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Abstract 6 

The objective of this study was to identify genomic regions and candidate genes associated with productive traits 7 

using a total of 37,099 productive records and 6,683 SNP data obtained from five Great-Grand-Parents (GGP) farms 8 

in Landrace. The estimated of heritabilities for days to 105kg (AGE), average daily gain (ADG), backfat thickness 9 

(BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that 10 

explained 2.05-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits 11 

into two groups, and the most significant genomic region for AGE and ADG were located on the SSC 1, while BF 12 

and EMA were located on SSC 2. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 13 

Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular 14 

function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) 15 

investigation and genomic selection (GS) for productive traits in Landrace pig. 16 

 17 

Keywords: Gene ontology; Kyoto Encyclopedia of Genes and Genomes; Landrace pigs; Productive traits; 18 

Weighted single-step GWAS 19 

 20 
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Introduction 22 

Pig breeding for economic traits has undergone continuous improvement over time, with ongoing research in this 23 

field. Productive traits such as ADG, AGE, and BF have moderate to high heritability. ADG and AGE directly 24 

influence pig growth [1, 2]. BF is a trait linked to reproductive performance of Landrace and Yorkshire sows [3], 25 

making it crucial for enhancing and maintaining mothering ability of the dam. 26 

According to the Korean Swine Performance Recording Standards (KSPRS) established by the Ministry of 27 

Agriculture, Food and Rural Affairs (MAFRA), performance testing is conducted within a weight range of 70-110 kg, 28 

with the endpoint set at 90kg. Days to reach 90 kg and BF are adjusted to assess growth trait performance. However, 29 

the endpoint weight of 90 kg has remained unchanged since its establishment in 1984, reflecting the market weight of 30 

finishing pigs at that time. With current trend of market weights surpassing 110 kg, there is a growing consensus that 31 

the endpoint weight for performance testing should be increased. Consequently, there is a need to develop a new 32 

adjustment formula for performance testing, resulting in the creation of a 105 kg-based adjustment formula by the 33 

National Institute of Animal Science (NIAS). 34 

Genome-wide association studies (GWAS) have been widely applied in various fields, including the identification 35 

of economic traits. Multiple candidate genes and significant markers have been reported for the same trait, with 36 

associations between multiple traits observed at the same locus. These results are inherent to quantitative traits, single-37 

marker GWAS analyses might have limited power for detecting quantitative trait loci (QTLs) and mapping accuracy 38 

[4]. The cost of analyzing SNP panels and the imbalance between individuals with genomic data and those without 39 

genomic data present additional limitations. 40 

The WssGWAS method has emerged as a powerful approach that leverages GEBVs derived from genotypes, 41 

phenotypes, and pedigree information to estimate the effects of single-nucleotide polymorphisms (SNPs) [5]. This 42 

method effectively addresses the issue of unequal variances among SNPs, leading to more accurate estimation of SNP 43 

effects [6]. WssGWAS is more effective than GWAS in analyzing traits that are influenced by QTLs with significant 44 

effects or when there is insufficient phenotype and genotype data available. Recent studies have successfully used this 45 

approach to identified various economic traits in livestock species [7-9]. 46 

We investigate the genetic regions and candidate genes associated with productive traits (adjusted to 105 kg body 47 

weight) in Landrace pig using WssGWAS. Also, we conducted GO and KEGG enrichment analyses to gain deeper 48 

insights into the underlying biological processes and functional terms associated with the identified candidate genes 49 

for productive traits.  50 

 51 

Materials and Methods 52 

Ethical approval 53 

This article does not require IRB/IACUC approval because there are no human and animal participants. 54 

 55 

Animals and phenotypes 56 

We obtained the total 37,099 productive records (9,818 males and 27,281 females) born from 2015 to 2021 at five 57 

GGP farms (Table S1). We adjusted to evaluate for productive traits (AGE, ADG, BF, and EMA to 105kg) with 58 
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method outlined by the NIAS in Korea (https://www.nias.go.kr/images/promote/result/file/2021_2_5.pdf), and the 59 

equations used are as follows: 60 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝐺𝐸 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑎𝑔𝑒 −
(105 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡) × (𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐴𝑔𝑒 − 𝛼)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
 61 

