JAST (Journal of Animal Science and Technology) TITLE PAGE

Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Intestinal segment and vitamin D ₃ concentration affect gene expression levels of calcium and phosphorus transporters in broiler chickens
Running Title (within 10 words)	Vitamin D ₃ affects calcium and phosphorus transporter gene expression
Author	Jincheng Han ^{1,2*} , Lihua Wu ^{1,2,3} , Xianliang Lv ^{1,2,3} , Mengyuan Liu ^{1,2,3} , Yan Zhang ^{1,2,3} , Lei He ^{1,2,4} , Junfang Hao ^{1,2} , Li Xi ^{1,2*} , Hongxia Qu ^{1,2} , Chuanxin Shi ^{1,2} , Zhiqiang Li ^{1,2} , Zhixiang Wang ³ , Fei Tang ⁵ and Yingying Qiao ⁶
Affiliation	 Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China Henan Engineering Research Center of Green Feed Additive Development and Application, Shangqiu 476000, China College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450001, China College of Life Sciences, Henan Normal University, Xinxiang 453007, China Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China Faculty of Biology and Technology, Sumy National Agrarian University, Sumy 19500, Ukraine
ORCID (for more information, please visit https://orcid.org)	Jincheng Han, https://orcid.org/0000-0003-0461-2103 Lihua Wu, https://orcid.org/0000-0003-4408-3330 Xianliang Lv, https://orcid.org/0000-0003-4679-8188 Mengyuan Liu, https://orcid.org/0000-0001-7487-2897 Yan Zhang, https://orcid.org/0000-0003-3436-6740 Lei He, https://orcid.org/0000-0001-5313-7607 Junfang Hao, https://orcid.org/0000-0002-2038-5839 Li Xi, https://orcid.org/0000-0003-3639-1907 Hongxia Qu, https://orcid.org/0000-0003-2964-7898 Chuanxin Shi, https://orcid.org/0000-0002-1750-0103 Zhiqiang Li, https://orcid.org/0000-0002-1719-3502 Zhixiang Wang, https://orcid.org/0000-0002-0176-7604 Fei Tang, https://orcid.org/0000-0002-0176-7604 Yingying Qiao, https://orcid.org/0000-0002-0090-6430
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	This work was supported by the National Natural Science Foundation of China (32072753).
Acknowledgements	Not applicable.
Availability of data and material	Upon reasonable request, the datasets of this study can be available from the corresponding author.
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Han J, Wu L, Lv X, Xi L, Wang Z. Data curation: Wu L, Lv X, Liu M, Zhang Y, He L, Hao J, Qu H. Formal analysis: Han J, Wu L, Shi C, Tang F. Methodology: Wu L, Lv X, Liu M, Zhang Y, He L. Software: Han J, Wu L, Li Z, Qiao Y. Validation: Han J, Wu L, Lv X, Liu M, Zhang Y, He L. Writing - original draft: Han J, Wu L, Xi L. Writing - review & editing: Han J, Wu L, Lv X, Liu M, Zhang Y, He L, Hao J, Xi L, Qu H, Shi C, Li Z, Wang Z, Tang F, Qiao Y.
Ethics approval and consent to participate	This study was conducted according to the guidelines of the experimental procedures and approved by the Animal Ethics Committee of Shangqiu Normal University (2020-1012).

5 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Jincheng Han, Li Xi
Email address – this is where your proofs will be sent	j.c.han@hotmail.com, xili_0808@163.com
Secondary Email address	
Address	Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
Cell phone number	
Office phone number	086-0370-2582849
Fax number	

Abstract

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Two experiments were conducted in this research. Experiment 1 investigated the spatial expression characteristics of calcium (Ca) and phosphorus (P) transporters in the duodenum, jejunum, and ileum of 21-day-old broilers provided with adequate nutrient feed. Experiment 2 evaluated the effects of dietary vitamin D₃ (VD₃) concentration (0, 125, 250, 500, 1000, and 2000 IU/kg) on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1-21-day-old broilers provided with the negative control diet without supplemental VD₃. Results in experiment 1 showed that the mRNA levels of calcium-binding protein 28-kDa (CaBP-D28k), sodium-calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1b (PMCA1b), and IIb sodium-phosphate cotransporter (NaPi-IIb) were the highest in the broiler duodenum. By contrast, the mRNA levels of inorganic phosphate transporter 1 (PiT-1) and 2 (PiT-2) were the highest in the ileum. Results in experiment 2 showed that adding 125 IU/kg VD₃ increased body weight gain (BWG), feed intake (FI), bone weight, and percentage and weight of Ca and P in the tibia and femur of 1-21-day-old broilers compared with the negative control diet (p < 0.05). The rise in dietary VD₃ levels from 125 to 1000 IU/kg further increased the BWG, FI, and weights of the bone, ash, Ca, and P (p < 0.05). No difference in growth rate and leg bone quality was noted in the broilers provided with 1000 and 2000 IU/kg VD₃ (p > 0.05). Supplementation with 125-2000 IU/kg VD₃ increased the mRNA abundances of intestinal Ca and P transporters to varying degrees. The mRNA level of CaBP-D28k increased by 536, 1161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1000 IU/kg VD₃. The mRNA levels of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57-1.74 folds by adding 1000-2000 IU/kg VD₃. These data suggest that intestinal Ca and P transporters are mainly expressed in the duodenum of broilers. Moreover, the addition of VD₃ stimulates the two mineral transporter transcription in broiler intestines.

30

31

Keywords: Vitamin D₃, Broiler chicken, CaBP-D28k, PMCA1b, NaPi-IIb, PiT-1

INTRODUCTION

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Vitamin D₃ (cholecalciferol, VD₃) is a nutrient for animal growth, health, and bone development. Its deficiency damages bone quality, while the addition of VD3 improves growth performance and blood calcium (Ca) and phosphorus (P) homeostasis in broiler chickens [1]. The VD₃ requirement of 1–21-dayold broiler chickens estimated by NRC (1994) is 200 IU/kg [2]. The recommended dietary VD₃ level for broilers in China is 1000 IU/kg [3]. Research has shown that 1000–2000 IU/kg VD₃ is needed to support the growth performance and leg bone mineralization of broilers [4]. Thus, the requirement of modern broilers for VD₃ may be higher than that recommended by NRC (1994) [2]. The primary function of VD₃ is to regulate the absorption of Ca and P in animal intestines. Ca and P are the two mineral elements that are added most in feed and needed most in animal body. Research in mammals has shown that the response of intestinal Ca and P absorption of rats to vitamin D correlates with the gene expression of Ca and P transporters [5,6]. Calcium is absorbed through active transcellular transport and passive transport in animal enterocytes [7]. The transcellular transport of Ca involves three procedures: Ca enters intestinal cells, moves to the basolateral membrane, and extrudes into the blood [7]. The first procedure is intestinal Ca transport, which relies on transient receptor potential channels (TRPV6 and TRPV5) [7]. The second procedure is the movement of Ca in the cytoplasm, which depends on two Ca-binding proteins (i.e., CaBP-D28k and CaBP-D9k) [8]. The final procedure is the extrusion of Ca, which is performed through sodium-calcium exchanger 1 (NCX1) and plasma membrane calcium ATPase 1b (PMCA1b) [8]. CaBP-D28k and CaBP-D9k exist in the intestines of poultry and mammals, respectively. Intestinal TRPV6, CaBP-D28k, and PMCA1b have been cloned in laying hens [9,10]. There is no report of TRPV6 in broilers [11]. Phosphate transport from the brush border membrane of intestinal enterocytes into the cytoplasm is an active absorption process. Three P transporters, namely, IIb sodium-phosphate cotransporter (NaPi-IIb), inorganic P transporter 1 (PiT-1), and inorganic P transporter 2 (PiT-2), are involved in active P absorption in animal intestines [8]. The mRNA abundances of NaPi-IIb, PiT-1, and PiT-2 have been detected in the apical membrane of rat intestinal cells [12,13]. NaPi-IIb undertakes the majority of P absorption in mouse intestines, whereas, PiT-1 and PiT-2 assume a minor function in total P uptake [14]. These three P transporters have been cloned in broiler intestines [15].

