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Title of the manuscript: Estimating vegetation index for outdoor free-range pig production 20 

using YOLO 21 

 22 

ABSTRACT 23 

The objective of this study was to quantitatively estimate the level of grazing area damage in 24 

outdoor free-range pig production using a UAV with an RGB image sensor. Ten corn field 25 

images were captured by a UAV over approximately two weeks, during which gestating sows 26 

were allowed to graze freely on the corn field measuring 100×50 m2. The images were 27 

corrected to a bird's-eye view, and then divided into 32 segments and sequentially inputted into 28 

the YOLOv4 detector to detect the corn images according to their condition. The 43 raw 29 

training images selected randomly out of 320 segmented images were flipped to create 86 30 

images, and then these images were further augmented by rotating them in 5-degree increments 31 

to create a total of 6,192 images. The increased 6192 images are further augmented by applying 32 

three random color transformations to each image, resulting in 24,768 datasets. The occupancy 33 

rate of corn in the field was estimated efficiently using YOLO. As of the first day of observation 34 

(day 2), it was evident that almost all the corn had disappeared by the ninth day. When grazing 35 

20 sows in a 50×100 m2 cornfield (250 m2/sow), it appears that the animals should be rotated 36 

to other grazing areas to protect the cover crop after at least five days. In agricultural technology, 37 

most of the research using machine and deep learning is related to the detection of fruits and 38 

pests, and research on other application fields is needed. In addition, large-scale image data 39 

collected by experts in the field are required as training data to apply deep learning. If the data 40 

required for deep learning is insufficient, a large number of data augmentation is required. 41 

 42 

Keywords: outdoor, pig, production, vegetation index, image analysis  43 
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INTRODUCTION 44 

Free-range outdoor pig production is steadily increasing in the United States and Europe due 45 

to the niche market strategy for small farmers, consumer antipathy to factory farm products, 46 

and the trends towards environmentally friendly and animal welfare practices. Ongoing 47 

research is also being conducted to support this trend [1-4].  48 

One advantage of free-range outdoor pig production is that it can be operated with a small 49 

capital investment. However, one of the disadvantages is that the soil can become depleted due 50 

to the natural rooting behavior of pigs. If not appropriately managed, it can lead to groundwater 51 

eutrophication. Accordingly, the USDA (United States Department of Agriculture) requires that 52 

outdoor free-range pig production systems have at least 75% of the outdoor area covered in 53 

vegetative cover, such as crops or grass [5], which is to help prevent soil erosion, improve soil 54 

quality, and reduce the risk of nutrient runoff into nearby water sources.  55 

As farmers who cannot accurately calculate the area covered by crops or vegetation may 56 

resort to using a sacrifice area to maintain the required 75% vegetative cover, it is not 57 

uncommon for pigs to be concentrated in a small area of the outdoor space while the rest is left 58 

unused. However, this can lead to overgrazing and soil damage in that area, increasing the risk 59 

of groundwater contamination from waste products. Therefore, it is important for farmers to 60 

implement good management practices, such as rotational grazing to minimize the 61 

environmental impact of outdoor pig production [6-8].  62 

With the advancement of technology and science in recent years, photographing on 63 

Unmanned Aerial Vehicles (UAV) is no longer a difficult and expensive task [9]. If this 64 

technology were applied to outdoor free-range pig production to monitor the condition of 65 

grazing areas, it would greatly help producers maintain grazing areas at recommended levels 66 

without leaving them to degrade beyond repair. It may also be possible to estimate how much 67 

grass a pig has consumed in a particular grazing area by comparing the color changes in the 68 
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captured images and the amount of pre- collected dry matter. This is particularly useful as it 69 

can be challenging to gauge the amount of grass consumed by pigs as they may cause damage 70 

to the grazing area.  71 

YOLO (You Only Look Once) is an object detection technique utilizing deep learning in 72 

images and was proposed by Redmon et al. [10], which is a system that can recognizes the 73 

objects in an image and their locations at once, meaning it only needs to look at the image once. 74 

