Title (English)	Estimating vegetation index for outdoor free-range pig production using YOLO			
Running Title (English)	Estimating vegetation index for outdoor free-range pig production using YOLO			
Author	Sang-Hyon OH [first_author] ¹ , Hee-Mun Park ² , Jin-Hyun Park ²			
Affiliation	 ¹ Division of Animal Science, College of Agriculture and Life Science, Gyeongsang National University, Jinju 52725, Korea, Republic of ² School of Mechatronics Engineering, Engineering College of Convergence Technology, Gyeongsang National University, Jinju 52725, Korea, Republic of 			
Corresponding Author	Jin-Hyun Park (uabut@gnu.ac.kr, office: , mobile:)			
ORCID	Sang-Hyon OH (<u>https://orcid.org/0000-0002-9696-9638</u>) Hee-Mun Park (<u>https://orcid.org/0000-0001-5182-1739</u>) Jin-Hyun Park (<u>https://orcid.org/0000-0002-7966-0014</u>)			
Conflict of interest	No potential conflict of interest relevant to this article was reported.			
Funding information	-			
Acknowledgements				
Availability of data and material				
Author Contribution	Conceptualization: OH SH, Park JH Data curation: OH SH, Park JH Formal analysis: Park HM, Park JH Methodology: Park HM, Park JH Software: Park HM, Park JH Validation: OH SH, Park JH Investigation: OH SH, Park JH Writing - original draft: OH SH Writing - review & editing: OH SH, Park HM, Park JH			
IRB/IACUC approval	The present experiment was reviewed and approved by the Institutional Animal Care and Use Committee of North Carolina A&T University (IACUC: 12-003.0).			

2	Estimating vegetation index for outdoor free-range pig production using YOLO				
3					
4	Sang-Hyon OH ^{1†} , Hee-Mun Park ^{2†} and Jin-Hyun Park ^{2*}				
5					
6	¹ Division of Animal Science, College of Agriculture and Life Science, Gyeongsang National				
7	University, Jinju 52725, South Korea				
8					
9	² School of Mechatronics Engineering, Engineering College of Convergence Technology,				
10	Gyeongsang National University, Jinju 52725, South Korea				
11					
12	[†] Both authors contributed equally to this manuscript.				
13	*Corresponding author: <u>uabut@gnu.ac.kr</u>				
14					
15	ORCID				
16	Sang-Hyon Ohhttps://orcid.org/0000-0002-9696-9638				
17	Hee-Mun Park https://orcid.org/0000-0001-5182-1739				
18	Jin-Hyun Park https://orcid.org/0000-0002-7966-0014				
19					

20 Title of the manuscript: Estimating vegetation index for outdoor free-range pig production
21 using YOLO

22

23 ABSTRACT

The objective of this study was to quantitatively estimate the level of grazing area damage in 24 25 outdoor free-range pig production using a UAV with an RGB image sensor. Ten corn field images were captured by a UAV over approximately two weeks, during which gestating sows 26 were allowed to graze freely on the corn field measuring 100×50 m². The images were 27 corrected to a bird's-eye view, and then divided into 32 segments and sequentially inputted into 28 the YOLOv4 detector to detect the corn images according to their condition. The 43 raw 29 training images selected randomly out of 320 segmented images were flipped to create 86 30 images, and then these images were further augmented by rotating them in 5-degree increments 31 to create a total of 6,192 images. The increased 6192 images are further augmented by applying 32 three random color transformations to each image, resulting in 24,768 datasets. The occupancy 33 rate of corn in the field was estimated efficiently using YOLO. As of the first day of observation 34 (day 2), it was evident that almost all the corn had disappeared by the ninth day. When grazing 35 20 sows in a $50 \times 100 \text{ m}^2$ cornfield (250 m²/sow), it appears that the animals should be rotated 36 to other grazing areas to protect the cover crop after at least five days. In agricultural technology, 37 38 most of the research using machine and deep learning is related to the detection of fruits and pests, and research on other application fields is needed. In addition, large-scale image data 39 collected by experts in the field are required as training data to apply deep learning. If the data 40 41 required for deep learning is insufficient, a large number of data augmentation is required.

