1 2 3

JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below				
Article Type	Research article				
Article Title (within 20 words without abbreviations)	Differences in pork myosin solubility and structure with various chloride salts and their property of pork gel				
Running Title (within 10 words)	Secondary structure of pork myosin with different chloride salts				
Author	Hyun Gyung Jeong ¹ , Jake Kim ^{1,2} , Seonmin Lee ¹ , Kyung Jo ¹ , Hae In Yong ¹ , Yun-Sang Choi ² , and Samooel Jung ^{1,*}				
Affiliation	 ¹ Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea ² Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea 				
ORCID (for more information, please visit https://orcid.org)	Hyun Gyung Jeong (https://orcid.org/0000-0002-0330-7943) Jake Kim (https://orcid.org/ 0000-0002-3016-7659) Seonmin Lee (https://orcid.org/0000-0002-5713-1795) Kyung Jo (https://orcid.org/0000-0002-3006-5396) Hae In Yong (https://orcid.org/0000-0003-0970-4496) Yun-Sang Choi (https://orcid.org/0000-0001-8060-6237) Samooel Jung (https://orcid.org/0000-0002-8116-188X)				
Competing interests	No potential conflict of interest relevant to this article was reported.				
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	Not applicable.				
Acknowledgements	This research was funded by the Main Research Program [E0211200-02] of the Korea Food Research Institute.				
Availability of data and material	Upon reasonable request, the datasets of this study can be available from the corresponding author.				
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Jung S. Data curation: Jeong HG. Formal analysis: Jeong HG, Kim J, Lee S, Jo K, Yong HI, Choi YS. Writing - original draft: Jeong HG Writing - review & editing: Jeong HG, Kim J, Lee S, Jo K, Yong HI, Choi YS. Jung S.				
Ethics approval and consent to participate	This article does not require IRB/IACUC approval because there are no human and animal participants.				
CORRESPONDING AUTHOR CONTACT INFO	ORMATION				
For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below				

Address	99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
Cell phone number	+82-10-9380-1136
Office phone number	+82-42-821-5774
Fax number	+82-42-825-9754

1 Abstract

2 The solubility and structure of myosin and the properties of pork gel with NaCl, KCl, CaCl₂, and MgCl₂ were 3 investigated. Myofibrillar proteins (MPs) with phosphate were more solubilized with NaCl than with KCl (p < 0.05). 4 CaCl₂ and MgCl₂ showed lower MP solubilities than those of NaCl and KCl (p < 0.05). The α -helix content of myosin 5 was lower in KCl, CaCl₂, and MgCl₂ than in NaCl (p < 0.05). The pH of pork batter decreased in the order of KCl, 6 NaCl, MgCl₂, and CaCl₂ (p < 0.05). The cooking yield of the pork gel manufactured with monovalent salts was higher 7 than that of the pork gel manufactured with divalent salts (p < 0.05). The pork gel manufactured with KCl and MgCl₂ 8 showed lower hardness than that of the pork gel manufactured with NaCl. The solubility and structure of myosin were 9 different with the different chloride salts and those led the different quality properties of pork gel. Therefore, the 10 results of this study can be helpful for understanding the quality properties of low-slat meat products manufactured 11 by replacing sodium chloride with different chloride salts.

12

13 Keywords: chloride salt, myosin, secondary structure, gel quality

- 14
- 15

Introduction

Sodium chloride (NaCl) has been used to enhance sensory acceptability in various foods, and the Na⁺ cation and Cl⁻ anion provide saltiness and flavor [1]. Additionally, in meat products, NaCl improves protein functionality and gel properties through the solubilization of salt-soluble proteins [2,3]. However, high dietary sodium intake can cause hypertension and induce stroke and cardiovascular diseases [4]. Accordingly, the demand for processed meat products with low sodium content is increasing. Therefore, NaCl substitutes have been developed to satisfy the consumer demand for healthy food and maintain the high quality of meat products [2,4].

NaCl substitutes used in the meat industry include other chloride salts, such as potassium chloride (KCl), calcium chloride (CaCl₂), and magnesium chloride (MgCl₂), and non-chloride salts, such as phosphate [4,5]. KCl, CaCl₂, and MgCl₂ are commonly used as alternatives to NaCl owing to their ease of use and low cost [6]. Most studies have reported that monovalent salts, such as KCl, have similar effects to NaCl, and that divalent salts degrade the properties of meat products, such as water retention and texture [7]. However, in some studies, the intermolecular bonding and microstructure of the gel according to each salt have been reported differently. Therefore, it is assumed that the 28 difference in the effect of each salt is due to not only the difference between the monovalent and divalent cations but

also the characteristics of each constituent ion.

30	Myofibrillar proteins compose 55%–65% of the total meat protein [6], and myosin is the main protein that forms
31	the gel. Myosin forms a gel that can trap water and fat through denaturation and aggregation by head-head or tail-tail
32	interactions upon heating. Previous studies found that the solubility of myosin was affected by the different chloride
33	salts that resulted in the different quality properties of heat-induced gel [8-10]. In addition, some studies reported that
34	the structure of myosin in meat could be affected by the processing conditions, and that was an important factor in the
35	gel formation of myosin [6, 11,12]. Therefore, observing the myosin structure changed with different chloride salts
36	can support the understanding of the mechanism in the changes of gel quality. However, there are few studies on the
37	changes in the myosin structure with different chloride salts. Therefore, this study aimed to investigate the effects of
38	different chloride salts on the solubility and structure of pork myosin and their relationship with the gel properties.

- 39
- 40
- 41

Materials and Methods

42 Physicochemical properties of myofibrillar proteins (MPs)

43 **MPs preparation**

Myofibrillar protein was extracted as previously described [13], with slight modification. Fresh pork picnic shoulder meat was procured from a local market (Daejeon, Korea). The excess fat and connective tissue were removed, and the meat (80%) was minced with ice (20%) and L-ascorbic acid (0.03%) using a silent cutter (12VV, Sirman SpA, Curtarolo, Italy). The ground muscle was mixed with five volumes of cold isolation buffer (2 mM MgCl₂, 0.1 M KCl, 1 mM ethylene glycol tetraacetic acid [EGTA], 10 mM potassium phosphate, pH 7.0) and stirred at 4°C for 3 h, and the mixtures were centrifuged at 2,090×g for 10 min at 4°C (ScanSpeed 1580R, Labogene ApS, Lillerød, Denmark). This process was repeated thrice. The pellets were washed twice with three volumes of distilled water.