Compared to the classifier-based approach of CNN (Convolutional Neural Network), YOLO's 75 

network architecture is relatively simple as it directly learns the loss function that has a 76 

significant impact on detection performance. YOLO also has the ability to perform real-time 77 

object detection, which has been widely used in many research areas [11-14]. Figure 1 shows 78 

the schematic structure of the YOLOv4 object detection system. 79 

The objective of this study was to develop an algorithm to quantitatively predict the extent 80 

of damaged grazing area in outdoor free-range pig production using a UAV with an RGB image 81 

sensor. 82 

 83 

MATERIALS AND METHODS 84 

 85 

Animal care 86 

The present experiment was reviewed and approved by the Institutional Animal Care and Use 87 

Committee of North Carolina A&T University (IACUC: 12-003.0). 88 

 89 

Animals, diets, and experimental design 90 

The images used for the analysis were taken at a swine unit located within the University Farm 91 

of North Carolina A&T State University (Greensboro, NC, USA; 36°4′16.63″N, 92 

ACCEPTED



6 

 

79°43′33.02″E). A 50×100 m2 grazing area was established for twenty pregnant sows that were 93 

allowed to graze pasture two weeks prior to their expected delivery date. The grazing area was 94 

planted with corn crops. The climate in this location is classified as humid subtropical climate 95 

(Köppen climate classification), with hot and humid summers and mild winters. The average 96 

annual precipitation is around 107 cm. The sows were given access to slightly less than 97 

standard National Research Council balanced rations (2-3kg/day) considering the consumption 98 

of corn in the pasture, but water ad libitum. 99 

 100 

Data collection 101 

The UAV used in this study is the Phantom 2 Vision model manufactured by DJI® with a quad-102 

rotor system consisting of four propellers. Including a camera, the maximum takeoff weight is 103 

1.3 kg, and it can fly for about 25 minutes using a 5,200 mAh lithium polymer battery (Table 104 

1). It has a remote-control range of up to 300 m and is equipped with a high-resolution camera 105 

sensor of 14 Megapixels and 1/2.3˝ size, with a fixed-focus wide-angle lens of 120° FOV and 106 

a focal length of 28 mm. It is equipped with an automatic flight control device, and a 2.4 GHz 107 

wireless remote controller was used for takeoff and landing as well as manual control of the 108 

aircraft.  109 

Ten aerial images were taken using the UAV from a height that allowed the entire grazing 110 

area to be captured in a single image, from September 1st to September 13th, 2015, excluding 111 

days with rain. Also, the images were captured around 10:00 AM without additional lighting, 112 

with an effort made to minimize the effect of shadows caused by the sun. We tried to maintain 113 

the same altitude and position using the GPS attached to the UAV. Figure 2 shows the images 114 

captured by the UAV over two weeks after releasing the pigs. Each image has a size of 4,384 115 

× 3,288 pixels.  116 

 117 
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Image analysis 118 

This study aims to use only ten images captured by the UAV over a two-week period to 119 

numerically represent the process of cornfield degradation caused by gestation sows, using the 120 

degree of corn occupancy. Therefore, data augmentation is essential to utilize a small number 121 

of image data for deep learning. Data augmentation should be designed with consideration for 122 

the characteristics of images captured by the UAV. The YOLO network, which is one of the 123 

deep learning algorithms, was used with the augmented data to predict the occupancy level of 124 

cornfield in the images. 125 

 126 

Correcting training images 127 

The cornfield images in Figure 2 show two types of distortion. The first distortion is a convex 128 

fish-eye image caused by the wide-angle lens of the camera. The second distortion is due to the 129 

camera not being able to capture the cornfield at the exact center position and height, resulting 130 

in unequal sizes of the cornfield on the left and right sides. Therefore, it was necessary to 131 

correct for the distortions to accurately compare the extent of corn occupancy in the ten images. 132 

The fish-eye distortion was corrected using the method proposed by Scaramuzza [15]. 133 