42

43 Keywords: outdoor, pig, production, vegetation index, image analysis

44 INTRODUCTION

Free-range outdoor pig production is steadily increasing in the United States and Europe due to the niche market strategy for small farmers, consumer antipathy to factory farm products, and the trends towards environmentally friendly and animal welfare practices. Ongoing research is also being conducted to support this trend [1-4].

One advantage of free-range outdoor pig production is that it can be operated with a small capital investment. However, one of the disadvantages is that the soil can become depleted due to the natural rooting behavior of pigs. If not appropriately managed, it can lead to groundwater eutrophication. Accordingly, the USDA (United States Department of Agriculture) requires that outdoor free-range pig production systems have at least 75% of the outdoor area covered in vegetative cover, such as crops or grass [5], which is to help prevent soil erosion, improve soil quality, and reduce the risk of nutrient runoff into nearby water sources.

As farmers who cannot accurately calculate the area covered by crops or vegetation may resort to using a sacrifice area to maintain the required 75% vegetative cover, it is not uncommon for pigs to be concentrated in a small area of the outdoor space while the rest is left unused. However, this can lead to overgrazing and soil damage in that area, increasing the risk of groundwater contamination from waste products. Therefore, it is important for farmers to implement good management practices, such as rotational grazing to minimize the environmental impact of outdoor pig production [6-8].

With the advancement of technology and science in recent years, photographing on Unmanned Aerial Vehicles (UAV) is no longer a difficult and expensive task [9]. If this technology were applied to outdoor free-range pig production to monitor the condition of grazing areas, it would greatly help producers maintain grazing areas at recommended levels without leaving them to degrade beyond repair. It may also be possible to estimate how much grass a pig has consumed in a particular grazing area by comparing the color changes in the captured images and the amount of pre- collected dry matter. This is particularly useful as it
can be challenging to gauge the amount of grass consumed by pigs as they may cause damage
to the grazing area.

YOLO (You Only Look Once) is an object detection technique utilizing deep learning in 72 images and was proposed by Redmon et al. [10], which is a system that can recognizes the 73 74 objects in an image and their locations at once, meaning it only needs to look at the image once. Compared to the classifier-based approach of CNN (Convolutional Neural Network), YOLO's 75 network architecture is relatively simple as it directly learns the loss function that has a 76 significant impact on detection performance. YOLO also has the ability to perform real-time 77 object detection, which has been widely used in many research areas [11-14]. Figure 1 shows 78 79 the schematic structure of the YOLOv4 object detection system.

80 The objective of this study was to develop an algorithm to quantitatively predict the extent 81 of damaged grazing area in outdoor free-range pig production using a UAV with an RGB image 82 sensor.

83

84 MATERIALS AND METHODS

85

86 Animal care

The present experiment was reviewed and approved by the Institutional Animal Care and Use
Committee of North Carolina A&T University (IACUC: 12-003.0).

89

90 Animals, diets, and experimental design

91 The images used for the analysis were taken at a swine unit located within the University Farm

92 of North Carolina A&T State University (Greensboro, NC, USA; 36°4'16.63"N,

93 79°43′33.02″E). A 50×100 m² grazing area was established for twenty pregnant sows that were 94 allowed to graze pasture two weeks prior to their expected delivery date. The grazing area was 95 planted with corn crops. The climate in this location is classified as humid subtropical climate 96 (Köppen climate classification), with hot and humid summers and mild winters. The average 97 annual precipitation is around 107 cm. The sows were given access to slightly less than 98 standard National Research Council balanced rations (2-3kg/day) considering the consumption 99 of corn in the pasture, but water *ad libitum*.