51 The washed myofibrillar protein pellets were mixed with tetrasodium pyrophosphate (0.3%) and homogenized 52 for 1 min using a food mixer (ITB-400H, Guangdong Xinbao Electrical Appliances Holdings, Guangdong, China).

- 53 Each chloride salt was added to the samples of the salt-added group, except the control sample, according to the fixed
- 54 ionic strength (0.34 M) to the MPs (NaCl: 2% NaCl; KCl: 2.55% KCl; CaCl₂: 1.27% CaCl₂; MgCl₂: 1.08% MgCl₂).
- 55 Additionally, the MPs of all groups were homogenized (ITB-400H, Guangdong Xinbao Electrical Appliances
- 56 Holdings) for 30 s, vacuum-packed, and stored at 4°C until use.
- 57

58 **Protein solubility**

The MP samples (2 g) were mixed with 10 mL of distilled water and stirred at 4°C for 2 h. The suspension was centrifuged at 2,090×g for 15 min (ScanSpeed 1580R, Labogene ApS), and the protein content of the supernatant was determined using a colorimetric Bio-Rad protein assay (#5000006, Bio-Rad Labs., Hercules, California, USA). The protein solubility was calculated as the percentage of protein content in the supernatant to the total protein content in the 2 g samples.

64

65 Surface hydrophobicity of MP

The surface hydrophobicity of the sample was determined as described by Lee et al. [14] using bound bromophenol blue (BPB). First, 1 mL of diluted samples (1 mg/mL) were reacted and mixed with 200 μL of BPB (1 mg/mL in distilled water). After reacting the sample with BPB, the supernatant was diluted 10-fold with 0.1 M potassium phosphate buffer (pH 7.4). The absorbance was measured at 595 nm using a plate reader (Varioskan LUX, Thermo Fisher Scientific, Massachusetts, USA) against a blank of potassium phosphate buffer. A control containing no sample was prepared by reacting BPB with phosphate buffer. The bound BPB is expressed as:

74

75 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis

⁷² Bound BPB (μg) =200 $\mu g \times (absorbance of the control sample-absorbance of the sample)/absorbance of the$ 73 control sample.

76 SDS–PAGE was performed as previously described by Lee et al. [15]. The supernatant and pellet obtained during 77 protein solubility measurements were used as samples. Polyacrylamide gels with a concentration of 12.5% were used. 78 The samples were mixed with equal volumes of 2× sample buffer (125 mM Tris-HCl, 20% glycerol, 2% SDS, 2% 79 mercaptoethanol, and 0.02% BPB). The mixed samples were heated to 95°C for 90 s on a heating block. An aliquot 80 (10 µL) of the sample (20 µg protein) and 5 µL of the protein ladder (3454A, Takara Bio Inc., Shiga, Japan) were 81 loaded. Electrophoretic separation was performed using an AE-6531 mPAGE system (ATTO Co., Tokyo, Japan), 82 applying 20 mA for 120 min. The proteins in the gel were stained using a staining solution containing 0.1% Coomassie 83 brilliant blue and de-stained with a 10% acetic acid solution. The stained gels were scanned using a GS-710 84 densitometer (Bio-Rad Labs.). The scanned gel image was analyzed using Image Master 2D Platinum v5.0 (GE 85 Healthcare, Seoul, Korea).

86

87 Secondary structure and thermal stability of myosin

Myosin was extracted using a method reported by Lee et al. [14] with slight modification. First, 3 g of the control and salt-added MPs was mixed with 15 mL of G-S buffer (0.4 M NaCl, 5 mM MgCl₂, 5 mM Na₄P₂O₇, and 150 mM Na₃PO₄, pH 6.0) and stirred for 20 min, followed by centrifugation at 2,090×g for 10 min. The pellet was collected, and the supernatant was filtered through a 1.0 mm mesh strainer. Thereafter, 10 mL of distilled water was added to both the pellet and filtrate of the supernatant, followed by stirring for 10 min and centrifugation at 2,090×g for 10 min. Each pellet was treated with 0.1 M potassium phosphate buffer (pH 7.4) and diluted to a protein concentration of 0.13 mg/mL. The myosin extract was used to measure the myosin denaturation pattern using circular dichroism (CD).

95 The secondary structure and thermal denaturation of the myosin extract were measured as described by Shimada 96 et al. [16] using a circular dichroism (CD) spectrometer (Chirascan VX, Applied Photophysics, Leatherhead, UK). 97 The myosin solution was diluted (0.13 mg/mL) in 0.1 M potassium phosphate buffer (pH 7.4) and transferred to a 98 quartz cell with a path length of 1 mm. The secondary structures of the samples were measured from 200 to 260 nm 99 at a scan rate of 100 nm/min at 25 and 98°C. The compositions of the α -helix, β -sheet, β -turn, and random coil were 100 estimated using CDNN software (version 2.1, Applied Photophysics). The thermal denaturation of the samples was 101 measured by following the CD intensity (millidegree) at 222 nm from 25 to 98°C; the temperature was increased at 102 5.0°C/min.

104 **Quality properties of pork gel**

105 **Preparation of heat-induced pork gel**

The fresh pork picnic shoulder meat with excess fat and connective tissue removed (120 g) was mixed with ice (30 g), sodium pyrophosphate (0.3%), L-ascorbic acid (0.03%), and salts (control: none; NaCl: 2% NaCl; KCl: 2.55% KCl; CaCl₂: 1.27% CaCl₂; MgCl₂: 1.08% MgCl₂) using bowl cutters (C4, Sirman SpA) for 3 min. The meat batter was prepared thrice for each treatment and stored in a refrigerator at 4°C for 12 h before cooking. The gel (50 g meat batter) was molded in a stainless-steel container (55 mm × 30 mm) and heated in a water bath at 80°C for 30 min. After cooling at 25°C for 30 min, thirty gels (two gels/each treatment/each batch) were used to analyze the quality.

112

113 **pH of the meat batter and the cooking yield (CY) of the pork gel**

The pH of the raw meat batter prepared with the different chloride salts was measured. One gram of meat batter sample was homogenized in 9 mL of distilled water using a homogenizer (T25 basic, IKA[®]-Werke GmbH & Co. KG, Staufen, Germany). The homogenates were centrifuged at 2,090×g for 10 min (ScanSpeed 1580R, Labogene ApS) and filtered using Whatman No. 4 filter paper (Whatman, Maidstone, UK). The pH of the filtrate was measured using a pH meter (SevenEasy, Mettler-Toledo Intl., Schwerzenbach, Switzerland).