transporters. The capacity of P absorption and gene expression abundance of NaPi-IIb in the duodenum are higher than those in the jejunum and ileum of broiler chicks [16]. The difference in protein abundance of duodenal, jejunal, and ileal CaBP-D28k has been noted in laying hens [17]. By contrast, the spatial expression characteristics of CaBP-D28k, PMCA1b, NCX1, PiT-1, and PiT-2 in the three intestinal segments of broilers have not been reported.

The injection of 1,25-dihydroxycholecalciferol (1,25-(OH)₂-D₃) increases blood Ca and P concentrations and improves Ca and P absorption by upregulating the protein expression of CaBP-D9k and the mRNA abundance of NaPi-IIb in rat intestines [6,18]. Meanwhile, the relationship between dietary VD₃ dosage and the expression of Ca and P transporter genes in broiler intestines has not been clarified.

Thus, two experiments were conducted in this research. First, the differences in gene expression levels of Ca and P transporters in the duodenum, jejunum, and ileum were explored. Second, the response of the mRNA abundances of intestinal Ca and P transporters to dietary VD₃ concentrations in broiler chickens was examined.

MATERIALS AND METHODS

The animal experiment procedures in this research were implemented in accordance with the guidelines of the Animal Ethics Committee of Shangqiu Normal University (2020-1012).

Animals, Diets, and Management

Experiment 1

Experiment 1 investigated the spatial expression characteristics of Ca and P transporters in the duodenum, jejunum, and ileum of 21-day-old broilers. One-day-old Arbor Acres broiler chickens (70, male) were grouped into five repetitions of 14 broilers per repetition. Broilers were provided with an adequate nutrient diet (Table 1)[3]. On day 21, total 10 broilers (2 chicks per repetition) were randomly selected and euthanized by cervical dislocation. The duodenum (after the gizzard), jejunum (proximal to Meckel's diverticulum), and ileum (proximal to the ileocecal junction) were isolated. Intestinal mucosal samples from the three segments were scraped with a glass slide, collected in a centrifuge tube, immediately put into liquid nitrogen, and stored in –80 °C refrigerator.

Experiment 2

Experiment 2 evaluated the effects of dietary vitamin D₃ concentration on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1–21-day-old broilers. One-day-old Arbor Acres broiler chickens (420, male) were randomly grouped into six treatments. Each treatment contained five repetitions with 14 broilers per repetition. Dietary VD₃ levels were 0, 125, 250, 500, 1000, and 2000 IU/kg. The negative control diet contained 10.0 g/kg Ca and 4.5 g/kg non-phytate P and did not contain supplemental VD₃ (Table 1) [2].

The VD_3 crystal was supplied by Tianhecheng Biological Technology Co., Ltd. (Jiaxing, Zhejiang, China). The VD_3 solution was prepared in accordance with previous research [19]. After weighing, the crystalline VD_3 was dissolved in ethanol. Propylene glycol was used to dilute the VD_3 solution. The concentration of the VD_3 solution was 45.3 μ g/mL (1812 IU/mL) as measured by high-performance liquid chromatography. The VD_3 solution was supplemented in broiler chicken feed with a pipette.

The broilers were housed in pens (width 140 cm, depth 70 cm, and height 35 cm). The broilers were fed with mash feed *ad libitum* and provided with 23 h of lighting on days 1–3 and 18 h of lighting on days 4–21. The temperature of the room was kept at 32 °C on days 1–3, 30 °C on days 4–7, and 28 °C on days 8–21.

Sample collection

The broilers were weighed by pen at 1 and 21 days of age. The feed intake (FI) per day of the broilers was weighed. The total FI was calculated from 1 to 21 days of age. Body weight gain (BWG) was the difference between the body weight (BW) of the broilers at 21 and 1 day of age. Feed conversion ratio (FCR) was the ratio of the FI to the BWG. The dead broilers during the experiment were weighed and recorded. On day 21, 10 broilers per treatment (2 broilers per repetition) were chosen and euthanized by cervical dislocation. The small intestine was exposed after the broilers were euthanized. Intestinal mucosal samples from the duodenum (after the gizzard), jejunum (proximal to Meckel's diverticulum), and ileum (proximal to the ileocecal junction) were scraped with a glass slide and collected in a centrifuge tube. Then, the mucosal samples were immediately put into liquid nitrogen and stored in – 80 °C refrigerator.

length were measured after the bone was dried at 105 °C for 24 h. The ash weights of the tibia and femur

The two leg bones (tibia and femur) were removed, stored, and pre-treated [20]. Bone weight and

were measured after the samples were ashing in a muffle furnace (Selecta, Barcelona, Spain) at 650 °C for 48 h. Bone ash, Ca, and P percentages are the ratios of their weight to the bone weight. The Ca contents in the diet and leg bones were analyzed by the AOAC method [21]. Total P contents were measured using the photometric method [22].

RNA extraction and real-time PCR

- Total RNA extraction from the intestinal mucosal samples was implemented by RNAiso Plus Kit on the basis of the recommendation of the manufacturer (Takara Biotechnology Co., Ltd., Dalian, Liaoning, China). RNA concentration was analyzed by spectrophotometry.
- The cDNA was reverse-transcribed from RNA using PrimeScriptTM RT Reagent Kit based on the instructions of the manufacturer (Takara Biotechnology Co., Ltd., Dalian, Liaoning, China).

Real-time PCR analysis was conducted for the Ca and P transporter gene expression (i.e., CaBP-D28k, PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the reference gene. PCR primers (Table 2) were synthesized in Shanghai Sangon Biotech Co., Ltd. Gene expression was performed using the TB GreenTM Premix EX TaqTM II Kit (Takara Biotechnology Co., Ltd., Dalian, Liaoning, China) and the Roche Lightcycler® 480 Real-time PCR System (Risch, Switzerland). The PCR products were verified by melting curve analysis based on the following conditions: 95 °C for 60 s, 40 cycles of 95 °C for 10 s, 60 °C for 30 s, and 72 °C for 30 s. The mRNA abundances of the target genes relative to that of the GAPDH gene were calculated by the 2^{-ΔΔCt} method [23]. The average ΔCt value from the negative control diet was used as the calibrator of each gene.