100

101 **Data collection**

The UAV used in this study is the Phantom 2 Vision model manufactured by DJI® with a quad-102 103 rotor system consisting of four propellers. Including a camera, the maximum takeoff weight is 1.3 kg, and it can fly for about 25 minutes using a 5,200 mAh lithium polymer battery (Table 104 1). It has a remote-control range of up to 300 m and is equipped with a high-resolution camera 105 sensor of 14 Megapixels and 1/2.3" size, with a fixed-focus wide-angle lens of 120° FOV and 106 a focal length of 28 mm. It is equipped with an automatic flight control device, and a 2.4 GHz 107 wireless remote controller was used for takeoff and landing as well as manual control of the 108 aircraft. 109

Ten aerial images were taken using the UAV from a height that allowed the entire grazing area to be captured in a single image, from September 1st to September 13th, 2015, excluding days with rain. Also, the images were captured around 10:00 AM without additional lighting, with an effort made to minimize the effect of shadows caused by the sun. We tried to maintain the same altitude and position using the GPS attached to the UAV. Figure 2 shows the images captured by the UAV over two weeks after releasing the pigs. Each image has a size of 4,384 \times 3,288 pixels.

118 Image analysis

This study aims to use only ten images captured by the UAV over a two-week period to numerically represent the process of cornfield degradation caused by gestation sows, using the degree of corn occupancy. Therefore, data augmentation is essential to utilize a small number of image data for deep learning. Data augmentation should be designed with consideration for the characteristics of images captured by the UAV. The YOLO network, which is one of the deep learning algorithms, was used with the augmented data to predict the occupancy level of cornfield in the images.

126

127 Correcting training images

The cornfield images in Figure 2 show two types of distortion. The first distortion is a convex fish-eye image caused by the wide-angle lens of the camera. The second distortion is due to the camera not being able to capture the cornfield at the exact center position and height, resulting in unequal sizes of the cornfield on the left and right sides. Therefore, it was necessary to correct for the distortions to accurately compare the extent of corn occupancy in the ten images. The fish-eye distortion was corrected using the method proposed by Scaramuzza [15].

By the way, the external and internal parameters of the camera had to be obtained to 134 connect 3D world coordinates to a 2D image. World coordinate points were selected in the 135 136 distorted fish-eye image and converted into camera coordinates using the external parameters. The camera coordinates are then mapped onto the image plane using the internal parameters. 137 The distorted images captured from an inaccurate position and height of the UAV were solved 138 139 by converting them into bird-eye views which are created using inverse perspective mapping to generate a 2D image of the scene. Figure 3 represents the process of correcting the image. 140 Figure 3(a) shows the distorted original image, Figure 3(b) is an example of converting the 141 fish-eye image into an undistorted image, and Figure 3(c) represents the result of correction 142

143 using the bird's eye view with the first corrected image (Figure 3(b)). However, it was difficult 144 to achieve perfect image correction due to the uncertainty of the camera's internal and external 145 parameters. The corrected images were cropped to a resolution of 3,520×1,760 pixels to 146 facilitate image comparison.

147

148 Training data

Ten corrected images are very insufficient to train a deep learning network. Deep learning systems based on deep artificial neural networks are highly dependent on the number of training data for their performance. The large number of training data prevents overfitting of prediction performance, and improves the generalization capability of the model, thereby improving object detection performance. Geometric methods, such as flipping and rotating images, and color adjustment methods are the most commonly used techniques for data augmentation in deep learning systems [16-17].

Although the number of images obtained through aerial photography is very small, the 156 image resolution is still very high at 3,584×1,792 pixels even after image correction. If a high-157 158 resolution image is input to the deep learning network, the number of input parameters of the network increases, requiring a very long training and processing time. In addition, despite the 159 high resolution of the images, the corn plants, which are our object of interest, have very small 160 161 pixel sizes, making it very difficult to select the objects accurately. Therefore, it is useful to divide the high-resolution images into appropriate sizes for network training, and then 162 reassemble the network's results for the segmented images for further processing. Therefore, 163 164 the ten corrected images were segmented into sizes suitable for deep learning in this study.