119 The cooking yield (CY) of pork gels manufactured with the different chloride salts was measured. Moisture on 120 the surface of the cooked gel samples was removed, and the gel samples were weighed (G).

121 $CY(\%) = G / Initial weight \times 100.$

122

123 Hardness of the pork gel

The hardness of the gel samples was analyzed using a texture analyzer (Model A-XT2, Stable Micro Systems, Godalming, UK). The cooled gel sample at 25°C for 30 min was cut (2×2×1.5 cm³) and subjected to 70% compression using a 70-mm-diameter compression platen at a test speed of 2 mm/s at 25°C. The maximum force (N) was recorded as the hardness.

128

129 Statistical analysis

The study was conducted in three iterations (three batches, two samples/each treatment/each batch), and the results were statistically analyzed using a mixed model with a randomized complete block design (batch as a block). The results were expressed as the least-square mean with SEM, and the significance of the main effect was tested using Tukey's multiple comparison test (p < 0.05). Statistical analyses were performed using the SAS program (version 9.4, SAS Institute Inc., North Carolina, USA).

- 135
- 136
- 137

Results and discussion

138 Properties of the MPs

139 **Protein solubility**

140 Solubilized proteins, particularly myosin, can form desirable heat-induced gels with captured moisture and fat by 141 aggregating and forming interfacial protein films in comminuted meat products [7]. In this study, the MP samples 142 were mixed with various chloride salts at the same ionic strength after the dissociation of actomyosin by sodium 143 pyrophosphate. The solubility of the MPs was higher with NaCl than with KCl (p < 0.05, Fig. 1). Additionally, the 144 divalent cation salts, such as CaCl₂ and MgCl₂, exhibited a lower solubilization ability on MPs than that exhibited by 145 the monovalent cation salts (NaCl and KCl). Gordon and Barbut [7] reported that when NaCl, KCl, CaCl₂, and MgCl₂ 146 were added to chicken breast meat batter with the same ionic strength, the extracted protein amount increased in the 147 order of NaCl, KCl, MgCl₂, and CaCl₂. The higher ability of Na⁺ than that of K⁺ to solubilize MPs can be explained 148 by the Hofmeister series, ordering the specific ionic effect on proteins in terms of the interaction among salt ions, 149 water, and proteins. These ions are divided into "kosmotropes," which have a salting-out effect on protein with the

150 stabilization of the protein structure, and "chaotropes," which have the opposite effect [17]. According to the 151 Hofmeister series, K⁺, Na⁺, Mg²⁺, and Ca²⁺ in this order, move from kosmotropes to chaotropes. Although MgCl₂ and 152 CaCl₂ are more chaotropic salts than NaCl and KCl, various studies have reported that the protein solubility of the 153 divalent salt-added meat products was lower than that of the monovalent salts [7,18]. Salting out of various food 154 proteins with divalent metal ions has been reported in previous studies. Arii and Takenaka [19] reported Mg^{2+} and 155 Ca²⁺-associated soy proteins using salt bridges with protein carboxyl groups. In general, for NaCl, Cl⁻ anions 156 selectively permeate the myofibrils to increase the negative charge and intramolecular electrostatic repulsion. 157 Thereafter, myofibrils swell, and more water is trapped in the heat-induced gel matrix. Additionally, Na⁺, a 158 monovalent cation, can form an "ion cloud" around the myofibrils and increase repulsion, causing an increase in 159 protein solubility. However, the divalent cation of the divalent salt can make two cross-links, unlike the monovalent 160 cations, such as Na⁺. They can attach to two other protein molecules to cause protein aggregation. Zhu and Damodaran 161 [20] found that whey protein was precipitated by aggregation in a salt solution containing $MgCl_2$ or $CaCl_2$. In this 162 study, the solubility of MPs was significantly higher in Mg²⁺ than in Ca²⁺. Gordon and Barbut [7] found that CaCl₂ 163 exhibited a lower solubility of chicken MPs than that exhibited by MgCl₂. These results might be related to the 164 different effects of divalent cations, Mg²⁺ and Ca²⁺, on the conformational changes of proteins with different properties and binding sites of divalent cations on protein [20]. Mg²⁺ is smaller than Ca²⁺, closer to Na⁺ in size, and more 165 166 electronegative than Ca^{2+} ; furthermore, it has different interaction properties on proteins [10]. Gordon and Barbut [9] 167 reported that CaCl₂ and MgCl₂ reduced the pH of raw meat batter compared with NaCl at the same ionic strength. In 168 this study, the pH levels of the meat batter manufactured with CaCl₂ and MgCl₂ were 5.79 and 6.36, respectively, both 169 lower than that of the meat batter containing NaCl (6.52) at the same ionic strength (Fig. 1). The solubility of the MPs 170 decreased with a decrease in the pH of the meat system near the isoelectric point of the MPs [21]. Therefore, the 171 decline in pH may be a reason for the low solubility of MPs with divalent cations, particularly Ca^{2+} . Although the 172 control group had the significantly highest pH among treatments (Fig. 1), the MP solubility of control was similar to 173 those of the CaCl₂ and MgCl₂ groups because the ionic strength of control was the lowest among treatments in the 174 absence of chloride salt.