Where 𝛼 is the correction factor used to adjust AGE to 105kg as follows: 62 

𝛼 ∶ 𝑆𝑖𝑟𝑒 = 63.3 ;  𝐷𝑎𝑚 = 47.3 63 

𝐴𝐷𝐺 adjusted to 105kg is calculated using the following equation: 64 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝐷𝐺 =  
105 𝑘𝑔

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝐺𝐸
 65 

𝐵𝐹 adjusted to 105kg is calculated using the following equation: 66 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐵𝐹 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐵𝐹 ×
(105 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡) × (𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐵𝐹 − 𝛽)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
 67 

Where 𝛽 is the correction factor used to adjust BF to 105kg as follows: 68 

𝛽 ∶ 𝑆𝑖𝑟𝑒 = 2.6 ;  𝐷𝑎𝑚 = 3.7 69 

𝐸𝑀𝐴 adjusted to 105kg is calculated using the following equation: 70 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐸𝑀𝐴 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐸𝑀𝐴 ×
(105 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡) × (𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝐸𝑀𝐴 − 𝛾)

𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
 71 

Where 𝛾 is the correction factor used to adjust EMA to 105kg as follows: 72 

𝛾 ∶ 𝑆𝑖𝑟𝑒 = 29.1 ;  𝐷𝑎𝑚 = 33.0 73 

 74 

SNP data and quality control (QC) 75 

Illumina Porcine 60K V1 and V2 were used and V2 was selected as a reference panel for imputation. Prior to 76 

imputation, phasing was performed using Shapeit4 [10], a fast and accurate method for haplotype estimation using a 77 

PBWT-based approach to select informative conditioning haplotypes. Imputation was then conducted using Impute5 78 

[11], assuming phased samples having no missing alleles. After imputation, quality control (QC) was performed by 79 

PLINK v1.09 [12] to exclude SNPs with low call rates (< 90%), low minor allele frequencies (< 0.01), or deviation 80 

from Hardy-Weinberg equilibrium (10-6). After QC, we used the number of animals and SNPs were 6,683 and 35,420, 81 

respectively. 82 

 83 

Statistical analysis 84 

We estimated the genetic parameters for AGE, ADG, BF, and EMA with average information restricted maximum 85 

likelihood (AIREML) method. We considered two approaches: pedigree-based BLUP (PBLUP) and ssGBLUP. Each 86 

trait was estimated with a single-trait animal model, and the equation as follows: 87 

𝑦 = 𝑋𝑏 + 𝑍𝑎 + 𝑒 88 

where 𝑦 is the vector of observations; 𝑏 is the vector of fixed effects (herd-birth year-season, sex); 𝑎 is the vector 89 

of additive genetic effects; 𝑒  is the vector of residuals; and 𝑋  and 𝑍  are the incidence matrices for 𝑏 , 𝑎 , and 𝑒 . 90 

Heritability was estimated as ℎ2 =  
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑒

2, where 𝜎𝑎
2 and 𝜎𝑒

2 were additive genetic and residual variances, respectively. 91 

Furthermore, GEBVs calculated using ssGBLUP approach, and marker effects were derived from these GEBVs. In 92 

contrast to the conventional BLUP approach, ssGBLUP substituted the inverse of the pedigree relationship matrix 93 
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(𝐴−1) with the inverse of the combined matrix 𝐻−1, which incorporated both the pedigree and genomic relationship 94 

matrices [13]. The 𝐻−1 can be represented as follows: 95 

𝐻−1 =  𝐴−1 + [
0 0
0 𝐺−1 − 𝐴22

−1] 96 

where 𝐴22
−1 is the inverse of numerator relationship matrix for pigs with genotyped, and 𝐺 refers to the genomic 97 