By the way, the external and internal parameters of the camera had to be obtained to 134 

connect 3D world coordinates to a 2D image. World coordinate points were selected in the 135 

distorted fish-eye image and converted into camera coordinates using the external parameters. 136 

The camera coordinates are then mapped onto the image plane using the internal parameters. 137 

The distorted images captured from an inaccurate position and height of the UAV were solved 138 

by converting them into bird-eye views which are created using inverse perspective mapping 139 

to generate a 2D image of the scene. Figure 3 represents the process of correcting the image. 140 

Figure 3(a) shows the distorted original image, Figure 3(b) is an example of converting the 141 

fish-eye image into an undistorted image, and Figure 3(c) represents the result of correction 142 
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using the bird's eye view with the first corrected image (Figure 3(b)). However, it was difficult 143 

to achieve perfect image correction due to the uncertainty of the camera's internal and external 144 

parameters. The corrected images were cropped to a resolution of 3,520×1,760 pixels to 145 

facilitate image comparison.  146 

 147 

Training data 148 

Ten corrected images are very insufficient to train a deep learning network. Deep learning 149 

systems based on deep artificial neural networks are highly dependent on the number of 150 

training data for their performance. The large number of training data prevents overfitting of 151 

prediction performance, and improves the generalization capability of the model, thereby 152 

improving object detection performance. Geometric methods, such as flipping and rotating 153 

images, and color adjustment methods are the most commonly used techniques for data 154 

augmentation in deep learning systems [16-17].  155 

Although the number of images obtained through aerial photography is very small, the 156 

image resolution is still very high at 3,584×1,792 pixels even after image correction. If a high-157 

resolution image is input to the deep learning network, the number of input parameters of the 158 

network increases, requiring a very long training and processing time. In addition, despite the 159 

high resolution of the images, the corn plants, which are our object of interest, have very small 160 

pixel sizes, making it very difficult to select the objects accurately. Therefore, it is useful to 161 

divide the high-resolution images into appropriate sizes for network training, and then 162 

reassemble the network's results for the segmented images for further processing. Therefore, 163 

the ten corrected images were segmented into sizes suitable for deep learning in this study.  164 

The actual size of the experimental subject, the corn field, is 100×50 m2. Therefore, it was 165 

divided into eight parts horizontally and four parts vertically at intervals of 12.5m, resulting in 166 

32 images with a resolution of 448×448 pixels, as shown in Figure 4. Figure 5 shows 43 raw 167 
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training images selected randomly out of 320 segmented images, each with different degrees 168 

of corn devastation.  169 

 170 

Data labels 171 

Data labels are required for training deep learning networks. The images of the cornfield were 172 

labeled into three categories based on the state of the corn: 𝐶𝑜𝑟𝑛𝐼, 𝐶𝑜𝑟𝑛𝐷, 𝐶𝑜𝑟𝑛𝑆. 173 

𝐶𝑜𝑟𝑛𝐼  refers to the preserved state of corn that had not been eaten or damaged by sows. This 174 

state is characterized by a clear green color of the corn, without any bending caused by sow 175 

movement. 𝐶𝑜𝑟𝑛𝐷 refers to the state of corn that had been damaged by sows, with corn lying at 176 

an angle or in a withering state. 𝐶𝑜𝑟𝑛𝑆 refers to the severely damaged state of corn where sows 177 

had almost completely eaten the corn, leaving only the cob. Table 2 defines these three labels. 178 

The raw training images were converted into data using the three defined labels based on 179 

the state and size of the corn, as determined by human observation. The sample in Table 2 180 

shows an example of the 43 images. The definition for each labeled bounding box is as shown 181 

in Equation (1).  182 

𝐵𝑜𝑥
𝑖𝑗
(𝐵𝑥𝑖𝑗, 𝐵𝑦𝑖𝑗 , 𝐵𝑤𝑖𝑗, 𝐵ℎ𝑖𝑗)    (1) 183 

where, 𝒊 denotes the label index, 𝒋 denotes the bounding box number, (𝐵𝑥𝑖𝑗 , 𝐵𝑦𝑖𝑗) represents 184 

the coordinates of the top-left corner of the bounding box, and (𝐵𝑤𝑖𝑗 , 𝐵ℎ𝑖𝑗)  represents the 185 

width and height of the bounding box.  186 

 187 

Data augmentation 188 

Data augmentation is a method of increasing the size of a dataset by generating new data that 189 

reflects the characteristics of the original data, especially in cases where the original dataset is 190 

limited. Although we have created 43 basic datasets for image segmentation and data labeling, 191 
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it is still a very small number for training deep learning networks. Images obtained from the 192 

