 

  

Inhibitor Type Target Fertilizer Form 
Reduction Effect (%) 

Application Rate 

(g/kg N) 
Application 

Frequency 
References 

NH3 CH4 N2O Min Max 

Urease 

Inhibitor 
NBPT 

Land Urea 50-78 X X 0.54 3.04 Once 
[42], [85], [86], [43], 

[87] 

Land Cow urine 48 X X 1.00 10.00 Once [45] 

Nitrification 

Inhibitor 

DCD 

Land Cow urine X X 45-80 3.92 85.71 Once [56], [88], [89] 

Land Cow slurry X X 47-88 21.02 99.55 Once [90], [54] 

Land Swine slurry X X 70 71.43 76.92 Once [91] 

Land 
Urea 

X 12 55.8 - 217.39 Monthly [92], [93] 

Land X X 35 - 13.95 Monthly [60] 

DMPP 

Land Urea X X 30-49 - 21.74 Once [51] 

Land Urea X X 38 - 4.65 3 times/year [60] 

Land Ammonium Sulfate X X 48.9-74.9 4.29 17.14 Monthly [94] 
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Table 2. Hazards and ecotoxicology of nitrification and urease inhibitors 

Type of Inhibitor Hazard Risk Ecotoxicology Residues in Animal Products 

Urease 

Inhibitor 
NBPT 

a. Causes serious eye damage[95] Low acute in aquatic 

and terrestrial[95] 

No residues were found on milk and 

bovine tissue from dairy cow[65] b. Suspected of damaging fertility or the unborn child[95] 

Nitrification 

Inhibitor 

DCD Low hazard potential[67] Low toxicity[67] 

Minute residues in milk was found 

in 2013 in New Zealand[62] 

Administration of DCD to dairy cow 

at 3 or 30 g/cow/day was 1.2% 

recovered in milk[63] 

DMPP 

a. Harmful if swallowed[94] a. No hazards 

identified for air[94]  

b. No potential for 

bioaccumulation 

for predators[94] 

Not available 

b. Causes serious eye irritation[94] 

c. Suspected of damaging fertility or the unborn child[94] 

d. May cause damage to organs through prolonged or repeated exposure[94] 

Source:[68], [66], [64], [63], [95], [96] 

NBPT, N-(n-butyl) thiophosphoric triamide; DCD, dicyandiamide; DMPP, 3-4 dimethylpyrazole phosphate
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