relationship matrix [14]. 𝐺 is presented below: 98 

𝐺 =
𝑍𝐷𝑍′

∑ 2𝑝𝑖(1 − 𝑝𝑖)𝑀
𝑖=1

 99 

where 𝑍 is a matrix of gene content adjusted for allele frequencies (0, 1 or 2 for 𝐴𝐴, 𝐴𝑎 and 𝑎𝑎, respectively), 𝐷 is 100 

a diagonal matrix of weights for SNP variances (initially 𝐷 = 𝐼), 𝑀 is the number of SNPs, and 𝑝𝑖  is the minor allele 101 

frequency of 𝑖𝑡ℎ SNP. Estimates of SNP effects and weights for WssGWAS were obtained according to following 102 

steps [5]: 103 

1. First step (t = 1): 𝐷 = 𝐼; 𝐺(𝑡) = 𝐷(𝑡)𝑍′𝜆, where 𝜆 =
1

∑ 2𝑝𝑖(1−𝑝𝑖)𝑀
𝑖=1

 [5]; 104 

2. Calculate GEBVs; 105 

3. Convert GEBVs to SNP effects (�̂�): �̂� = 𝜆𝐷(𝑡)𝑍′𝐺(𝑡)
−1�̂�𝑔, where �̂�𝑔 was the GEBV of animal that was also 106 

genotyped; 107 

4. Calculate the weight for each SNP: 𝑑𝑖(𝑡+1) = �̂�𝑖(𝑡)
2 2𝑝𝑖(1 − 𝑝𝑖), where 𝑖 was the 𝑖𝑡ℎ SNP; 108 

5. Normalize SNP weights to keep the total genetic variance constant: 109 

𝐷(𝑡+1) =
𝑡𝑟(𝐷(1))

𝑡𝑟(𝐷(𝑡+1))
𝐷(𝑡+1) 110 

6. 𝐺(𝑡+1) = 𝑍𝐷(𝑡+1)𝑍′𝜆 was calculated; 111 

7. 𝑡 = 𝑡 + 1 and loop to step 2. 112 

The procedure was iteratively performed for a total of three cycles, taking into account the achieved accuracies of 113 

GEBV [15, 16]. During each iteration, the weights of single nucleotide polymorphisms (SNPs) were updated (steps 4 114 

and 5), and utilized to construct G matrices (step 6), update GEBV (step 2), and estimate SNP effects (step 3). 115 

Subsequently, the proportion of genetic variance explained by each consecutive set of SNPs, referred to as 𝑖𝑡ℎ SNP 116 

windows, was calculated [16]. In a previous study, values for 𝑎𝑖 were determined based on LD decay distance analysis 117 

of the population, considering the distance where r2 drops below 0.2 [17]. In this study, LD decay distance was not 118 

calculated separately, and to facilitate comparison with the previous study's findings [17], the same value of 0.8 Mb 119 

was adopted. SNPs were positioned within a 0.8 Mb region, and the percentage of genetic variance explained by each 120 

0.8 Mb window was determined as follows: 121 

𝑉𝑎𝑟(𝑎𝑖)

𝜎𝑎
2

× 100 =
𝑉𝑎𝑟(∑ 𝑍𝑗�̂�𝑗)𝑥

𝑗=1

𝜎𝑎
2

 122 

where 𝑎𝑖 is the genetic value of the 𝑖𝑡ℎ SNP window that consisted of a region of consecutive SNPs located within 123 

0.8 Mb, 𝜎𝑎
2 was the total additive genetic variance, 𝑍𝑗 was the vector of gene content of the 𝑗𝑡ℎ SNP for all individuals, 124 

and �̂�𝑗  was the effect of the 𝑗𝑡ℎ  SNP within the 𝑖𝑡ℎ window. To visualize the distribution of these SNP windows, 125 

Manhattan plots were generated using the R software and CMplot package [18, 19]. The procedures described above 126 

were implemented iteratively using the software suite of BLUPF90 programs [20]. 127 
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 128 

Identification of candidate genes and functional enrichment analysis 129 

We conducted to identify specific genomic regions associated with productive traits by examining QTL using 130 

genomic windows that accounted for more than 1.0% of the total genetic variance.  131 