175

176 **Profiles of the solubilized MPs**

177 In this study, the MPs were homogenized with sodium pyrophosphate (0.3%) before mixing with chloride salts. 178 Therefore, myosin heavy chain (MHC, approximately 200 kDa), actin (approximately 46 kDa), tropomyosin, and 179 myosin light chain-1 were identified during the SDS-PAGE of the control because of the dissociation of actomyosin 180 by phosphate (Fig. 2) [22]. Unlike the control, c-protein was found in the MPs solubilized with chloride salts. The c-181 protein is a constituent element of myosin filaments (myosin oligomers). Therefore, the solubilization of the c-protein 182 indicated the dissociation of myosin oligomers to myosin monomers. Myosin oligomers and monomers can form gels; 183 however, their gel properties are different [23]. The addition of NaCl and KCl to the MPs resulted in an increase in 184 MHC intensity compared to that of the control, and myosin was the predominant protein among the solubilized MPs. 185 Munasinghe and Sakai [24] confirmed that the extraction of myosin increased when NaCl or KCl was added to lean 186 pork meat as a protein extractant. The protein profiles of the solubilized MPs changed with divalent salts (Fig. 2). The 187 band intensity of MHC was decreased in the solubilized MPs with CaCl₂ and MgCl₂, and the decrease was severe with 188 Mg^{2+} , compared to that of the monovalent salts. In this study, the solubility of MPs did not change after the addition 189 of CaCl₂ and MgCl₂ compared with the control. Therefore, this result indicated that the solubilized myosin with 190 phosphate (control) might be aggregated and partially insolubilized with Ca^{2+} and Mg^{2+} . The predominant protein in 191 the MPs solubilized by CaCl₂ was tropomyosin, which was different from that of other chloride salts. The 192 solubilization of tropomyosin by $CaCl_2$ may be caused by the selective binding of Ca^{2+} to troponin, which is connected 193 to tropomyosin on the surface of actin filaments [25]. In this study, troponin C and I were detected in the MPs 194 solubilized with CaCl₂. Additionally, the selective binding of Ca^{2+} to troponin reduced the Ca^{2+} that could aggregate 195 myosin; therefore, the band intensity of MHC was higher than that with Mg^{2+} . Although the MHC band was faintly 196 visible, other predominant protein bands, compared to other treatments, did not appear on the SDS-PAGE of MgCl₂. 197 This result might imply that the MPs solubilized by MgCl₂ contained the solubilized myosin oligomer that could not 198 undergo the SDS-PAGE because of its large molecular weight. Zhu and Damodaran [20] reported that protein 199 aggregation might be caused by the cross-linking of proteins using the ionic bridges of divalent cations or hydrophobic 200 interactions with an increase in the hydrophobicity of the protein via the strong binding of divalent cations. The protein 201 profiles of MPs solubilized with MgCl₂, except for myosin, were similar to those solubilized with NaCl and KCl. 202 However, the surface hydrophobicity of the MPs solubilized with MgCl₂ was significantly lower than that of the MPs 203 solubilized with NaCl and KCl (Fig. S1). Therefore, Mg²⁺ aggregated myosin by hydrophobic interactions between 204 myosin, and Ca^{2+} had a similar effect on myosin. Additionally, the relative band intensities of the MHC of the 205 insolubilized MPs in the control, NaCl, KCl, CaCl₂, and MgCl₂ were 22.12, 15.69, 16.26, 24.54, and 21.39,

respectively (Fig. S2). The band intensity of the MHC of NaCl and KCl was lower than that of the other treatments (p < 0.05). However, MgCl₂ and CaCl₂ showed a similar band intensity of MHC to the control despite the lower band intensity of MHC in solubilized MPs compared to the control (p > 0.05). This result was due to the formation of large molecular aggregates of MHC by MgCl₂ and CaCl₂ that could not undergo the SDS–PAGE. The results showed that the monovalent cation salts, NaCl and KCl, increased the solubility of myosin; however, the divalent cation salts, CaCl₂ and MgCl₂, did not. Rather, the divalent cation salt precipitated the myosin solubilized by phosphate.

212

213 Secondary structure and thermal denaturation property of myosin

Proteins can bind to various metal ions, resulting in conformational changes in the protein. The secondary structures, such as the α-helix, β-sheets, β-turns, and random coils, of the myosin extracted with chloride salts, except for CaCl₂, were not different from those of the control (Table 1). However, the α-helix content of the myosin extracted with KCl, MgCl₂, and CaCl₂ was significantly lower than that of the myosin extracted with NaCl; in contrast, other secondary structures, such as β-sheets, β-turns, and random coils were relatively higher in the myosin extracted with KCl, MgCl₂, and CaCl₂ than in the myosin extracted with NaCl (p < 0.05).

220 The cations of KCl, MgCl₂, and CaCl₂ can be bound to proteins by interactions with the carbonyl oxygen and 221 nitrogen of the backbone and the carbonyl oxygen, carboxylate anion, aromatic ring, etc., of the side chain [26,27]. 222 The monovalent metal ions have a lower binding affinity and preference for specific amino acids of proteins than the 223 divalent metal ions [28]. Additionally, there are differences in the binding affinity and preference for amino acids 224 between Na⁺ and K⁺ [26,27]. A previous study found that the binding affinity of Na⁺ on the surface of proteins was 225 approximately two times higher than that of K^+ in all tested proteins. This difference was mainly caused by the high 226 binding affinity of Na⁺ to the charged carboxylic (COO⁻) groups within the side chains of aspartic acid and glutamic 227 acid [27]. Additionally, Heaton and Armentrout [26] reported that the bond distance between metal ions and ligands 228 was longer in K^+ than in Na^+ , and the stronger binding of Na^+ led to the geometric distortions of the neutral ligands 229 for the stable binding conformers. Therefore, the binding of K^+ on the surface of myosin might not favor the α -helix 230 conformation compared to the binding of Na⁺; consequently, the helix–coil and α – β transitions are generated.

231 Mg^{2+} and Ca^{2+} have higher binding affinities and selectivity for amino acids than those of Na⁺ and K⁺ when they interact with proteins [28]. Mg^{2+} and Ca^{2+} are mainly bound to aspartic acid and glutamic acid in proteins [28]. 232 233 Additionally, two or more amino acids act as ligands to maximize the binding efficiency of divalent metal ions, unlike 234 monovalent metal ions. Glutamic acid is the most abundant amino acid in myosin and is approximately twice as 235 abundant in α -helix than in β -sheets [29]. Therefore, the binding of Mg²⁺ and Ca²⁺ to myosin may lead to more 236 conformational changes, particularly in the α -helix structure. Additionally, the myosin extracted with CaCl₂ had the 237 lowest α -helix and the highest β -sheet, β -turn, and random coil contents among the treatments. A previous study 238 reported that the addition of calcium unwound the myosin head in the thick filament, and consequently, the α -helix 239 content was reduced [30].

240 The decrease in the α -helix and the increase in the β -sheet, β -turn, and random coil contents of myosin secondary 241 structure could indicate an increase in the degree of disorder of the myosin structure. The change in the myosin 242 structure to a disordered structure is a general phenomenon associated with the heat denaturation of myosin [31]. A 243 previous study reported decreasing α -helix and increasing β -sheet, β -turn, and random coil contents within the myosin 244 after heating [32]. Further, this phenomenon was observed in this study. The α -helix and β -sheet of myosin heated up 245 to 98°C were decreased and increased, respectively, compared to those at 25°C (data not shown). From these results, 246 it can be observed that KCl, MgCl₂, and CaCl₂ disordered the structure of myosin, like denatured myosin, compared 247 to NaCl.