The actual size of the experimental subject, the corn field, is $100 \times 50 \text{ m}^2$. Therefore, it was divided into eight parts horizontally and four parts vertically at intervals of 12.5m, resulting in 32 images with a resolution of 448×448 pixels, as shown in Figure 4. Figure 5 shows 43 raw training images selected randomly out of 320 segmented images, each with different degreesof corn devastation.

170

171 Data labels

Data labels are required for training deep learning networks. The images of the cornfield were labeled into three categories based on the state of the corn: $Corn_I$, $Corn_D$, $Corn_S$.

Corn₁ refers to the preserved state of corn that had not been eaten or damaged by sows. This 174 state is characterized by a clear green color of the corn, without any bending caused by sow 175 movement. $Corn_{D}$ refers to the state of corn that had been damaged by sows, with corn lying at 176 an angle or in a withering state. Corn_s refers to the severely damaged state of corn where sows 177 had almost completely eaten the corn, leaving only the cob. Table 2 defines these three labels. 178 The raw training images were converted into data using the three defined labels based on 179 the state and size of the corn, as determined by human observation. The sample in Table 2 180 shows an example of the 43 images. The definition for each labeled bounding box is as shown 181 in Equation (1). 182

183

$$Box_{ij}(Bx_{ij}, By_{ij}, Bw_{ij}, Bh_{ij})$$
(1)

184 where, *i* denotes the label index, *j* denotes the bounding box number, (Bx_{ij}, By_{ij}) represents 185 the coordinates of the top-left corner of the bounding box, and (Bw_{ij}, Bh_{ij}) represents the 186 width and height of the bounding box.

187

188 Data augmentation

Data augmentation is a method of increasing the size of a dataset by generating new data that reflects the characteristics of the original data, especially in cases where the original dataset is limited. Although we have created 43 basic datasets for image segmentation and data labeling, it is still a very small number for training deep learning networks. Images obtained from the UAV are particularly advantageous for data augmentation techniques such as rotating or flipping images to increase data. In general, small angles are commonly used when performing data augmentation by rotation transformation. For example, an image of a person rotated by 180 degrees is not needed as a training image. On the other hand, it is irrelevant even if the image is rotated by 180° for corn images captured by UAVs. Furthermore, flipped images (both horizontally and vertically) can also be used as training images.

To effectively increase the number of training images, the 43 original data images were flipped to create 86 images, and then these images were further augmented by rotating them in 5-degree increments to create a total of 6,192 images. The increased 6192 images are further augmented by applying three random color transformations to each image, resulting in a total of 24,768 datasets. Figure 5 represents this process described above.

204

205 YOLOv4 Object Detection and Network Training

Figure 7 shows the YOLOv4 object detector used in this study to recognize the degree of corn 206 devastation. In this study, ResNet50 was used as a backbone for detecting object characteristics, 207 208 and SPP (Spatial Pyramid Pooling) and PANet (Path Augmented Network) were applied to the neck. The head was the same as YOLOv3. The output of the head represents the position and 209 size of the bounding box, the probability of confidence score on the object, and the probability 210 of class. The final output of YOLOv4 selects the final bounding boxes by applying the output 211 values of the head and the non-maximum suppression (NMS). The input of the YOLOv4 212 213 detector is an image with 448×448 pixels. After correction, the image is divided into 32 (4×8) segments and inputted into the YOLOv4 detector. YOLOv4 extracts the features of the corn 214 image when the image is inputted, and outputs the position and size of the corn image as well 215 216 as the probability of each class.

The YOLOv4 network used in this study was provided by Matlab[®] [18], and the backbone

218 network was changed by modifying the input layer of the network to match the augmented
219 dataset using ResNet50. For the training parameters, the initial training rate was set to 0.001,
220 and Adam Optimizer was used for the training method. The network was trained for a
221 maximum of 30 epochs with a mini-batch size of 32. The hardware used in the study includes

the Intel i9-12900 central processing unit and NVIDIA RTX-A6000 graphics accelerator.