These genomic windows, previously employed in similar studies [17], represent regions of the genome that 132 

contribute significantly to the genetic variation underlying productive traits.  133 

Our focus on these candidate QTL regions aimed to uncover genetic markers or regions that play a pivotal role in 134 

influencing growth-related characteristics. Notably, we observed a significant deviation from the expected average 135 

genetic variance explained by the 0.8 Mb window, which accounted for 0.0495% of the genetic variance on average 136 

(dividing 100% by the number of 2022 genomic regions). The 1% threshold exceeded the anticipated average genetic 137 

variance explained by the 0.8 Mb window by more than 20-times. To identify genes within the identified QTL regions, 138 

particularly within the significant windows, we utilized the ensemble Sus scrofa 11.1 database 139 

(https://www.ensembl.org/biomart). Furthermore, to gain deeper insights into the biological processes associated with 140 

these regions, we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 141 

using the Database for Annotation, Visualization, and Integrated Discovery (DAVID v6.8, https://david.ncifcrf.gov/). 142 

GO terms and KEGG pathways showing significant enrichment were determined based on a p-value threshold of < 143 

0.05. Through these analyses, we gained valuable knowledge regarding crucial molecular pathways and biological 144 

functions associated with the observed genetic variations. 145 

 146 

Results and Discussion 147 

Variance component and heritability 148 

The estimates of the heritabilities for AGE, ADG, BF, and EMA were 0.49, 0.49, 0.56, and 0.23, respectively (Table 149 

1). Results showed that the heritability of ssGBLUP was higher than that of PBLUP, which only used pedigree 150 

information. The ssGBLUP method, which incorporates both pedigree and genetic information, theoretically provides 151 

more accurate estimates of genetic parameters [7].  152 

 153 

Genome-wide association study (GWAS) 154 

In most cases, major economic traits of livestock are quantitative traits except for some traits. These quantitative 155 

traits are characterized by a complex genetic structure. Exploration of candidate genes for such traits has always been 156 

an important goal of animal breeding programs. In this study, the genetic variance explained by a 0.8 Mb window for 157 

each growth trait was estimated using WssGWAS (Fig 1). Specifically, we explained 2.05%, 3.23%, 9.27%, and 9.96% 158 

of the total genetic variation for AGE, ADG, BF, and EMA, respectively, with the most significant window explaining 159 

approximately 2.05-2.34% of the total genetic variation (Table 2). Furthermore, within the identified window regions 160 

of this study, we presented the SNP markers, their corresponding chromosome (Chr), positions, and the associated 161 

genetic variance values explained by each marker (Table S2-S5). 162 

Previous GWAS studies have reported significance regions on SSC 1, 3, 6, 8, and 13 for ADG and on SSC 1, 3, 6, 163 

8, and 10 for AGE, explaining a total of 8.09% and 4.08% of the genetic variance, respectively [21]. Moreover, 164 

candidate QTL regions on SSC 4 and 14 for AGE, on SSC 4 and 2 for ADG, and on SSC 2, 3, and 10 for BF explain 165 
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a total of 6.48%, 5.96%, and 6.76% of genetic variance, respectively [4]. The utilization of the WssGWAS, which 166 

incorporates SNP windows for genetic variance estimation, offers improved capabilities in identifying previously 167 

unknown QTLs compared to conventional GWAS methods. This approach mitigates the risk of overestimating the 168 

number of detected QTLs and false positives resulting from linkage disequilibrium [22, 23]. Furthermore, the iterative 169 

weighting of SNPs enhances the detection of QTLs with larger effects [16]. In this study, a total of 10 iterations were 170 

conducted, and the genomic accuracy for each trait was presented (Table S6). As the number of iterations increased, 171 

there was a corresponding increase in genetic accuracy, consistent with previous study [5]. The highest increase was 172 

observed at the 3rd iteration, followed by a gradual decrease. Unlike the study that reported a decrease in weights at 173 

certain iterations [5], our study showed an increase in accuracy up to 0.02 to 0.04 over 10 iterations, as compared to 174 

the first iteration where all SNP weights were set to 𝐼. While the optimal number of iterations for each trait was not 175 

conclusively determined in our study, we chose to use the results from the 3rd iteration, which exhibited the highest 176 

genetic accuracy, for the GWAS analysis. 177 

 178 

Candidate gene for AGE and ADG 179 

We have successfully identified three significant regions (SSC 1, 7, and 14) that are associated with AGE. These 180 

regions explain 1.03-2.03% of the total genetic variance for AGE. Additionally, we conducted gene annotation and 181 

identified five genes with potential as candidate genes. Similarly, ADG is discovered five relevant QTL regions (SSC 182 