Statistical analysis

Repetition pens were used as experimental units. Data analysis was conducted by one-way ANOVA in SAS 9.0 software [24]. Orthogonal polynomials contrast analysis was used to evaluate the linear and quadratic effects of dietary VD_3 concentration on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters. Figures were produced with GraphPad Prism software. Means were compared by Tukey's test. The significance level was set at P < 0.05.

RESULTS

152	Experiment 1
153	The highest mRNA abundances of the three Ca transporters (CaBP-D28k, PMCA1b, and NCX1) were
154	expressed in the broiler duodenum (Figures 1a, 1b, and 1c). For P transporters, the mRNA abundance of
155	NaPi-IIb in the duodenum was higher than those in the two other intestinal segments ($p < 0.05$, Figure
156	1d). By contrast, the mRNA abundances of PiT-1 and PiT-2 were the lowest in the duodenum and highest
157	in the ileum (Figure 1e and 1f).
158	
159	Experiment 2
160	Growth performance
161	The addition of VD ₃ increased the growth rate of 1–21-day-old broilers (Table 3). The broilers provided
162	with 125 IU/kg VD ₃ had higher BW, BWG, and FI, and lower FCR than those supplied with the negative
163	control diet (p < 0.05). Increasing the VD ₃ level from 125 to 1000 IU/kg enhanced the BWG and FI (p <
164	0.05). No difference was detected in the BWG, FI, and FCR of the broilers provided with 1000 and 2000
165	IU/kg VD ₃ ($p > 0.05$). Dietary VD ₃ levels did not affect the mortality of broilers ($p > 0.05$).
166	
167	Bone development
168	Dietary VD ₃ improved leg bone (tibia and femur) quality in 1–21-day-old broilers (Tables 4 and 5). The
169	addition of 125 IU/kg VD ₃ increased the weight, length, and percentage and weight of Ca and P in the
170	two leg bones ($p < 0.05$). The rise in dietary VD ₃ levels from 125 to 1000 IU/kg increased the weights
171	of the ash, Ca, and P ($p < 0.05$), but it did not influence their contents ($p > 0.05$). No difference in the
172	weight, length, and percentage and weight of ash, Ca, and P of the tibia and femur was noted in the
173	broilers provided with 1000 and 2000 IU/kg VD_3 ($p > 0.05$).
174	
175	Gene expression levels of intestinal Ca and P transporters
176	The primary function of CaBP-D28k is to transfer Ca in intestinal cells. Compared with the negative
177	control feed, supplementation with 125 IU/kg VD ₃ increased the mRNA abundance of intestinal CaBP-
178	D28k in broilers ($p < 0.05$, Figures 2a, 3a, and 4a). Increasing the VD ₃ level from 125 to 1000 IU/kg

enhanced the mRNA abundances of jejunal and ileal CaBP-D28k (p < 0.05). The mRNA levels of

duodenal, jejunal, and ileal CaBP-D28k increased by 536, 1161, and 28 folds, respectively, after adding

179

182	between the broilers fed with 1000 and 2000 IU/kg VD_3 ($p > 0.05$).
183	PMCA1b is responsible for Ca extrusion. Dietary VD ₃ levels upregulated the mRNA abundances
184	of duodenal and jejunal PMCA1b ($p < 0.05$, Figures 2b and 3b). The mRNA abundances of PMCA1b in
185	the duodenum of broilers supplied with 250–1000 IU/kg VD ₃ and that in the jejunum of broilers supplied
186	with 500 IU/kg VD ₃ were higher than those in broilers provided with the negative control feed ($p < 0.05$).
187	Dietary VD_3 did not influence the mRNA abundance of ileal PMCA1b ($p > 0.05$, Figure 4b).
188	NCX1 is a sodium and Ca exchanger. The broilers fed with 1000 IU/kg VD ₃ had higher mRNA
189	abundances of duodenal and jejunal NCX1 than those supplied with the negative control feed ($p < 0.05$,
190	Figures 2c and 3c). Dietary VD_3 levels did not affect the mRNA abundance of ileal NCX1 ($p > 0.05$,
191	Figure 4c).
192	NaPi-IIb is the main P transporter. Dietary VD ₃ enhanced the mRNA abundances of intestinal NaPi-
193	IIb $(p < 0.05, \text{Figure 2d}, 3d, \text{ and 4d})$. The mRNA abundance of NaPi-IIb was the highest in the duodenum
194	of the broilers fed with 250 IU/kg VD ₃ , in the jejunum of the broilers provided with 125 IU/kg VD ₃ , and
195	in the ileum of the broilers supplied with 500 IU/kg VD_3 ($p < 0.05$).
196	PiT-1 is inorganic phosphate transporter 1. VD ₃ regulated the mRNA abundances of PiT-1 in the
197	duodenum and jejunum ($p < 0.05$, Figures 2e and 3e). The mRNA abundance of duodenal PiT-1 was
198	enhanced after the addition of 250–1000 IU/kg VD_3 ($p < 0.05$), and that of jejunal PiT-1 was increased
199	by 1000 IU/kg VD_3 ($p < 0.05$). On the contrary, the mRNA abundance of ileal PiT-1 was not affected by
200	dietary VD_3 ($p > 0.05$, Figure 4e).
201	The function of PiT-2 is similar to that of PiT-1. The mRNA abundances of duodenal and ileal PiT-
202	2 were enhanced by VD_3 ($p < 0.05$, Figures 2f and 4f). The mRNA abundance of PiT-2 was higher in the
203	duodenum of the broilers fed with 250-500 IU/kg VD ₃ and in the ileum of the broilers supplied with
204	1000–2000 IU/kg VD ₃ than those of the broilers provided with the negative control feed ($p < 0.05$). The
205	mRNA abundance of jejunal PiT-2 was not affected by VD_3 ($p > 0.05$, Figure 3f).
206	
207	DISCUSSION
208	Experiment 1

1000 IU/kg VD₃. No differences in the mRNA abundances of jenunal and ileal CaBP-D28k were detected

181

209

210

9

mRNA and protein abundances of duodenal CaBP-D28k and PMCA1b are higher than those in the two

The duodenum is the first segment of the small intestine, followed by the jejunum and ileum. The

other segments in laying hens [10,17,25]. Our results were consistent with those of previous reports. The highest mRNA abundances of CaBP-D28k, PMCA1b, and NCX1 were noted in the duodenum of broilers in this research. Thus, the Ca transporters are mainly expressed in poultry duodenum. These data suggest that the capacity of active Ca absorption declines from the duodenum to ileum of poultry.

NaPi-IIb is the primary P transporter in mouse intestines [14]. The mRNA abundances of jejunal and ileal NaPi-IIb are lower than that of duodenal NaPi-IIb in broilers [16,26]. Similar results were observed in this research, and the highest mRNA abundance of NaPi-IIb existed in the duodenum. Thus, the ability of NaPi-IIb to transport P in the duodenum is higher than that in the jejunum and ileum of poultry. PiT-1 and PiT-2 play a smaller role in intestinal P absorption than NaPi-IIb [14]. The mRNA abundance of duodenal PiT-1 is lower than those of jejunal and ileal PiT-1 in laying hens [10]. The present research showed that the highest mRNA abundances of PiT-1 and PiT-2 were observed in the ileum of broilers. PiT-1 and PiT-2 may promote the P absorption in the distal segment of the small intestine of poultry.