The YOLOv4 network uses anchor boxes with specific heights and widths of predefined bounding boxes to improve the efficiency and object detection performance of the network, which also has a significant impact on training time. To determine the number of specific bounding boxes, the average IoU (Intersection over Union) value was calculated for all the bounding boxes in the prepared dataset, and the optimal value was selected. Figure 8 shows the average IoU value for all bounding boxes in the dataset by the number of specific boxes. The average IoU value is high at 0.86 when the number of specific boxes is 4.

The total loss function used for training the YOLOv4 network is equation (2), where the object classification loss and object confidence loss are computed using binary cross-entropy, and the bounding box localization error is computed using the Root Mean Square Error (RMSE).

234

217

$$TotalLoss = a \times clsloss + b \times objloss + c \times boxloss$$
(2)

where, [a, b, c] = [1, 1, 1] represents the weights for each loss term, where *clsloss* is the object classification loss, *objloss* is the object confidence loss, and *boxloss* is the bounding box localization error.

The YOLOv4 network reached a RMSE of 0.21 after 30 epochs of training. Figure 8
shows some of the results of YOLOv4 network after training on 24,768 images.

240

241 Estimating the distribution and occupancy of corn

The proposed system aims to estimate the distribution and occupancy of corn for a specific 242 date using a YOLOv4 network trained on a dataset of 24,768 images generated through data 243 augmentation. Figure 10 shows an overview of the proposed overall system using a corn 244 image for a specific date. As the input of the trained YOLOv4 detector is a 448×448 pixel 245 image, the captured image for a specific date is corrected to 3,584×1,792 pixels and then 246 sequentially inputted into the YOLOv4 detector by dividing it into 32 (4×8) segments. When 247 an image is inputted into YOLOv4, it extracts features of the corn image and calculates the 248 location and size of the corn in the image, as well as the probability of an object existing and 249 the class probability. Objects with a probability of existence and a class probability above a 250 251 certain threshold are selected for bounding boxes by NMS. For each segmented image, the number and area of labels detected by YOLOv4 are accumulated and calculated. As YOLOv4 252 outputs the location and size of corn in the image, the occupancy rate is calculated using 253 Equation (3) by setting weights based on the three states of corn. 254

$$Occupancy_{i} = \begin{pmatrix} w_{1} \times \sum_{j=1}^{32} \sum ACorn_{I,ij} + w_{2} \times \sum_{j=1}^{32} \sum ACorn_{D,ij} \\ + w_{3} \times \sum_{j=1}^{32} \sum ACorn_{S,ij} \end{pmatrix} / Max_{ACorn}$$
(3)

255

where, i = 1, 2, ..., 10 represents the index of the corn field image and j = 1, 2, ..., 32 represents the segmented image. w_1, w_2, w_3 are the weights assigned to each state of corn. $ACorn_{I,ij}$ represents the area of $Corn_I$, $ACorn_{D,ij}$ represents the area of $Corn_D$, and $ACorn_{S,ij}$ represents the area of $Corn_s$. Max_{ACorn} represents the maximum area of corn occupancy.

260

261 **RESULTS**

262 Figure 11 shows the detection results of the images captured 10 times in chronological order. Figure 11(a) shows the number and total area of intact corn objects represented by Corn, 263 without being damaged by sows. It can be seen that it decreases exponentially over time. Figure 264 11(b) represents the number and total area of corn plants $Corn_{D}$. It can be seen that it linearly 265 increases until the fourth day, and then decreases afterward. Figure 11(c) represents the number 266 and total area of corn plants Corn_s. It can be seen that it sharply increases until the fourth day 267 and gradually decreases afterward similar to the results of $Corn_{D}$. Figure 11(d) represents the 268 occupancy rate of corn plants calculated using Equation (3). The weights for corn plant 269 conditions were set as $[w_1, w_2, w_3] = [1, 0.5, 0.2]$, and the date with the largest area of land was 270 set as the second day because no image was taken on the first day when the sow was released 271 into the pasture. It can be seen that the occupancy rate of corn plants decreases very rapidly 272 over time. 273