1, 2, 7, and 14) that account for 1.01-2.14% of the total genetic variance. Within these regions, we have annotated 183 

seven genes. Notably, although three QTL regions associated with AGE are also found to be associated with ADG, 184 

the proportions of genetic variance explained differ between the two traits. 185 

When considering complex quantitative traits, it is important to acknowledge that linear gene effects may not 186 

consistently align with average trait values. Instead, a nonlinear assumption is often more appropriate [21], as gene 187 

contributions can exhibit nonlinearity and pleiotropic effects between traits may manifest [4]. Pleiotropic quantitative 188 

trait loci (QTLs) are prevalent in the porcine genome, as exemplified by the presence of QTLs associated with vertebral 189 

number, body length, and nipple number on SSC 7 [24]. Considering the overlap in the identified genomic regions 190 

and the substantial genetic correlation observed between ADG and AGE, it is reasonable to infer that the genes 191 

associated with these traits are shared.  192 

Within the identified genomic regions, we observed the presence of RELCH in close proximity to MC4R on SSC 1. 193 

RELCH has been previously recognized as one of the seven potential candidate genes associated with pig fatness traits 194 

[25] and has demonstrated an association with pig fat depth [26]. Functionally, RELCH is involved in regulating 195 

intracellular cholesterol distribution, specifically from recycling endosomes to the trans-Golgi network. Gene ontology 196 

analysis further revealed enrichment in biological processes related to neuroactive ligand-receptor interaction [27]. 197 

These findings provide valuable insights into the potential regulatory mechanisms underlying fatness traits in pigs and 198 

highlight the role of RELCH in cholesterol metabolism and neuroactive signaling pathways. 199 

RNF152 emerges as a promising candidate gene associated with pig fatness and body composition traits [25, 26], 200 

specifically backfat thickness in Duroc pigs as revealed by ssGWAS analysis [28]. This gene acts as a negative 201 

regulator of the mTOR signaling pathway [29, 30], a key pathway governing cellular metabolism, survival, and 202 

proliferation through the regulation of anabolic processes such as protein, lipid, and nucleotide synthesis. The pivotal 203 

role of the mTOR pathway in cellular function has been extensively documented [31-34]. Our study highlights the 204 
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potential pleiotropic effects within the SSC 1 region, which exhibited remarkable significance for both AGE and ADG 205 

traits. These findings provide valuable insights into the genetic architecture underlying productive traits and the 206 

interplay of key molecular pathways in pigs. 207 

CDH20 has been identified as a candidate gene for pig fatness traits and days to reach 100 kg in previous studies 208 

[25, 35]. CDH20 encodes a type 2 classical cadherin, which is a calcium-dependent cell-cell adhesion glycoprotein 209 

and a potential candidate for tumor suppression [36]. Additionally, CDH20 is involved in the cell adhesion pathway. 210 

This study is the first to report its association with porcine growth and fatness traits [37]. 211 