UAV are particularly advantageous for data augmentation techniques such as rotating or 193 

flipping images to increase data. In general, small angles are commonly used when performing 194 

data augmentation by rotation transformation. For example, an image of a person rotated by 195 

180 degrees is not needed as a training image. On the other hand, it is irrelevant even if the 196 

image is rotated by 180° for corn images captured by UAVs. Furthermore, flipped images (both 197 

horizontally and vertically) can also be used as training images.  198 

To effectively increase the number of training images, the 43 original data images were 199 

flipped to create 86 images, and then these images were further augmented by rotating them in 200 

5-degree increments to create a total of 6,192 images. The increased 6192 images are further 201 

augmented by applying three random color transformations to each image, resulting in a total 202 

of 24,768 datasets. Figure 5 represents this process described above.  203 

 204 

YOLOv4 Object Detection and Network Training 205 

Figure 7 shows the YOLOv4 object detector used in this study to recognize the degree of corn 206 

devastation. In this study, ResNet50 was used as a backbone for detecting object characteristics, 207 

and SPP (Spatial Pyramid Pooling) and PANet (Path Augmented Network) were applied to the 208 

neck. The head was the same as YOLOv3. The output of the head represents the position and 209 

size of the bounding box, the probability of confidence score on the object, and the probability 210 

of class. The final output of YOLOv4 selects the final bounding boxes by applying the output 211 

values of the head and the non-maximum suppression (NMS). The input of the YOLOv4 212 

detector is an image with 448×448 pixels. After correction, the image is divided into 32 (4×8) 213 

segments and inputted into the YOLOv4 detector. YOLOv4 extracts the features of the corn 214 

image when the image is inputted, and outputs the position and size of the corn image as well 215 

as the probability of each class. 216 
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The YOLOv4 network used in this study was provided by MatlabⓇ [18], and the backbone 217 

network was changed by modifying the input layer of the network to match the augmented 218 

dataset using ResNet50. For the training parameters, the initial training rate was set to 0.001, 219 

and Adam Optimizer was used for the training method. The network was trained for a 220 

maximum of 30 epochs with a mini-batch size of 32. The hardware used in the study includes 221 

the Intel i9-12900 central processing unit and NVIDIA RTX-A6000 graphics accelerator.  222 

The YOLOv4 network uses anchor boxes with specific heights and widths of predefined 223 

bounding boxes to improve the efficiency and object detection performance of the network, 224 

which also has a significant impact on training time. To determine the number of specific 225 

bounding boxes, the average IoU (Intersection over Union) value was calculated for all the 226 

bounding boxes in the prepared dataset, and the optimal value was selected. Figure 8 shows 227 

the average IoU value for all bounding boxes in the dataset by the number of specific boxes. 228 

The average IoU value is high at 0.86 when the number of specific boxes is 4.  229 

The total loss function used for training the YOLOv4 network is equation (2), where the 230 

object classification loss and object confidence loss are computed using binary cross-entropy, 231 

and the bounding box localization error is computed using the Root Mean Square Error 232 

(RMSE).  233 

 234 

where, [𝑎, 𝑏, 𝑐] = [1, 1, 1] represents the weights for each loss term, where 𝑐𝑙𝑠𝑙𝑜𝑠𝑠 is the 235 

object classification loss, 𝑜𝑏𝑗𝑙𝑜𝑠𝑠 is the object confidence loss, and 𝑏𝑜𝑥𝑙𝑜𝑠𝑠 is the bounding 236 

box localization error. 237 

The YOLOv4 network reached a RMSE of 0.21 after 30 epochs of training. Figure 8 238 

shows some of the results of YOLOv4 network after training on 24,768 images.  239 