Experiment 2

Growth performance

Dietary VD₃ insufficiency decreases the growth rate of poultry [19]. In this research, the lowest BWG and FI were detected in the broilers provided with the negative control feed. Adding 125 IU/kg VD₃ increased the FI and decreased the FCR of broilers. The BWG was increased with the addition of VD₃ when more nutrients were retained in the body of broilers. Increasing VD₃ concentration from 125 to 1000 IU/kg significantly elevated the BWG. The recommended VD₃ dosage by NRC (1994) is 200 IU/kg [2], which can not meet the requirement of broilers for growth rate. A further increase in VD₃ level from 1000 to 2000 IU/kg did not improve broiler performance in this research. Similar results have been reported [27], in which increasing dietary VD₃ level from 1000 to 7000 IU/kg does not influence the BW of 1–38-day-old broilers. Thus, it's necessary to maintain the VD₃ levels of broilers at 1000–2000 IU/kg.

Bone development

Ingested Ca and P cannot be effectively absorbed in the blood and deposited in bones of broilers when dietary VD_3 is deficient [1]. The lowest Ca and P weights of the leg bones were noted in the broilers provided with the negative control feed in this research. The addition of 125 IU/kg VD_3 increased the leg

bone Ca and P contents. Ash includes Ca, P, and other minerals. The ash percentage and weight were elevated by the addition of VD₃. Our results were in accordance with those reported by previous research [4]. The leg weight and length enhanced with the increase in bone mineral contents after adding 125–1000 IU/kg VD₃. Dietary 200 IU/kg VD₃ given by NRC (1994) [2] can not meet the needs of bone development of broilers. No difference was noted in the bone quality of broilers provided with 1000 and 2000 IU/kg VD₃ in this research. Thus, in order to support the leg bone growth and mineralization, 1000–2000 IU/kg VD₃ should be added to the broiler diets.

Gene expression levels of intestinal Ca and P transporters

CaBP-D28k and CaBP-D9k are observed in poultry and mammal enterocytes, respectively. The present research showed that supplementation with 125–2000 IU/kg VD₃ increased the mRNA abundance of CaBP-D28k in the three intestinal segments of broilers to varying degrees, especially in the jejunum. 1,25-(OH)₂-D₃, the final active form of VD₃, increases mRNA abundance of intestinal CaBP-D28k in laying hens [28]. Thus, VD₃ and 1,25-(OH)₂-D₃ stimulated *CaBP-D28k* gene transcription in the intestinal cells of poultry and contributed to the increase in leg bone Ca content. In addition, research in mammals has shown the positive effect of 1,25-(OH)₂-D₃ on the gene expression of intestinal CaBP-D9k [5].

PMCA1b is expressed in the basolateral membrane. The addition of 1,25-(OH)₂-D₃ enhances the mRNA abundance of duodenal PMCA1b in mice [29]. Similar results were noted in this research. The mRNA abundance of PMCA1b in the duodenum of broilers increased after adding 250–1000 IU/kg VD₃. Thus, optimal levels of VD₃ upregulated *PMCA1b* gene expression and promoted Ca extrusion from intestinal cells into the blood. Notably, the addition of 2000 IU/kg VD₃ insignificantly affected intestinal PMCA1b mRNA level compared with the negative control diet.

Similar to PMCA1b, NCX1 also exists in the basolateral membrane. Dietary VD₃ insufficiency leads to a decrease in the mRNA abundance of NCX1 in chick duodenum, which is increased after the injection of 1,25-(OH)₂-D₃ [30]. This research showed that adding 1000 IU/kg VD₃ enhanced the mRNA abundance of duodenal and jejunal NCX1 by 0.67–1.74 folds. These data suggest that VD₃ promoted the exchange of Ca and Na in intestinal cells and the blood.

NaPi-IIb, the major P transporter, is found in the apical membrane of rat intestinal cells [12,13]. This research showed that the mRNA abundance of NaPi-IIb in the three intestinal segments was

increased by dietary VD_3 to varying degrees. The effects of the VD_3 on NaPi-IIb gene expression have been observed in broilers [31], in which a high VD_3 dosage upregulates the mRNA abundance of intestinal NaPi-IIb compared with a low VD_3 level. The addition of VD_3 enhances the protein expression level of jejunal NaPi-IIb in broilers fed with P-insufficient feed [15]. Thus, VD_3 stimulated NaPi-IIb gene expression and the active P absorption in broiler intestines.

PiT-1 is expressed in the apical membrane of rat enterocytes [13]. Compared with NaPi-IIb, PiT-1

PiT-1 is expressed in the apical membrane of rat enterocytes [13]. Compared with NaPi-IIb, PiT-1 plays a minor role in phosphate transport into the intestinal epithelial cells of mice [14]. Supplementation of 250–1000 IU/kg VD₃ increased the mRNA abundance of duodenal PiT-1 in this research. The addition of VD₃ also enhanced the protein abundance of jejunal PiT-1 in broilers provided with P-inadequate diets [15]. These data reveal the positive effects of VD₃ on intestinal *PiT-1* gene transcription in broilers.

The gene expression of PiT-2 has been observed in the apical membrane of rodent intestinal cells [12,32]. PiT-2 involves P absorption in mouse intestines upon dietary P restriction [32]. This research showed that the addition of VD₃ increased the mRNA abundances of duodenal and ileal PiT-2 in broilers. Thus, VD₃ upregulated *PiT-2* gene expression and promoted P transport in the apical membrane of broiler intestinal cells.

In conclusion, the highest mRNA abundances of CaBP-D28k, PMCA1b, NCX1, and NaPi-IIb were detected in the duodenum of broilers. On the contrary, the mRNA abundances of PiT-1 and PiT-2 in the duodenum were lower than those in the two other intestinal segments. Adding 125–2000 IU/kg VD₃ improved growth performance and leg bone quality of 1–21-day-old broilers. The mRNA level of CaBP-D28k increased by 536, 1161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1000 IU/kg VD₃. By contrast, the mRNA abundances of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57–1.74 folds by supplementation with 1000–2000 IU/kg VD₃.