TMEM132C has been identified as a potential candidate gene for growth and fatness-related traits in Bamaxiang 212 

pigs using a customized 1.4 million SNP array [38]. It has also been implicated as one of the candidate genes for 213 

average backfat at 100 kg [39]. 214 

NDUFV1 is located in the SSC 2 region and plays a critical role in energy metabolism [40]. Previous investigations 215 

have consistently demonstrated a significant downregulation of NDUFV1 expression in placental tissues, particularly 216 

when compared to the control group representing normal pregnancies. Notably, NDUFV1 plays a crucial role in 217 

facilitating energy production within the mitochondrial matrix and membrane, thereby influencing essential metabolic 218 

processes [41]. 219 

 220 

Candidate gene for BF and EMA 221 

BF had the highest explained genetic variance and identified the highest number of candidate genes. Specifically, 222 

six relevant regions located on SSC 2, 5, 14, and 18 were identified, explaining 1.27-2.34% of the total genetic variance, 223 

and 21 genes were annotated. EMA had lower heritability other traits such as AGE, ADG, and BF, but it was moderate 224 

heritability. Moreover, the significant genetic regions identified for EMA did not coincide with those found for BF, 225 

although SSC 2 and 14 exhibited similar levels of variance explained. Similar to BF, the region with the highest 226 

significant genetic variance explained was SSC 2 with 2.07% for EMA, while SSC 6, SSC 7, SC14, and SSC 15 were 227 

also identified as regions associated with EMA. 228 

ANO1, also known as TMEM16A, is a Ca2+-activated chloride channel that plays a vital role in various physiological 229 

functions [42]. This channel is critical for maintaining the STT of urinary tract muscles in female mice and women. 230 

Sex differences in this context are likely influenced by ANO1 expression in SMCs of the urethra, and this gene is also 231 

involved in smooth muscle contraction [43, 44]. 232 

PSMD13, also referred to as S11, Rpn9, p40.5, or HSPC027, is a 376 amino acid protein belonging to the 233 

proteasome subunit S11 family. It is located in the SSC 2 region and has been identified as being associated with loin 234 

depth in previous studies [45]. COX8H is a candidate gene situated in the SSC 2 region. It has been reported to explain 235 

3.51% and 5.87% of the total genetic variation for BF and lean percent, respectively, in Yorkshire pigs [46]. 236 

Additionally, it has been identified as one of the highly expressed genes in intramuscular adipose tissues of Erhualian 237 

pigs [47]. MAP3K11 belongs to the serine/threonine kinase family and plays a crucial role in the FGFR signaling 238 

pathway, which regulates cartilage and bone formation [48]. Furthermore, a previous study has suggested a potential 239 

association between MAP3K11 and body weight in sheep [49]. 240 

AKAP3, located in the SSC5 region, is a member of the AKAP family. It interacts with the regulatory subunit of 241 

PKA [50]. While it has been predominantly studied in sperm and cancer, previous research has shown the expression 242 

of AKAP3 in the longissimus dorsi muscle of pigs [51]. The expression of AKAP3 in skeletal muscle and its binding 243 
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to PKA's regulatory subunit have the potential to affect glycogen content in the muscle, thereby impacting meat quality 244 

after post-mortem modifications [51]. FGF6 is a key regulator of skeletal muscle development that influences muscle 245 

fiber diameter and intramuscular fat content [52, 53]. Additionally, FGF6 has been employed in gene delivery systems 246 

for skeletal muscle repair [54]. 247 

ZYX is located in the SSC18 region and is closely associated with multiple QTLs related to tissue and texture 248 

characteristics [55]. ZYX is a protein present in focal adhesions depending on active fibers and interacts with the actin-249 

crosslinking protein alpha-actinin. ZYX is involved in cellular organization, signal transduction, cellular response to 250 

mechanical stress, and cell adhesion [56-59]. Structurally, ZYX consists of an N-terminal domain that interacts with 251 

proteins involved in signal transduction and a C-terminal LIM domain that plays a crucial role in regulating cell 252 

proliferation, differentiation, and protein-protein and/or protein-DNA interactions [60]. 253 

MED9, located in the SSC 2 region, is an essential gene for the maintenance of white adipose tissues and 254 

adipogenesis in Piscirickettsia salmonis [61]. MED9 also interacts with PPARs, which are important for inflammatory 255 

processes [62]. Polymorphism in the SERPING1 gene has been found to be significantly associated with tenderness 256 

and pH24 in both dominant and co-dominant models. Furthermore, this gene can influence the postmortem pH of 257 

muscle by regulating glycolysis [63]. 258 

 259 

GO terms and KEGG pathway enrichment analysis 260 

Enrichment analyses uncovered significant associations between multiple terms and productive traits. Specifically, 261 

we observed enrichment in three biological processes, four cellular components, three molecular functions, and six 262 