As a result, the occupancy rate of corn in the field was estimated efficiently using YOLO. As of the first day of observation (day 2), it was evident that almost all the corn had disappeared by the ninth day. When grazing 20 sows in a $50 \times 100 \text{ m}^2$ cornfield (250 m^2 /sow), it appears that the animals should be rotated to other grazing areas to protect the cover crop after at least five days.

279

280 **DISCUSSION**

281 **YOLO object detection system**

The input image was divided into grid cells through CNN, and objects are detected by generating anchor boxes and class probabilities for each cell section to predict the object's location and size [19]. Anchor boxes are boundary boxes with predefined height and width, and they are much faster than other detection systems because they do not use a separate 286 network to extract candidate regions, unlike two-stage detectors. The YOLO object detection system has been improved by many researchers, and YOLOv4 demonstrates faster and more 287 accurate detection rates among various versions by incorporating state-of-the-art deep learning 288 techniques such as Weighted Residual Connections (WRC), Cross Stage Partial Connections 289 (CSP), and the Complete Intersection over Union (CioU) loss [20]. The YOLOv4 network 290 291 consists of a backbone network and a neck to detect object features, and the head outputs the object's position, the probability of being on the object, and the class probabilities. The final 292 293 objects were detected by applying this.

Recently, image and video processing techniques have been widely applied in various fields, especially in the field of computer vision, where there has been significant research on image classification, object detection, and multiple object detection within images. As a classical image processing method, the image processing-based approach classifies and recognizes objects based on their direct features such as color, texture, and edges. This approach often results in significantly different output in object recognition within images due to lighting conditions, shadows, and camera settings.

For several years, object detection research in image recognition using machine and deep learning techniques has demonstrated significant advantages in computer vision tasks, resulting in significant improvements in object detection and recognition performance compared to traditional approaches [21]. This progress has been made possible by the utilization of big data, advances in high-performance hardware such as Graphic Processing Units (GPUs), and the development of useful learning algorithms for deep learning training, which has led to the evolution of practical and useful technologies.

The CNN(Convolutional Neural Network) is the most widely used deep learning algorithm for object detection research and was developed by LeCun in the late 1990s, which has a very high accuracy in object detection compared to traditional image processing methods [22]. In addition to CNN, YOLO is widely used in object detection research due to its fastprocessing time and high accuracy. Many studies have been conducted on YOLO in object recognition [10]. However, CNN requires algorithms such as Region-CNN (RCNN) to recognize the exact location of objects within an image in addition to object detection [23]. However, while RCNN has improved the accuracy of object detection, it requires a lot of computational time compared to traditional image processing methods and has an extremely high complexity of network training and algorithm.

318 On the other hand, YOLO has fast object detection and high accuracy. Machine and deep learning-based farming technologies are mainly applied for fruit detection and ripeness 319 classification, as well as predicting pests and diseases in fruits [19]. In early machine learning 320 321 research, Quiang et al. [24] identified fruits and tree branches using an SVM (Support Vector Machine) trained in the RGB color space. While it showed superior performance compared to 322 previous threshold-based methods, it is still heavily affected by lighting conditions. Zhao et al. 323 [25] applied a combination of the AdaBoost classifier and color analysis for tomato detection, 324 but real-time processing was difficult due to the slow processing speed. Luo et al. [26] also 325 326 suggested an AdaBoost and color feature-based framework for grapefruit detection, but it was affected by weather conditions and changes in lighting such as leaf covering. 327