 240 

𝑇𝑜𝑡𝑎𝑙𝐿𝑜𝑠𝑠 =  a × 𝑐𝑙𝑠𝑙𝑜𝑠𝑠  +  b × 𝑜𝑏𝑗𝑙𝑜𝑠𝑠  +  c × 𝑏𝑜𝑥𝑙𝑜𝑠𝑠                 (2) ACCEPTED
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Estimating the distribution and occupancy of corn 241 

The proposed system aims to estimate the distribution and occupancy of corn for a specific 242 

date using a YOLOv4 network trained on a dataset of 24,768 images generated through data 243 

augmentation. Figure 10 shows an overview of the proposed overall system using a corn 244 

image for a specific date. As the input of the trained YOLOv4 detector is a 448×448 pixel 245 

image, the captured image for a specific date is corrected to 3,584×1,792 pixels and then 246 

sequentially inputted into the YOLOv4 detector by dividing it into 32 (4×8) segments. When 247 

an image is inputted into YOLOv4, it extracts features of the corn image and calculates the 248 

location and size of the corn in the image, as well as the probability of an object existing and 249 

the class probability. Objects with a probability of existence and a class probability above a 250 

certain threshold are selected for bounding boxes by NMS. For each segmented image, the 251 

number and area of labels detected by YOLOv4 are accumulated and calculated. As YOLOv4 252 

outputs the location and size of corn in the image, the occupancy rate is calculated using 253 

Equation (3) by setting weights based on the three states of corn.  254 

          (3) 255 

where, 𝑖 = 1,2, … ,10 represents the index of the corn field image and 𝑗 = 1,2, … ,32 represents 256 

the segmented image. 𝑤1,𝑤2,𝑤3  are the weights assigned to each state of corn. 𝐴𝐶𝑜𝑟𝑛𝐼,𝑖𝑗 257 

represents the area of 𝐶𝑜𝑟𝑛𝐼, 𝐴𝐶𝑜𝑟𝑛𝐷,𝑖𝑗 represents the area of 𝐶𝑜𝑟𝑛𝐷, and 𝐴𝐶𝑜𝑟𝑛𝑆,𝑖𝑗 represents 258 

the area of 𝐶𝑜𝑟𝑛𝑆. 𝑀𝑎𝑥𝐴𝐶𝑜𝑟𝑛 represents the maximum area of corn occupancy.  259 

 260 

RESULTS 261 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖 =

 

 
 
 
𝑤1 ×   𝐴𝐶𝑜𝑟𝑛𝐼,𝑖𝑗

32

𝑗=1

+𝑤2 ×    𝐴𝐶𝑜𝑟𝑛𝐷,𝑖𝑗

32

𝑗=1

+𝑤3 ×   𝐴𝐶𝑜𝑟𝑛𝑆,𝑖𝑗

32

𝑗=1  

 
 
 

/𝑀𝑎𝑥𝐴𝐶𝑜𝑟𝑛   
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Figure 11 shows the detection results of the images captured 10 times in chronological order. 262 

Figure 11(a) shows the number and total area of intact corn objects represented by 𝐶𝑜𝑟𝑛𝐼  263 

without being damaged by sows. It can be seen that it decreases exponentially over time. Figure 264 

11(b) represents the number and total area of corn plants 𝐶𝑜𝑟𝑛𝐷. It can be seen that it linearly 265 

increases until the fourth day, and then decreases afterward. Figure 11(c) represents the number 266 

and total area of corn plants 𝐶𝑜𝑟𝑛𝑆. It can be seen that it sharply increases until the fourth day 267 

and gradually decreases afterward similar to the results of 𝐶𝑜𝑟𝑛𝐷. Figure 11(d) represents the 268 

occupancy rate of corn plants calculated using Equation (3). The weights for corn plant 269 

conditions were set as [𝑤1 , 𝑤2, 𝑤3] = [1, 0.5, 0.2], and the date with the largest area of land was 270 

set as the second day because no image was taken on the first day when the sow was released 271 

into the pasture. It can be seen that the occupancy rate of corn plants decreases very rapidly 272 

over time. 273 

As a result, the occupancy rate of corn in the field was estimated efficiently using YOLO. 274 