ORCID

- 296 Jincheng Han, https://orcid.org/0000-0003-0461-2103
- 297 Lihua Wu, https://orcid.org/0000-0003-4408-3330
- 298 Xianliang Lv, https://orcid.org/0000-0003-4679-8188
- 299 Mengyuan Liu, https://orcid.org/0000-0001-7487-2897
- 300 Yan Zhang, https://orcid.org/0000-0003-3436-6740
- Lei He, https://orcid.org/0000-0001-5313-7607
- 302 Junfang Hao, https://orcid.org/0000-0002-2038-5839

303 Li Xi, https://orcid.org/0000-0003-3639-1907 304 Hongxia Qu, https://orcid.org/0000-0003-2964-7898 305 Chuanxin Shi, https://orcid.org/0000-0002-1750-0103 306 Zhiqiang Li, https://orcid.org/0000-0002-1719-3502 307 Zhixiang Wang, https://orcid.org/0000-0002-0176-7604 308 Fei Tang, https://orcid.org/0000-0002-6200-9356 309 Yingying Qiao, https://orcid.org/0000-0002-0090-6430 310 311 **Competing interests** 312 No potential conflict of interest relevant to this article was reported. 313 314 **Funding sources** 315 This work was supported by the National Natural Science Foundation of China (32072753). 316 317 Acknowledgements 318 Not applicable. 319 320 Availability of data and material 321 Upon reasonable request, the datasets of this study can be available from the corresponding author. 322 323 **Author Contributions:** 324 Conceptualization: Han J, Wu L, Lv X, Xi L, Wang Z. 325 Data curation: Wu L, Lv X, Liu M, Zhang Y, He L, Hao J, Qu H. 326 Formal analysis: Han J, Wu L, Shi C, Tang F. 327 Methodology: Wu L, Lv X, Liu M, Zhang Y, He L. 328 Software: Han J, Wu L, Li Z, Qiao Y. 329 Validation: Han J, Wu L, Lv X, Liu M, Zhang Y, He L. 330 Writing - original draft: Han J, Wu L, Xi L. 331 Writing - review & editing: Han J, Wu L, Lv X, Liu M, Zhang Y, He L, Hao J, Xi L, Qu H, Shi C, Li Z, 332 Wang Z, Tang F, Qiao Y. 333

334

Ethics approval and consent to participate:

This study was conducted according to the guidelines of the experimental procedures and approved by the Animal Ethics Committee of Shangqiu Normal University (2020-1012).

339 References

- Rama Rao SV, Raju MVLN, Reddy MR. Performance of broiler chicks fed high levels of cholecalciferol in diets containing suboptimal levels of calcium and non-phytate phosphorus. Anim Feed Sci Technol. 2007;134:77–88. https://doi.org/10.1016/j.anifeedsci.2006.05.006.
- National Research Council (NRC). Nutrient Requirements of Poultry. 9th rev ed. Washington, DC:
 Natl. Acad. Press, 1994.
- 3. Ministry of Agriculture of the People's Republic of China. Feeding Standard of Chicken (NY/T 33-2004). Beijing: China Agriculture Press, 2004.
- Fritts CA, Waldroup PW. Effect of source and level of vitamin D on live performance and bone development in growing broilers. J Appl Poult Res. 2003;12:45–52. https://doi.org/10.1093/japr/12.1.45.
- 5. Song Y, Peng X, Porta A, Takanaga H, Peng J, Hediger MA, Fleet JC, Christakos S. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 2003;144:3885–94. https://doi.org/10.1210/en.2003-0314.
- 354 6. Xu H, Bai L, Collins JF, Ghishan FK. Age-dependent regulation of rat intestinal type IIb sodium 355 phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol. 2002;282:487–93.
 356 https://doi.org/10.1152/ajpcell.00412.2001.
- 7. Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin
 D and other factors. Crit Rev Clin Lab Sci. 2010;47:181–95. https://doi.org/10.3109/10408363.2010.536429.
- 8. Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J Appl Poult Res. 2013;22:609–27. https://doi.org/10.3382/japr.2012-00743.
- 9. Yang JH, Hou JF, Farquharson C, Zhou ZL, Deng YF, Wang L, Yu Y. Localisation and expression of TRPV6 in all intestinal segments and kidney of laying hens. Br Poult Sci. 2011;52:507–16. https://doi.org/10.1080/00071668.2011.596994.
- 366
 367
 368
 368
 369
 10. Gloux A, Le Roy N, Brionne A, Bonin E, Juanchich A, Benzoni G, Piketty ML, PriéD, Nys Y, Gautron J, Narcy A, Duclos MJ. Candidate genes of the transcellular and paracellular calcium absorption pathways in the small intestine of laying hens. Poult Sci. 2019;98:6005–18. https://doi.org/10.3382/ps/pez407.
- 370 11. Rousseau X, Valable A, Letourneau-Montminy M, Meme N, Godet E, Magnin M, Nys Y, Duclos
 371 MJ, Narcy A. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult Sci.
 372 2016;95:2849–60. https://doi.org/10.3382/ps/pew172.
- 12. Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol. 2008;232:125–34. https://doi.org/10.1016/j.taap.2008.05.026.
- 376 13. Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem S, Barry N, Blaine J, Jiang T, Wang XX,

- Levi M. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol. 2009;297:1466–75. https://doi.org/10.1152/ajprenal.00279.2009.
- 379 14. Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis. 2011;18:85–90. https://doi.org/10.1053/j.ackd.2010.11.004.
- 381 15. Shao YX, Wen Q, Zhang SM, Lu L, Zhang LY, Liao XD, Luo XG. Dietary supplemental vitamin
 382 D3 enhances phosphorus absorption and utilisation by regulating gene expression of related
 383 phosphate transporters in the small intestine of broilers. Br J Nutr. 2019;121:9–21.
 384 https://doi.org/10.1017/S0007114518002763.
- 16. Liu SB, Hu YX, Liao XD, Lu L, Li SF, Zhang LY, Tan HZ, Yang L, Suo HQ, Luo XG. Kinetics of phosphorus absorption in ligated small intestinal segments of broilers. J Anim Sci. 2016;94:3312–20. https://doi.org/10.2527/jas.2016-0430.
- 389 17. Sugiyama T, Kikuchi H, Hiyama S, Nishizawa K, Kusuhara S. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen. Br Poult Sci. 2007;48:233–8. https://doi.org/10.1080/00071660701302270.
- 18. Hemmingsen C, Staun M, Nielsen PK, Olgaard K. Separate effects of 1,25-dihydroxyvitamin D and calcium on renal calbindin-D28k and intestinal calbindin-D9k. Pharmacol Toxicol. 2002;91:111–5. https://doi.org/10.1034/j.1600-0773.2002.910304.x.
- 19. Baker DH, Biehl RR, Emmert JL. Vitamin D3 requirement of young chicks receiving diets varying
 in calcium and available phosphorus. Br Poult Sci. 1998;39:413-7. https://doi.org/10.1080/00071669888980.
- 20. Hall LE, Shirley RB, Bakalli RI, Aggrey SE, Pesti GM, Edwards HM. Power of two methods for the estimation of bone ash of broilers. Poult Sci. 2003;82:414–8. https://doi.org/10.1093/ps/82.3.414.
- 399 21. AOAC. Official Methods of Analysis. 18th edition. Gaithersburg: Association of Official Analytical400 Chemists; 2007.
- 401 22. Rutherfurd SM, Chung TK, Morel PCH, Moughan PJ. Effect of microbial phytase on ileal
 402 digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for
 403 broilers. Poult Sci. 2004;83:61–8. https://doi.org/10.1093/ps/83.1.61.
- 404
 405
 23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262.
- 406 24. SAS Institute. SAS User's Guide. Version 9 ed. SAS Inst. Inc., Cary, NC, USA. 2002.
- 407 25. Li P, Wang R, Jiao H, Wang X, Zhao J, Lin H. Effects of dietary phosphorus level on the expression of calcium and phosphorus transporters in laying hens. Front Physiol. 2018;9:627. https://doi.org/10.3389/fphys.2018.00627.
- 410 26. Han JC, Zhang JL, Zhang N, Yang X, Qu HX, Guo Y, Shi CX, Yan YF. Age, phosphorus, and 25-hydroxycholecalciferol regulate mRNA expression of vitamin D receptor and sodium-phosphate cotransporter in the small intestine of broiler chickens. Poult Sci. 2018;97:1199–208. https://doi.org/10.3382/ps/pex407.