248 Conformational changes in protein structure could change the heat denaturation temperature (T_d) , and increased 249 denaturation rate indicates the reduced thermostability of the protein. The T_d is the temperature of two-state transition 250 from native to unfolded states [16]. Shimada et al. [16] found that below the T_d , the soluble fraction contained only 251 monomeric myosin, and above the apparent T_d , aggregates were formed through the unfolding of myosin monomers, 252 head-head interaction, and tail-tail cross-linking. The CD signal of the extracted myosin at 222 nm increased from 253 approximately 35 to 70°C and plateaued with an increase in temperature until the end temperature in all treatments 254 (Fig. 3). The T_d values of the control group, NaCl, KCl, MgCl₂, and CaCl₂ were 58.10, 56.44, 56.99, 57.32, and 255 55.72°C, respectively, and there was no significant difference among the treatments (p > 0.05). In a previous study, 256 an increase in the transition temperature due to stabilization through molecule-to-filament association [33] and an 257 increase in thermal stability accompanied by an increase in random coils were reported [12]. However, in this 258 experiment, the change in the secondary structure did not significantly affect the thermal sensitivity.

In this study, chloride salts, such as NaCl, KCl, MgCl₂, and CaCl₂, showed different effects on myosin solubility and secondary structures because of their different cations. KCl showed a similar solubility to that of NaCl; however, the secondary structure of myosin was different between KCl and NaCl. The divalent metal salts, such as MgCl₂ and CaCl₂, exhibited a lower ability to solubilize myosin than that exhibited by the monovalent metal salts, and the myosin solubility was the lowest in CaCl₂. Additionally, MgCl₂ and CaCl₂ changed the secondary structure of myosin compared with NaCl.

265

266 **Quality properties of the pork gel**

267 **pH of the meat batter**

268 The pH of meat batter is a factor that affects protein solubility and water-holding capacity; therefore, high pH can 269 contribute to the formation of a stable gel with a desirable texture [34]. The pH of the meat batter was significantly 270 different depending on the type of salt added (Fig. 4A). The control had the highest pH, followed by KCl, NaCl, 271 MgCl₂, and CaCl₂ (p < 0.05). These results are consistent with those of previous studies. Terrell et al. [35] reported 272 that a significant increase and decrease in pH was observed in KCl and divalent salt groups, respectively, compared 273 to NaCl, when NaCl, KCl, CaCl₂, and MgCl₂ were used for salting beef clods at the same ionic strength. Similarly, 274 Gordon and Barbut [9] reported that CaCl₂ and MgCl₂ reduced the pH of raw meat batter compared with NaCl at the 275 same ionic strength. The decrease in pH in the meat batter may be related to the binding affinity of the cations of the 276 added salt on the protein, particularly the negatively charged side chains of aspartic acid and glutamic acid. In this 277 study, the binding affinity of the cations of the added salt on the negatively charged side chains of the protein increased 278 in the order of K⁺, Na⁺, Mg²⁺, and Ca²⁺ [26,27]. Additionally, according to the Hofmeister series, the more chaotropic 279 the ions, the more strongly hydrated the ions, and they strongly bind to the negatively charged aqueous carboxyl group 280 [17]. As described above, among K^+ , Na^+ , Mg^{2+} , and Ca^{2+} , Ca^{2+} is the most chaotropic ion. The binding of the cations 281 with the negatively charged side chain in protein molecules established a competitive relationship with hydrogen ions, 282 which can bind to the carboxyl group of amino acids. Therefore, the hydrogen ions that cannot be bound because of 283 cation float in the system and decrease the pH. A relatively low pH is more likely to degrade the quality of the product 284 by decreasing the negative net charges on the surface of protein molecules. It can increase protein-protein interactions 285 and reduce protein solubility.

287 CY of the pork gel

The water in the meat batter is physiochemically held in the coagulated protein gel upon heating. The low CY due to the high release of water with the low water-holding capacity of meat gel results in a low yield with poor quality due to hard texture, low juiciness, and loss of nutrients, such as proteins, vitamins, and minerals, in meat [36]. The water-holding capacity of meat gel is affected by the pH and the amount of solubilized myosin in the meat batter [1,8].

292 The CY of gels manufactured with NaCl and KCl was significantly higher than that of the control, CaCl₂, and 293 MgCl₂ gels (Fig. 4B, p < 0.05). This result was attributed to the highly solubilized myosin in the meat batter with 294 NaCl and KCl compared to other treatments. The solubilized myosin in the meat batter formed an aggregated-type gel 295 with high water-holding capacity, while the myosin filament with low solubilization of myosin formed a strand-type 296 gel with low water-holding capacity [23]. The divalent salts, CaCl₂ and MgCl₂, showed low CY, and the lowest CY 297 was found in the meat gel with CaCl₂. The meat batter with CaCl₂ and MgCl₂ contained low solubilized myosin, and 298 therefore, it could not form a gel to effectively hold water. Additionally, there might be few spaces to hold water in 299 the gel with CaCl₂ and MgCl₂ because of the low pH and the aggregation of myosin by salt bridges. The low pH of 300 the meat batter near the isoelectric point of MPs results in a decrease in the repulsive forces between proteins [5]. 301 Therefore, the gel is formed with closely aggregated proteins at low pH and salt bridges between the proteins. In this 302 study, CaCl₂ had the lowest ability to solubilize MPs, including myosin, and its addition resulted in the lowest pH of 303 the meat batter. Therefore, the CY of the gel manufactured with CaCl₂ was the lowest, and this was not significantly 304 different from that of the control, which contained no chloride salts (p > 0.05). In addition to the effects of pH, 305 solubilized proteins, and salt bridges between proteins, the secondary structure of myosin might be a factor in the 306 water-holding capacity of the pork gel. Barlow and Poole [37] reported that the interaction of water molecules with 307 the carbonyl oxygen of the protein backbone and side chains was higher in α -helix than in β -sheets because of the 308 differences in the geometry of the water–CO group interaction. In this study, the α -helix and β -sheet contents of 309 myosin were lower and higher, respectively, in CaCl₂ and MgCl₂ than in NaCl.

310 KCl had a lower MPs solubility than that of NaCl. Additionally, the α -helix and β -sheet contents of myosin 311 extracted by KCl were lower and higher, respectively, than those of myosin extracted by NaCl. However, the CY of 312 the pork gel was not significantly different between KCl and NaCl (p > 0.05). The low water-holding capacity of the 313 pork gel with KCl in terms of low protein solubility and the secondary structure of myosin might be compensated by

314 the higher pH of the meat batter than that of NaCl.