As of the first day of observation (day 2), it was evident that almost all the corn had disappeared 275 

by the ninth day. When grazing 20 sows in a 50×100 m2 cornfield (250 m2/sow), it appears that 276 

the animals should be rotated to other grazing areas to protect the cover crop after at least five 277 

days. 278 

 279 

DISCUSSION 280 

YOLO object detection system 281 

The input image was divided into grid cells through CNN, and objects are detected by 282 

generating anchor boxes and class probabilities for each cell section to predict the object's 283 

location and size [19]. Anchor boxes are boundary boxes with predefined height and width, 284 

and they are much faster than other detection systems because they do not use a separate 285 

ACCEPTED



14 

 

network to extract candidate regions, unlike two-stage detectors. The YOLO object detection 286 

system has been improved by many researchers, and YOLOv4 demonstrates faster and more 287 

accurate detection rates among various versions by incorporating state-of-the-art deep learning 288 

techniques such as Weighted Residual Connections (WRC), Cross Stage Partial Connections 289 

(CSP), and the Complete Intersection over Union (CioU) loss [20]. The YOLOv4 network 290 

consists of a backbone network and a neck to detect object features, and the head outputs the 291 

object's position, the probability of being on the object, and the class probabilities. The final 292 

objects were detected by applying this.  293 

Recently, image and video processing techniques have been widely applied in various 294 

fields, especially in the field of computer vision, where there has been significant research on 295 

image classification, object detection, and multiple object detection within images. As a 296 

classical image processing method, the image processing-based approach classifies and 297 

recognizes objects based on their direct features such as color, texture, and edges. This 298 

approach often results in significantly different output in object recognition within images due 299 

to lighting conditions, shadows, and camera settings.  300 

For several years, object detection research in image recognition using machine and deep 301 

learning techniques has demonstrated significant advantages in computer vision tasks, resulting 302 

in significant improvements in object detection and recognition performance compared to 303 

traditional approaches [21]. This progress has been made possible by the utilization of big data, 304 

advances in high-performance hardware such as Graphic Processing Units (GPUs), and the 305 

development of useful learning algorithms for deep learning training, which has led to the 306 

evolution of practical and useful technologies. 307 

The CNN(Convolutional Neural Network) is the most widely used deep learning 308 

algorithm for object detection research and was developed by LeCun in the late 1990s, which 309 

has a very high accuracy in object detection compared to traditional image processing methods 310 
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[22]. In addition to CNN, YOLO is widely used in object detection research due to its fast-311 

processing time and high accuracy. Many studies have been conducted on YOLO in object 312 

recognition [10]. However, CNN requires algorithms such as Region-CNN (RCNN) to 313 

recognize the exact location of objects within an image in addition to object detection [23]. 314 

However, while RCNN has improved the accuracy of object detection, it requires a lot of 315 

computational time compared to traditional image processing methods and has an extremely 316 

high complexity of network training and algorithm.  317 

On the other hand, YOLO has fast object detection and high accuracy. Machine and deep 318 

learning-based farming technologies are mainly applied for fruit detection and ripeness 319 

classification, as well as predicting pests and diseases in fruits [19]. In early machine learning 320 

research, Quiang et al. [24] identified fruits and tree branches using an SVM (Support Vector 321 

Machine) trained in the RGB color space. While it showed superior performance compared to 322 

previous threshold-based methods, it is still heavily affected by lighting conditions. Zhao et al. 323 

[25] applied a combination of the AdaBoost classifier and color analysis for tomato detection, 324 

but real-time processing was difficult due to the slow processing speed. Luo et al. [26] also 325 

suggested an AdaBoost and color feature-based framework for grapefruit detection, but it was 326 

affected by weather conditions and changes in lighting such as leaf covering.  327 