- 27. Sakkas P, Smith S, Hill TR, Kyriazakis I. A reassessment of the vitamin D requirements of modern broiler genotypes. Poult Sci. 2019;98:330–40. https://doi.org/10.3382/ps/pey350.
- 28. Bar A, Striem S, Mayel-Afshar S, Lawson DE. Differential regulation of calbindin-D28K mRNA in the intestine and eggshell gland of the laying hen. J Mol Endocrinol. 1990;4:93–9. https://doi.org/10.1677/jme.0.0040093.
- 420 29. van Abel M, Hoenderop JGJ, van der Kemp AWCM, van Leeuwen JPTM, Bindels RJM. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol. 2003;285:78–85. https://doi.org/10.1152/ajpgi.00036.2003.
- 422 30. Centeno V, Picotto G, Perez A, Alisio A, De Talamoni NT. Intestinal Na+/Ca2+ exchanger protein and gene expression are regulated by 1,25(OH)2D3 in vitamin D-deficient chicks. Arch Biochem Biophys. 2011;509:191–6. https://doi.org/10.1016/j.abb.2011.03.011.
- 425
 426
 426
 427
 31. Cho TA, Sadiq MB, Srichana P, Anal AK. Vitamin D3 enhanced intestinal phosphate cotransporter genes in young and growing broilers. Poult Sci. 2020;99:2041–7. https://doi.org/10.1016/j.psj.2019.11.038.
- 32. Pastor-Arroyo EM, Knöpfel T, Silva PHI, Schnitzbauer U, Poncet N, Biber J, Wagner CA, Hernando
 N. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D3
 upon dietary restriction of phosphate. Acta Physiol. 2020;230:e13526.
 https://doi.org/10.1111/apha.13526.

Table 1. Ingredient composition of the experimental diet (as fed basis).

Item	Experiment 1	Experiment 2		
Ingredient (g/kg)				
Corn	562.0	574.1		
Soybean meal (430 g/kg CP)	332.0	320.0		
Soybean oil	28.2	24.7		
Soy protein powder (650 g/kg CP)	36.8	41.2		
Limestone	13.5	12.2		
Dicalcium phosphate	19.4	19.3		
L-Lysine HCl (980 g/kg)	1.4	1.8		
DL-Methionine (990 g/kg)	1.4	1.4		
Trace mineral premix ¹	0.1	0.1		
Vitamin premix ^{2,3}	0.2	0.2		
Choline chloride (500 g/kg)	2.0	2.0		
Sodium chloride	3.0	3.0		
Nutrient composition				
Metabolizable energy (kcal/kg)	2975.4	2973.0		
Crude protein (g/kg)	215.1	212.3		
Analyzed calcium (g/kg)	10.0	10.1		
Analyzed total phosphorus (g/kg)	6.9	7.0		
Non-phytate phosphorus (g/kg)	4.5	4.5		
Lysine (g/kg)	11.2	11.1		
Methionine (g/kg)	5.0	5.1		

¹Trace mineral premix supplied per kg of diet: Fe (FeSO₄·7H₂O), 80 mg; Mn (MnSO₄·H₂O), 60 mg; Zn

436

^{434 (}ZnSO₄·7H₂O), 40 mg; Cu (CuSO₄·5H₂O), 6 mg; I (KI), 0.35 mg; and Se (Na₂SeO₃), 0.15 mg.

²Experiment 1, vitamin premix supplied per kg of diet: vitamin A (retinyl palmitate), 4.4 mg; vitamin D₃,

²⁵ μg (1000 IU); vitamin E (DL-α-tocopheryl acetate), 20 mg; vitamin K₃ (menadione), 0.5 mg; vitamin

B₁ (thiamine), 2 mg; vitamin B₂ (riboflavin), 8 mg; vitamin B₆ (pyridoxine), 3.5 mg; vitamin B₁₂, 0.01

⁴³⁸ mg; biotin, 0.18 mg; folic acid, 0.55 mg; pantothenic acid, 10 mg; and niacin, 35 mg.

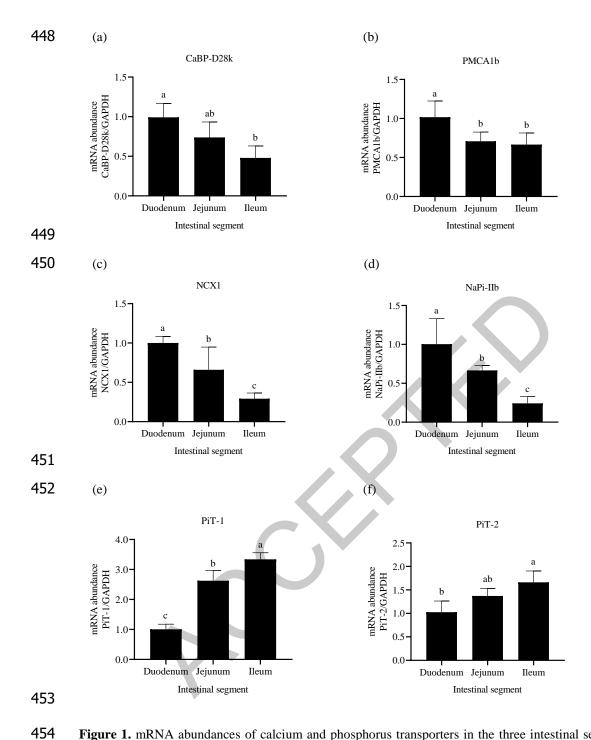

³Experiment 2, vitamin premix (without supplemental VD₃) supplied per kg of diet: vitamin A (retinyl palmitate), 4.4 mg; vitamin E (DL-α-tocopheryl acetate), 20 mg; vitamin K₃ (menadione), 0.5 mg; vitamin B₁ (thiamine), 2 mg; vitamin B₂ (riboflavin), 8 mg; vitamin B₆ (pyridoxine), 3.5 mg; vitamin B₁₂, 0.01 mg; biotin, 0.18 mg; folic acid, 0.55 mg; pantothenic acid, 10 mg; and niacin, 35 mg.

Table 2. Primer sequences in real-time quantitative PCR.