KEGG pathways (Table 3). Notably, the most significant GO term was GO:0004190, which pertains to chromatin. 263 

Furthermore, the GO:0005509 category, encompassing calcium ion binding, exhibited enrichment for nine candidate 264 

genes, constituting the majority of the candidates. 265 

The process of actin filament bundle assembly (GO:0051017) involves the construction of actin filament bundles 266 

with varying degrees of tightness and orientation. It represents a vital aspect of cellular structure and function. Notably, 267 

the selective sweep gene AIF1L emerged as a significant molecule, playing an essential role in cell survival and 268 

contributing to proinflammatory activities of immune cells, including monocytes/macrophages and activated T 269 

lymphocytes [64, 65]. 270 

Chloride transmembrane transport (GO:1902476) refers to the movement of chloride across a membrane. Previous 271 

studies have implicated ANO9 as a gene associated with marbling depth in both purebred and crossbred pigs. The 272 

genetic region containing this gene accounts for 3.34% of the total genetic variance for loin depth [45]. Additionally, 273 

the CLCN1 gene participates in the transmission of nerve impulses, a crucial cellular communication process involved 274 

in the interaction between adipocytes and myogenic cells [66]. The interplay between these cell types is significant 275 

for various aspects of growth and development, including the regulation of myogenesis rate and extent, muscle growth, 276 

adipogenesis, lipogenesis/lipolysis, and energy substrate utilization [67]. 277 

Calcium ion binding (GO:0005509) denotes the process of binding to a calcium ion (Ca2+). Prior research has 278 

identified EHD1 as a candidate gene that likely possesses functional relevance to meat quality in Beijing black pigs 279 

[68]. Additionally, a GWAS study revealed a significant association between EHD1 and the meat-to-fat ratio (MFR) 280 

[69]. Furthermore, using EHD1 knockout mice, researchers demonstrated the regulatory role of EHD1 in cholesterol 281 

homeostasis and lipid droplet storage [70]. 282 

ACCEPTED



In conclusion, this study offers novel insights into the genetic basis of productive traits in pigs. The identified 283 

biological processes, pathways, and candidate genes serve as valuable resources for future investigations for genetic 284 

improvement with these traits. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation 285 

and genomic selection (GS) for productive traits in Landrace pig. 286 

 287 
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Tables and Figures 289 

Tables 290 
Table 1. Variance components and heritabilities for productive traits 291 

Traits Method 𝜎𝑎
2* 𝜎𝑒

2* 𝜎𝑃
2* ℎ2 (𝑆𝐸)* 

AGE (days) PBLUP 47.66 58.18 105.84 0.45 (0.01) 

 ssGBLUP 54.130 56.73 110.86 0.49 (0.01) 

ADG (g) PBLUP 766.41 923.76 1690.20 0.45 (0.01) 

 ssGBLUP 889.23 890.09 1779.30 0.49 (0.01) 

BF (mm) PBLUP 3.69 3.40 7.109 0.52 (0.01) 

 ssGBLUP 4.18 3.27 7.46 0.56 (0.01) 

EMA (cm2) PLBUP 1.89 6.46 8.34 0.22 (0.01) 

 ssGBLUP 1.96 6.50 8.45 0.23 (0.01) 

*𝜎𝑎
2: additive genetic, 𝜎𝑒

2: residual, 𝜎𝑃
2: phenotypic variances, ℎ2 (𝑆𝐸): heritability and standard error. 292 

 293 

  294 
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Table 2. Significance regions and candidate genes for productive traits 295 

Traits SSC1 Position (Mb) gVar (%)2 nSNP Candidate Genes 

AGE 

(days) 
1 159.24-159.88 2.05 9 RELCH, PIGN, RNF152, CDH20 

ADG 

(g) 