Traditional machine learning research has greatly improved image processing-based 328 329 methods, but the design of proposed methods is complicated and only adaptable to some specific conditions, resulting in poor flexibility. Deep learning has overcome the limitations of 330 traditional machine learning by being more abstract and generalizable, particularly through the 331 332 use of CNNs. Additionally, the utilization of big data has made it possible to apply these technologies to a range of agricultural problems, including image processing. Sa et al. [27] 333 applied Faster R-CNN [28] to RGB and near-infrared images for fruit detection and showed 334 better performance than previous methods. Mota-Delfin et al. [11] used YOLO to detect corn 335

effectively in a weed-rich background using images captured by RPAS (Remotely PilotedAerial Systems) and predicted the yield [10].

The basic data augmentation techniques include image processing methods that preserve the characteristics of the original image while maintaining diverse features of the objects. There are image processing techniques such as flipping, rotating, cropping images, and adjusting their brightness and color using various methods [16].

342

343 CONCLUSION

In agricultural technology, most of the research using machine and deep learning is related to 344 the detection of fruits and pests, and research on other application fields is needed. In addition, 345 large-scale image data collected by experts in the field are required as training data to apply 346 deep learning. However, collecting training data takes a lot of time and effort. If there are few 347 images for training, the effort and time for acquiring training images can be reduced while 348 increasing training images through image segmentation and data augmentation (flip, rotation, 349 brightness, color adjustment conversion) as in the proposed method. In addition, calculating 350 the occupancy level of the whole image after calculating the occupancy level of each segmented 351 image, as in the proposed method, is very effective. It is an excellent and effective technique 352 to classify the status of corn $(Corn_1, Corn_2, Corn_3)$ by date using the YOLO network. 353 Therefore, the proposed method can be easily applied to many other fields and guarantees high 354 precision. 355

356

357 **CONFLICT OF INTEREST**

358 We certify that there is no conflict of interest with any financial organization regarding the 359 material discussed in the manuscript.

361 **REFERENCES**

- Jang JC, Oh SH. Management factors affecting gestating sows' welfare in group housing
 systems A review. Anim Biosci 2022;35(12): 1817-1826.
- 2. Choi W, Nassif N, Whitley NC, Oh SH. Comparison of temperature susceptibility for three
 types of outdoor farrowing huts. Applied Engineering in Agriculture 2014;30(2): 241-247.
- 366 3. Park H, Min B, Oh SH. Research trends in outdoor pig production. Animal Bioscience 2017a;30(9):1207-1214.
- 4. Park H, Oh SH. Seasonal variation in growth of Berkshire pigs in alternative production
 systems. Animal Bioscience 2017b;30(5):749-754.
- 5. NRCS. 2007. Conservation planning guidelines for outdoor swine operations.

6. Pietrosemoli S, Green J, Bordeaux C, Menius L, Curtis J. 2012. Conservation practices in outdoor hog production systems: Findings and recommendations from the Center for Environmental Farming Systems. Center For Environmental Farming Systems, North Carolina State University.

- 375 7. Whitley N, Hanson D, Morrow WEM, See MT, Oh SH. Comparison of pork quality and
 376 sensory characteristics for antibiotic free Yorkshire crossbreds raised in hoop houses. Animal
 377 Bioscience 2012a;25(11):1634-1640.
- 8. Whitley N, Morrow WEM, See MT, Oh SH. 2012b. Comparison of growth performance in antibiotic-free Yorkshire crossbreds sired by Berkshire, Large Black, and Tamworth breeds raised in hoop structures. Animal Bioscience 2012b;25(10):1351-1356.
- 9. Lee JM, Lee YH, Choi NK, Park H, Kim HC. Deep-Learning-based plant anomaly detection
 using a drone. Journal of the Semiconductor & Display Technology 2021;20(1):94-98.
- 10. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object
 detection. Proceedings of the IEEE conference on computer vision and pattern recognition.
 2016;779-788. 10.1109/CVPR.2016.91
- Mota-Delfin C, López-Canteñs G, López-Cruz IL, Romantchik-Kriuchkova E, Olguín Rojas JC. Detection and counting of corn plants in the presence of weeds with convolutional
 neural networks. Remote Sensing. 2022;14(19):4892. doi.org/10.3390/rs14194892.