Traditional machine learning research has greatly improved image processing-based 328 

methods, but the design of proposed methods is complicated and only adaptable to some 329 

specific conditions, resulting in poor flexibility. Deep learning has overcome the limitations of 330 

traditional machine learning by being more abstract and generalizable, particularly through the 331 

use of CNNs. Additionally, the utilization of big data has made it possible to apply these 332 

technologies to a range of agricultural problems, including image processing. Sa et al. [27] 333 

applied Faster R-CNN [28] to RGB and near-infrared images for fruit detection and showed 334 

better performance than previous methods. Mota-Delfin et al. [11] used YOLO to detect corn 335 
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effectively in a weed-rich background using images captured by RPAS (Remotely Piloted 336 

Aerial Systems) and predicted the yield [10]. 337 

The basic data augmentation techniques include image processing methods that preserve 338 

the characteristics of the original image while maintaining diverse features of the objects. There 339 

are image processing techniques such as flipping, rotating, cropping images, and adjusting their 340 

brightness and color using various methods [16]. 341 

 342 

CONCLUSION 343 

In agricultural technology, most of the research using machine and deep learning is related to 344 

the detection of fruits and pests, and research on other application fields is needed. In addition, 345 

large-scale image data collected by experts in the field are required as training data to apply 346 

deep learning. However, collecting training data takes a lot of time and effort. If there are few 347 

images for training, the effort and time for acquiring training images can be reduced while 348 

increasing training images through image segmentation and data augmentation (flip, rotation, 349 

brightness, color adjustment conversion) as in the proposed method. In addition, calculating 350 

the occupancy level of the whole image after calculating the occupancy level of each segmented 351 

image, as in the proposed method, is very effective. It is an excellent and effective technique 352 

to classify the status of corn (𝐶𝑜𝑟𝑛𝐼 , 𝐶𝑜𝑟𝑛𝐷 , 𝐶𝑜𝑟𝑛𝑆 ) by date using the YOLO network. 353 

Therefore, the proposed method can be easily applied to many other fields and guarantees high 354 

precision. 355 
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Table 1. Specifications of the UAV platform used in the study. 429 

Airframe DJI Phantom 2 Quad-rotor 

Dimensions 43.2 x 20.6 x 31.75 cm 

Battery 3S LiPo 5200mAh, 11.1V 

Takeoff Weight ≤1300g 

Maximum Flight Time 25min (approx.) 

Signal Frequency 2.4GHz ISM 

Diagonal Length 350mm 

 430 
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 432 

Table 2. Data labels 433 

Label Label index Color Corn description Sample 

𝐶𝑜𝑟𝑛𝐼  0 Blue Intact corn 

 

𝐶𝑜𝑟𝑛𝐷 1 Yellow Damaged corn 

𝐶𝑜𝑟𝑛𝑆 2 Red Corn with stubble  

 434 

 435 
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 438 

 439 

Figure 1. The YOLO Detection System 440 
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 442 

Figure 2. Original images used for the analysis 443 

 444 
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 454 

1 455 

 456 

2 (a) Distorted image (b) Undistorted image (c) Bird’s eye view and cropping 457 

3 Figure 3. Example of image correction 458 
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Figure 4. 4×8 split images 463 

 464 
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Figure 5. Raw training images 467 
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Figure 6. Data augmentation 471 

 472 
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Origin images: 

43

Color transformation Images:

24,768

Reflection Images:

86

Rotational Images: 

6192
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 475 

Figure 7. YOLO Detection 476 
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 479 

Figure 8. Number of Anchors vs. Mean IoU 480 
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 483 

Figure 9. Recall results after training 484 
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 491 

Figure 10. System configuration 492 
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 495 

 496 
(a) The case of intact corn                 (b) The case of damaged corn 497 

 498 
(c) The case of corn with stubble           (d) The occupancy rate of corn 499 

Figure 11. The degree of occupancy of corn by date 500 

 501 

 502 

 503 

ACCEPTED