315

316 Hardness of the pork gel

The hardness of the pork gel was significantly higher in the NaCl and CaCl₂ treatments than in the control, KCl, and MgCl₂ treatments (p < 0.05, Fig. 5). This result was consistent with a previous study, in which the hardness of frankfurters manufactured with NaCl was the same as that of frankfurters manufactured with CaCl₂ and higher than those of frankfurters manufactured with KCl and MgCl₂ at the same ionic strength [8].

321 Gordon and Barbut [8] reported that the hardness of the frankfurters was affected by the different types and 322 amounts of solubilized proteins. Therefore, the lower hardness of pork gel in KCl than in NaCl was attributed to the 323 relatively low MPs solubility, although the profiles of the solubilized MPs were similar between NaCl and KCl in this 324 study. Additionally, the α -helix content of myosin with KCl was lower than that of myosin with NaCl in this study. A 325 previous study reported that the transition of α -helix to β -sheet, β -turn, and random coil was a general phenomenon in 326 gelation with the formation of protein networks by heating, and the β -sheet structure formed during gelation was the 327 major factor affecting gel strength [38]. Therefore, the transition of α -helix to β -sheet of myosin during gelation in 328 KCl might be lower than that in NaCl because of the pre-transition of α -helix to β -sheet before heating, affording the 329 low hardness of pork gel with weak protein networks, compared to that of NaCl [11].

Although CaCl₂ showed the lowest MPs solubility, including less solubilized monomeric myosin, the hardness of the pork gel with CaCl₂ was similar to that of the pork gel with NaCl. The high hardness of CaCl₂ could be due to the formation of a woven gel with a tightened structure by closely aggregated proteins holding low amounts of water (Fig. 4B) [9].

A previous study found that the pork MPs gel with NaCl exhibited a regular and ordered cross-linked structure because of the aggregation of monomeric myosin [39]. However, a disordered and irregular structure of the gel was formed because of the coarse cross-linking of fibrous filaments when the pork gel was prepared with the partial substitution of NaCl by a mixture of KCl and MgCl₂ or CaCl₂, and the gel strength was affected by the gel structure

339	and these changes resulted in an increase in the degree of disorder in the myosin structure by the transition of ordered
340	α -helix into disordered β -turn and random coil. Therefore, it might be considered that the disordered and irregular gel
341	structures found in the gel with KCl, MgCl ₂ , and CaCl ₂ were related to the degree of disorder in the myosin structure.
342	Conclusion
343	NaCl, KCl, CaCl ₂ , and MgCl ₂ exhibited differences in the solubility of MPs, including myosin, and the structure
344	of myosin. The solubility of the MPs was higher in NaCl than in KCl, and the solubility of divalent salts was lower
345	than that of monovalent salts. KCl, $CaCl_2$, and $MgCl_2$ decreased the α -helix content compared with NaCl. From the
346	differences in the solubility and the structure of myosin, the CY of the gel manufactured with monovalent salts was
347	significantly higher than that of the gel manufactured with divalent salts, and the hardness of the pork gel was lower
348	with KCl than with NaCl. Therefore, the changes in the solubility and the structure of myosin with the different
349	chloride salts led the different quality properties of pork gel. The results of this study can be helpful for understanding
350	the quality properties of low-salt meat products manufactured by replacing sodium chloride with different chloride
351	salts.
352	salts.
353	
354	Acknowledgments
355	This research was funded by the Main Research Program [E0211200-02] of the Korea Food Research Institute.
356	
357	

358 **References**359 1. Feng J, Cao A, Cai L, Gong L, Wang J, Liu Y, et al. Effects of partial substitution of NaCl on gel properties of

- Feng J, Cao A, Cai L, Gong L, Wang J, Liu Y, et al. Effects of partial substitution of NaCl on gel properties of fish myofibrillar protein during heating treatment mediated by microbial transglutaminase. LWT-Food Sci Technol. 2018;93:1-8. https://doi.org/10.1016/j.lwt.2018.03.018
- 362 2. Desmond E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006;74:188-196.
 363 https://doi.org/10.1016/j.meatsci.2006.04.014
- 364 3. Jeong HG, Jung DY, Jo K, Lee S, Choi YS, Yong HI, et al. 2021. Alternative of phosphate by freeze- or oven365 dried winter mushroom powder in beef patty. Food Sci Anim Resour 41:542-553. https://doi.org/10.5851/kosfa.2021.e18
- 367
 4. Ruusunen M, Puolanne E. Reducing sodium intake from meat products. Meat Sci. 2005;70:531-541. https://doi.org/10.1016/j.meatsci.2004.07.016
- Jo K, Lee J, Jung S. Quality characteristics of low-salt chicken sausage supplemented with a winter mushroom powder. Korean J Food Sci Anim Resour. 2018;38:542-553. https://doi.org/10.5851/kosfa.2018.e15
- 6. Ge G, Han Y, Zheng J, Zhao M, Sun W. Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl₂ or CaCl₂.
 Food Chem. 2020;309:125614. https://doi.org/10.1016/j.foodchem.2019.125614
- 374
 7. Gordon A, Barbut S. Effect of chloride salts on protein extraction and interfacial protein film formation in meat 375 batters. J Sci Food Agric. 1992;58:227-238. https://doi.org/10.1002/jsfa.2740580211
- 376
 8. Gordon A, Barbut S. The effect of chloride salts on the texture, microstructure and stability of meat batters. Food 377
 8. Gordon A, Barbut S. The effect of chloride salts on the texture, microstructure and stability of meat batters. Food Struct. 1989;8:271-283.
- Gordon A, Barbut S. The microstructure of raw meat batters prepared with monovalent and divalent chloride salts.
 Food Struct. 1990;9:279-295.
- Xiong YL, Brekke CJ. Gelation properties of chicken myofibrils treated with calcium and magnesium chlorides.
 J Muscle Foods. 1991;2:21-36. https://doi.org/10.1111/j.1745-4573.1991.tb00438.x
- Liu R, Zhao SM, Xiong SB, Xie BJ, Qin LH. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 2008;80:632-639. https://doi.org/10.1016/j.meatsci.2008.02.014
- 284 12. Qi R, Guo J, Liu Y, Zhang R, Gan Z. Effects of salt content on secondary structure of protein in sodium alginate/antarctic krill protein composite system and characterization of fiber properties. Dyes Pigm. 2019;171:107686. https://doi.org/10.1016/j.dyepig.2019.107686
- 387 13. Lee S, Jo K, Yong HI, Choi YS, Jung S. Comparison of the in vitro protein digestibility of Protaetia brevitarsis 388 and beef loin before defatting. Food Chem. 2021;338:128073. larvae and after 389 https://doi.org/10.1016/j.foodchem.2020.128073
- 390 14. Lee S, Choi YS, Jo K, Jeong HG, Yong HI, Kim TK, et al. Processing characteristics of freeze-dried pork powder