- 389 12. Du J. Understanding of object detection based on CNN family and YOLO. J Physics:
 390 Conference Series. 2018. IOP Publishing.
- 13. Viswanatha V, Chandana R, Ramachandra A. Real time object detection system with YOLO
 and CNN Models: A Review. J Xi'an Univ Archit Technol. 2022;14(7):144-151.
- 14. Tabelini L, Berriel R, Paixao TM, Badue C, De Souza AF, Oliveira-Santos T. Keep your
 eyes on the lane: Real-time attention-guided lane detection. Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition. 2021.
- Scaramuzza D, Martinelli A, Siegwart R. A toolbox for easily calibrating omnidirectional
 cameras. Proceeding to IEEE International Conference on Intelligent Robots and Systems.
 IEEE. 2006.
- 399 16. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning.
 400 Journal of big data, 2019;6(1):1-48.
- 17. Taylor L, Nitschke G. Improving deep learning with generic data augmentation. in 2018
 IEEE Symposium Series on Computational Intelligence (SSCI). 2018.
- 403 18. Works TM. Lidar object detection using complex-YOLO v4 Network. 2022.
- 404 19. Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. Computers and
 405 Electronics in Agriculture. 2018;147:70-90.
- 20. Bochkovskiy A, Wang CY, Liao HYM. Yolov4: Optimal speed and accuracy of object
 detection. arXiv preprint arXiv:2004.10934, 2020.
- 408 21. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer
 409 vision: a brief review. Comput Intell Neurosci 2018;7068349.
- 22. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
 recognition. Proceedings of the IEEE, 1998;86(11):2278-2324.
- 412 23. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object
 413 detection and semantic segmentation. Proceedings of the IEEE conference on computer
 414 vision and pattern recognition. 2014;580-587. 10.1109/CVPR.2014.81
- 415 24. Qiang L, Jianrong C, Bin L, Lie D, Yajing Z. Identification of fruit and branch in natural
 416 scenes for citrus harvesting robot using machine vision and support vector machine. Int J

- 417 Agric Biol Eng. 2014;7(2):115-121.
- 25. Zhao Y, Gong L, Zhou B, Huang Y, Liu C. Detecting tomatoes in greenhouse scenes by
 combining AdaBoost classifier and colour analysis. Biosyst Eng. 2016;148:127-137.
- 26. Luo L, Tang Y, Zou X, Wang C, Zhang P, Feng W. Robust grape cluster detection in a
 vineyard by combining the AdaBoost framework and multiple color components. Sensors.
 2016;16(12):2098.
- 423 27. Sa I, Ge Z, Dayoub F, Upcroft B, Perez T, McCool C. Deepfruits: A fruit detection system
 424 using deep neural networks. Sensors. 2016;16(8):1222.
- 28. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with
 region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.
 2017;20(6):1127,1140, 10,1100/TPA MI 2016,2577021,28
- 427 2017;39(6):1137-1149. 10.1109/TPAMI.2016.2577031 28.

Table 1. Specifications of the UAV platform used in the study.

Airframe	DJI Phantom 2 Quad-rotor	
Dimensions	43.2 x 20.6 x 31.75 cm	
Battery	3S LiPo 5200mAh, 11.1V	
Takeoff Weight	≤1300g	
Maximum Flight Time	25min (approx.)	
Signal Frequency	2.4GHz ISM	
Diagonal Length	350mm	

Table 2. Data labels

Label	Label index	Color	Corn description	Sample
Corn _I	0	Blue	Intact corn	
Corn _D	1	Yellow	Damaged corn	
Corn _s	2	Red	Corn with stubble	

Figure 5. Raw training images