Gene	Accession number	Orientation	Primer sequence (5'-3')	Size (bp)
CaBP-D28k	NM_205513.1	Forward	AGATCTGGCACCACTACGAC	187
		Reverse	TGAGCAAGCTCAACGATTCCT	
PMCAlb	NM_001168002.3	Forward	AGCTCAAGATGGTGCAGCTA	165
		Reverse	AACAAACCTGCTTTGCCAATCT	
NCX1	NM_001079473.1	Forward	TCACCTTCTTCTTCTTCCCAATCT	158
		Reverse	GCAACCTTTCCGTCCATCTC	
NaPi-IIb	NM_204474.1	Forward	TCGGTCCGTTCACTCTGTTG	164
		Reverse	GCCACGTTGCCTTTGTGATT	
PiT-1	XM_015297502.1	Forward	GGCTCCGTGCTTCTGG	239
		Reverse	CATTTGACGCCTTTCTGC	
PiT-2	NM_001305398.1	Forward	GCAGCAGATACATCAACTC	153
		Reverse	ATTTCCACTCCACCCTC	
GAPDH	NM_204305.1	Forward	GAACATCATCCCAGCGTCCA	133
		Reverse	ACGGCAGGTCAGGTCAACAA	

Abbreviations: CaBP-D28k, calcium-binding protein 28-kDa; PMCA1b, plasma membrane calcium ATPase 1b; NCX1, sodium-calcium exchanger 1; NaPi-IIb, IIb sodium-dependent phosphate cotransporter; PiT-1, inorganic phosphate transporter 1; PiT-2, inorganic phosphate transporter 2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Figure 1. mRNA abundances of calcium and phosphorus transporters in the three intestinal segments (duodenum, jejunum, and ileum) of 21-day-old broilers (experiment 1). a, CaBP-D28k = calcium-binding protein 28-kDa; b, PMCA1b = plasma membrane calcium ATPase 1b; c, NCX1 = sodium-calcium exchanger 1; d, NaPi-IIb = IIb sodium-dependent phosphate cotransporter; e, PiT-1 = inorganic phosphate transporter 1; and f, PiT-2 = inorganic phosphate transporter 2. The values are the means of five repetitions (n = 5) and presented as mean \pm SD. ^{a-c}Values with different superscripts are significantly different (p < 0.05).

Table 3. Effects of dietary vitamin D₃ concentration on growth performance of 1–21-day-old broilers
 (experiment 2) ¹.

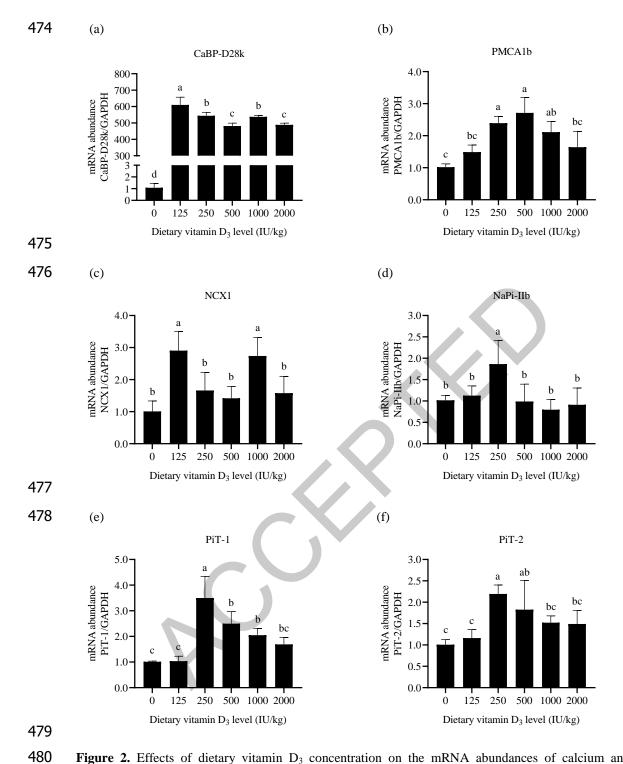
Vitamin D ₃	Body weight on	Body weight on	Body weight	Feed intake	Feed conversion	Mortality
(IU/kg)	day 1 (g/chick)	day 21 (g/chick)	gain (g/chick)	(g/chick)	ratio (g/g)	(%)
0	42.3	452°	410°	678°	1.66ª	1.43
125	42.6	756 ^b	713 ^b	974 ^b	1.37 ^b	1.43
250	42.6	805 ^{ab}	762 ^{ab}	1037 ^{ab}	1.36 ^b	4.29
500	42.3	815 ^{ab}	773 ^{ab}	1020 ^{ab}	1.32 ^b	0
1000	42.8	866ª	823 ^a	1070 ^a	1.30 ^b	0
2000	42.6	858 ^a	815 ^a	1034 ^{ab}	1.27 ^b	2.86
SEM	0.16	27	27	25	0.03	0.66
p value						
Linear	0.56	< 0.05	< 0.05	< 0.05	< 0.05	0.92
Quadratic	0.86	< 0.05	< 0.05	< 0.05	< 0.05	0.85

¹Each value represents the mean of five repetitions (14 broilers per repetition) (n = 5). The negative 464 control feed consisted of 10.0 g/kg calcium and 4.5 g/kg non-phytate phosphorus and did not contain 465 supplemental VD₃. ^{a-c}Values with different superscripts are significantly different (p < 0.05).

Table 4. Effects of dietary vitamin D₃ concentration on tibia development in 21-day-old broilers (experiment 2) ¹.

Vitamin D ₃	Bone weight	Bone length	Mine	Mineral percentage (%)		Mineral weight (g/bone)		
(IU/kg)	(g/bone)	(cm/bone)	Ash	Ca	P	Ash	Ca	P
0	0.99 ^d	5.15°	38.3 ^b	13.0 ^b	6.92 ^b	0.37 ^d	0.13 ^d	0.07°
125	1.41°	5.98 ^b	48.3a	17.8^{a}	8.92ª	0.67°	0.25°	0.13 ^b
250	1.63 ^{bc}	6.19 ^{ab}	49.5ª	18.4ª	9.56 ^a	0.80^{b}	0.30^{b}	0.16^{a}
500	1.73 ^{ab}	6.15 ^{ab}	49.5ª	$17.8^{\rm a}$	9.50^{a}	0.85 ^{ab}	0.31 ^b	0.16^{a}
1000	1.89 ^a	6.35 ^a	49.3ª	18.1 ^a	9.37ª	0.93ª	0.34 ^a	0.18 ^a
2000	1.89 ^a	6.30 ^{ab}	48.9 ^a	17.9ª	9.19 ^a	0.92ª	0.34^{a}	0.17^{a}
SEM	0.06	0.08	0.8	0.4	0.18	0.04	0.01	0.01
p value								
Linear	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Quadratic	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

⁴⁶⁸ Each value represents the mean of five repetitions (two broilers per repetition) (n = 5). Ca = calcium; P


^{469 =} phosphorus. $^{a-d}$ Values with different superscripts are significantly different (p < 0.05).

470 **Table 5.** Effects of dietary vitamin D₃ concentration on femur development in 21-day-old broilers 471 (experiment 2) ¹.