- for meat emulsion gel. Food Sci Anim Resour. 2021;41:997-1011. https://doi.org/10.5851/kosfa.2021.e51
- 15. Lee S, Jo K, Lee HJ, Jo C, Yong HI, Choi YS, et al. Increased protein digestibility of beef with aging in an infant in vitro digestion model. Meat Sci. 2020;169:108210. https://doi.org/10.1016/j.meatsci.2020.108210
- 394 16. Shimada M, Takai E, Ejima D, Arakawa T, Shiraki K. Heat-induced formation of myosin oligomer-soluble
 395 filament complex in high-salt solution. Int J Biol Macromol. 2015;73:17-22.
 396 https://doi.org/10.1016/j.ijbiomac.2014.11.005
- 397
 17. Okur HI, Hladílková J, Rembert KB, Cho Y, Heyda J, Dzubiella J, et al. Beyond the Hofmeister series: Ion 398 specific effects on proteins and their biological functions. J Phys Chem B. 2017;121:1997-2014.
 399 https://doi.org/10.1021/acs.jpcb.6b10797
- 400
 18. Song DH, Ham YK, Ha JH, Kim YR, Chin KB, Kim HW. Impacts of pre-rigor salting with KCl on technological 401
 401 properties of ground chicken breast. Poult Sci. 2020;99:597-603. https://doi.org/10.3382/ps/pez527
- 402
 403
 403 Arii Y, Takenaka Y. Initiation of protein association in tofu formation by metal ions. Biosci Biotechnol Biochem. 2014;78:86-91. https://doi.org/10.1080/09168451.2014.877341
- 20. Zhu H, Damodaran S. Effects of calcium and magnesium ions on aggregation of whey protein isolate and its effect on foaming properties. J Agric Food Chem. 1994;42:856-862. https://doi.org/10.1021/jf00040a003
- 406 407 21. Hamm R. Biochemistry of meat hydration. Adv. Food Res. 1960;10:355-463. https://doi.org/10.1016/S0065-2628(08)60141-X
- 408
 409
 22. Lee S, Jo K, Hur SJ, Choi YS, Kim HJ, Jung S. Low protein digestibility of beef puree in infant in vitro digestion model. Food Sci Anim Resour. 2019;39:1000-1007. https://doi.org/10.5851/kosfa.2019.e73
- 23. Chen X, Tume RK, Xiong Y, Xu X, Zhou G, Chen C, et al. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Crit Rev Food Sci Nutr. 2018;58:2981-3003. https://doi.org/10.1080/10408398.2017.1347557
- 413
 24. Munasinghe DMS, Sakai T. Sodium chloride as a preferred protein extractant for pork lean meat. Meat Sci.
 414 2004;67:697-703. https://doi.org/10.1016/j.meatsci.2004.02.001
- 415 25. Ohtsuki I. Calcium ion regulation of muscle contraction: the regulatory role of troponin T. Mol Cell Biochem.
 416 1999;190:33-38. https://doi.org/10.1007/978-1-4615-5543-8_3
- 417 26. Heaton AL, Armentrout PB. Experimental and theoretical studies of potassium cation interactions with the acidic 418 Phys В. 2008:112:12056-12065. amino acids and their amide derivatives. J Chem 419 https://doi.org/10.1021/jp802427n
- 420
 421
 421
 421
 421
 421
 421
 421
 421
 421
 422
 421
 422
 421
 421
 422
 421
 422
 421
 421
 421
 422
 421
 422
 423
 424
 424
 425
 425
 426
 426
 427
 427
 428
 428
 429
 429
 429
 420
 420
 420
 420
 421
 421
 421
 421
 422
 421
 422
 421
 421
 421
 421
 422
 421
 421
 421
 421
 421
 422
 421
 421
 421
 421
 421
 421
 421
 421
 421
 422
 421
 421
 422
 421
 421
 422
 421
 421
 421
 422
 421
 421
 421
 421
 421
 421
 422
 421
 421
 421
 422
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
 421
- 423 28. Cao X, Hu X, Zhang X, Gao S, Ding C, Feng Y, et al. Identification of metal ion binding sites based on amino

- 424 acid sequences. PLoS One. 2017;12:e0183756. https://doi.org/10.1371/journal.pone.0183756
- 425
 426
 29. Fujiwara K, Toda H, Ikeguchi M. Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type. BMC Struct Biol. 2012;12:1-15. https://doi.org/10.1186/1472-6807-12-18
- 427 30. Kuhn ER, Naik AR, Lewis BE, Kokotovich KM, Li M, Stemmler TL, et al. Nanothermometry reveals calcium428 induced remodeling of myosin. Nano Lett. 2018;18:7021-7029. https://doi.org/10.1021/acs.nanolett.8b02989
- 429 31. Park E, Park S, Hwang JH, Jung AH, Park SH, Yoon Y. Evaluation of non-thermal decontamination processes to have the equivalence of thermal process in raw ground chicken. Food Sci Anim Resour. 2022;42:142-152. https://doi.org/10.5851/kosfa.2021.e69
- 432
 432 32. Chan JK, Gill TA, Paulson AT. The dynamics of thermal denaturation of fish myosins. Food Res Int. 1992;25:117433 123. http://dx.doi.org/10.1016/0963-9969(92)90152-u
- 434
 33. Hermansson AM, Harbitz O, Langton M. Formation of two types of gels from bovine myosin. J Sci Food Agric.
 435
 436;37:69-84. https://doi.org/10.1002/jsfa.2740370111
- 436
 437
 438
 34. Kim TK, Lee MH, Yu MH, Yong HI, Jang HW, Jung S, et al. Thermal stability and rheological properties of heatinduced gels prepared using edible insect proteins in a model system. LWT-Food Sci Technol. 2020;134:110270. https://doi.org/10.1016/j.lwt.2020.110270
- 439 35. Terrell RN, Ming CG, Jacobs JA, Smith GC, Carpenter ZL. Effect of chloride salts, acid phosphate and electrical stimulation on pH and moisture loss from beef clod muscles. J Anim Sci. 1981;53:658-662. https://doi.org/10.2527/jas1981.533658x
- 442 36. Kim SS, Lee YE, Kim CH, Min JS, Yim DG, Jo C. Determining the optimal cooking time for cooking loss, shear force, and off-odor reduction of pork large intestines. Food Sci Anim Resour. 2022;42:332-340. https://doi.org/10.5851/kosfa.2022.e6
- 445 37. Barlow DJ, Poole PL. The hydration of protein secondary structures. FEBS Lett. 1987; 213:423-427.
 446 https://doi.org/10.1016/0014-5793(87)81535-1
- 38. Wei W, Hu W, Zhang XY, Zhang FP, Sun SQ, Liu Y, et al. Analysis of protein structure changes and quality regulation of surimi during gelation based on infrared spectroscopy and microscopic imaging. Sci Rep. 2018;8:1-8. https://doi.org/10.1038/s41598-018-23645-3
- 39. Zheng J, Han Y, Ge G, Zhao M, Sun W. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties. Food Hydrocoll. 2019;96:36-42. https://doi.org/10.1016/j.foodhyd.2019.05.003