1 

2 

159.24-159.88 

4.97-5.71 

2.22 

1.01 

9 

10 

RELCH, PIGN, RNF152, CDH20 

NDUFV1, CABP4, CORO1B, PTPRCAP 

BF 

(mm) 

2 

 

 

5 

 

14 

18 

2.46-3.26 

0.07-0.42 

6.64-7.42 

65.61-66.36 

 

19.67-20.42 

6.88-7.67 

2.34 

1.46 

1.25 

1.68 

 

1.27 

1.27 

15 

5 

24 

18 

 

10 

28 

ACTE1, SHANK2, CTTN, ANO1 

PSMD13, COX8H 

MAP3K11 

NDUFA9, AKAP3, DYRK4, RAD51AP1, 

FGF6, C12orf4, TIGAR 

AADAT, MFAP3L, CLCN3, NEK1, SH3RF1 

ZYX, FAM131B 

EMA 

(cm2) 

2 

 

6 

 

7 

14 

15 

13.04-13.46 

10.19-10.99 

129.64-130.41 

102.18-102.96 

109.35-110.14 

26.65-27.30 

121.01-121.81 

2.07 

1.26 

1.62 

1.24 

1.42 

1.34 

1.01 

21 

23 

21 

13 

24 

13 

15 

CTNND1, BTBD18, TMX2, MED19, SERPING1 

DDB1, VWCE, PPAG3 

TTLL7, ADGRL2 

AKAIN1, DLGAP1 

ENSSSCG00000052115, ENSSSCG00000037928 

TMEM132C, ENSSSCG00000042937 

CRYBA2, CFAP65, IHH 
1Sus scrofa chromosome; 2represents the proportion of genetic variance explained by 0.8 Mb. 296 
 297 
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Table 3. Significant gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 299 

pathways associated with productive traits of Landrace pigs (p < 0.05) 300 

Gene ontology and KEGG pathway nGenes p-Value Gene 

GO:0051017-actin filament bundle assembly 2 0.02 CORO1B, RHOD 

GO:1902476-chloride transmembrane transport 3 0.03 ANO1, ANO9, CLCN1 

GO:0006303-double-strand break repair via 

nonhomologous end joining 
3 0.01 KDM2A, NHEJ1, PRPF19 

GO:0005886-plasma membrane 7 0.02 
CDH20, CORO1B, PIGN, PTPRCAP, 

RHOD, SPTBN2, SYT12 

GO:0035861-site of double-strand break 3 0.03 DDB1, NHEJ1, PRPF19 

GO:0000785-chromatin 5 0.04 
RAD51AP1, CDCA5, CCND2, DPF2, 

MEN1 

GO:0008076-voltage-gated potassium channel 

complex 
3 0.04 CTTN, KCNA1, KCNA6 

GO:0004190-aspartic-type endopeptidase 

activity 
6 0.00 

PGA5, pregnancy-associated 

glycoprotein 2-like, PPAG3, PIP 

GO:0005247-voltage-gated chloride channel 

activity 
2 0.04 CLCN1, CLCN3 

GO:0005509-calcium ion binding 9 0.04 
EHD1, IHH, NAALADL1, CDH20, 

CABP4, CAPN1, LTBP3, SYT12, VWCE 

ssc05012: Parkinson disease 6 0.03 
COX8H, NDUFV1, NDUFA9, PSMD13, 

PRKACB, UBE2L6 

ssc00982: Drug metabolism - cytochrome P450 3 0.04 GSTK1 

ssc04340: Hedgehog signaling pathway 3 0.04 IHH, CCND2, PRKACB 

ssc00480: Glutathione metabolism 2 0.04 glutathione S-transferase P-like 

ssc00980: Metabolism of xenobiotics by 

cytochrome P450 
2 0.04 glutathione S-transferase P-like 

ssc05204: Chemical carcinogenesis - DNA 

adducts 
2 0.04 glutathione S-transferase P-like 
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Figure 302 

 303 

Figure 1. Proportion of genetic variances of productive traits explained by 0.8 Mb windows 304 

 305 
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