Vitamin D ₃	Bone weight	Bone length	Miner	Mineral percentage (%)		Mineral weight (g/bone)		
(IU/kg)	(g/bone)	(cm/bone)	Ash	Ca	P	Ash	Ca	P
0	0.81°	3.83 ^b	35.5 ^b	12.8 ^b	6.91 ^b	0.29 ^c	0.10^{b}	0.06°
125	1.22 ^b	4.60^{a}	46.7ª	17.5ª	8.98ª	0.56^{b}	0.21 ^a	0.11 ^b
250	1.33 ^{ab}	4.66 ^a	45.7ª	17.6ª	9.19 ^a	0.60^{ab}	0.23^{a}	0.12^{ab}
500	1.33 ^{ab}	4.69 ^a	47.5ª	$17.0^{\rm a}$	9.15 ^a	0.63 ^{ab}	0.23^{a}	0.12^{ab}
1000	1.43 ^a	4.79ª	46.8a	$17.0^{\rm a}$	8.97ª	0.67^{a}	0.24^{a}	0.13 ^a
2000	1.43ª	4.78^{a}	45.9ª	17.1ª	8.84ª	0.66^{a}	0.24^{a}	0.13 ^a
SEM	0.04	0.07	0.8	0.3	0.16	0.03	0.01	0.005
p value								
Linear	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Quadratic	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

⁴⁷² Each value represents the mean of five repetitions (two broilers per repetition) (n = 5). Ca = calcium; P

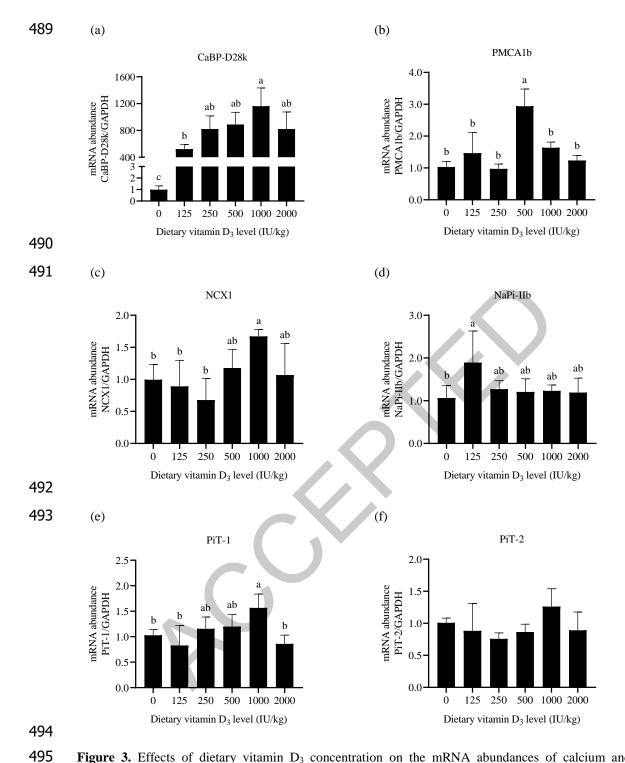

^{473 =} phosphorus. $^{a-c}$ Values with different superscripts are significantly different (p < 0.05).

Figure 2. Effects of dietary vitamin D_3 concentration on the mRNA abundances of calcium and phosphorus transporters in the duodenum of 21-day-old broilers (experiment 2). a, CaBP-D28k = calcium-binding protein 28-kDa (Linear p < 0.05, Quadratic p < 0.05); b, PMCA1b = plasma membrane calcium ATPase 1b (Linear p < 0.05, Quadratic p < 0.05); c, NCX1 = sodium-calcium exchanger 1 (Linear p = 0.28, Quadratic p < 0.05); d, NaPi-IIb = IIb sodium-dependent phosphate cotransporter (Linear p = 0.08, Quadratic p < 0.05); e, PiT-1 = inorganic phosphate transporter 1 (Linear p < 0.05,

Quadratic p < 0.05); and f, PiT-2 = inorganic phosphate transporter 2 (Linear p < 0.05, Quadratic p < 0.05). The values are the means of five repetitions (n = 5) and presented as mean \pm SD. ^{a-d}Values with different superscripts are significantly different (p < 0.05).

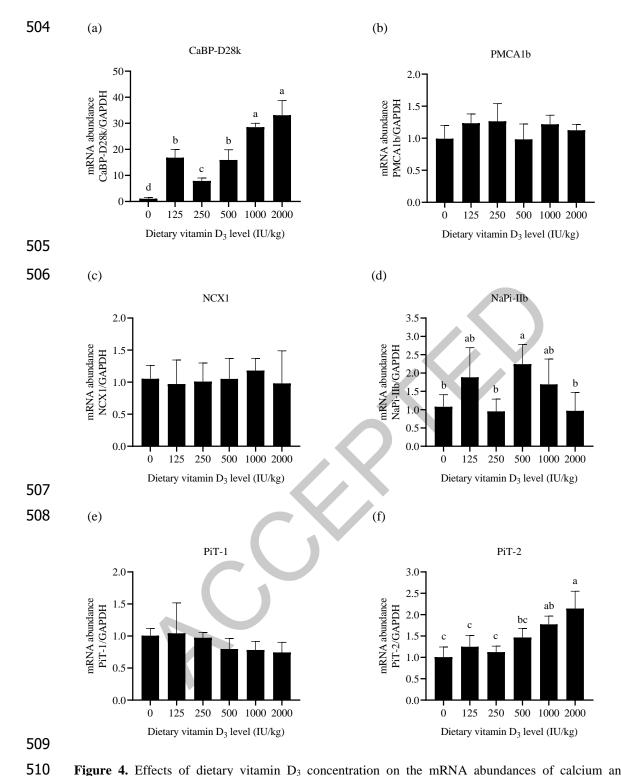


Figure 3. Effects of dietary vitamin D_3 concentration on the mRNA abundances of calcium and phosphorus transporters in the jejunum of 21-day-old broilers (experiment 2). a, CaBP-D28k = calcium-binding protein 28-kDa (Linear p < 0.05, Quadratic p < 0.05); b, PMCA1b = plasma membrane calcium ATPase 1b (Linear p < 0.05, Quadratic p < 0.05); c, NCX1 = sodium-calcium exchanger 1 (Linear p < 0.05, Quadratic p = 0.81); d, NaPi-IIb = IIb sodium-dependent phosphate cotransporter (Linear p = 0.34, Quadratic p = 0.28); e, PiT-1 = inorganic phosphate transporter 1 (Linear p = 0.15, Quadratic p < 0.05);

and f, PiT-2 = inorganic phosphate transporter 2 (Linear p = 0.49, Quadratic p = 0.40). The values are the means of five repetitions (n = 5) and presented as mean \pm SD. ^{a-c}Values with different superscripts are significantly different (p < 0.05).

Figure 4. Effects of dietary vitamin D₃ concentration on the mRNA abundances of calcium and phosphorus transporters in the ileum of 21-day-old broilers (experiment 2). a, CaBP-D28k = calcium-binding protein 28-kDa (Linear p < 0.05, Quadratic p < 0.05); b, PMCA1b = plasma membrane calcium ATPase 1b (Linear p = 0.66, Quadratic p = 0.29); c, NCX1 = sodium-calcium exchanger 1 (Linear p = 0.80, Quadratic p = 0.87); d, NaPi-IIb = IIb sodium-dependent phosphate cotransporter (Linear p = 0.94, Quadratic p < 0.05); e, PiT-1 = inorganic phosphate transporter 1 (Linear p < 0.05, Quadratic p = 0.86);

and f, PiT-2 = inorganic phosphate transporter 2 (Linear p < 0.05, Quadratic p < 0.05). The values are the means of five repetitions (n = 5) and presented as mean \pm SD. ^{a-d}Values with different superscripts are significantly different (p < 0.05).