Table

Table 1. Relative C	contents of the secon	iual y sti uctui es	s (70) of the myos	III EXII ACIS
Treatment ¹⁾	α-helix	β-sheet	β-turn	Random coil
Control	15.52 ^{ab}	26.56 ^{bc}	17.35 ^{ab}	40.57 ^{ab}
NaCl	17.44 ^a	25.56 ^c	17.23 ^b	39.77 ^b
KCl	13.47 ^{bc}	27.91 ^{ab}	17.48 ^a	41.15 ^a
CaCl ₂	11.82 ^c	29.20 ^a	17.52 ^a	41.46 ^a
MgCl ₂	13.79 ^{bc}	27.58 ^{ab}	17.51 ^a	41.12 ^a
SEM ²⁾	0.694	0.424	0.054	0.229

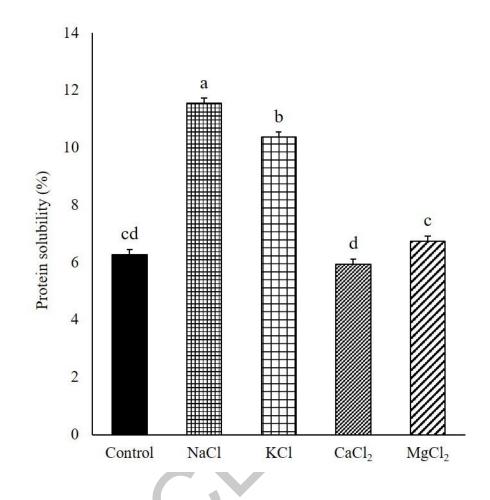
455 **Table 1. Relative contents of the secondary structures (%) of the myosin extracts**

456 ¹⁾ Control, myosin extract of myofibrillar protein extract with 0.3% sodium pyrophosphate;

457 NaCl, myosin extract of myofibrillar protein extract with 0.3% sodium pyrophosphate and 2%

458 NaCl; KCl, myosin extract of myofibrillar protein extract with 0.3% sodium pyrophosphate and

459 2.55% KCl; CaCl₂, myosin extract of myofibrillar protein extract with 0.3% sodium


460 pyrophosphate and 1.27% CaCl₂; MgCl₂, myosin extract of myofibrillar protein extract with

461 0.3% sodium pyrophosphate and 1.08% MgCl₂.

462 ²⁾n=15

463 ^{a-c} The different lowercase superscript in the same column at the same temperature indicate

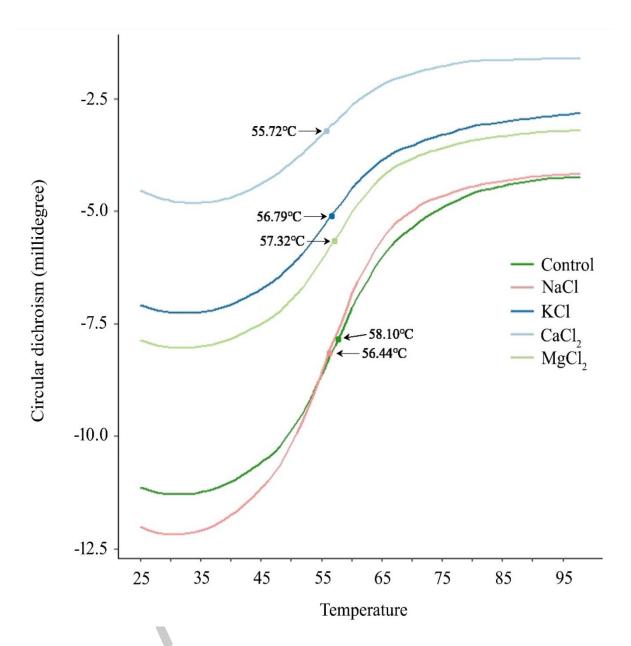
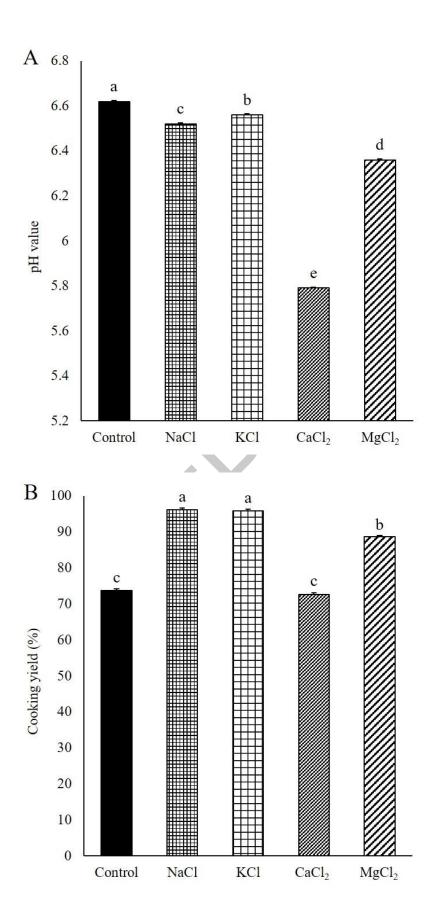
464 significant differences between the means (p < 0.05).

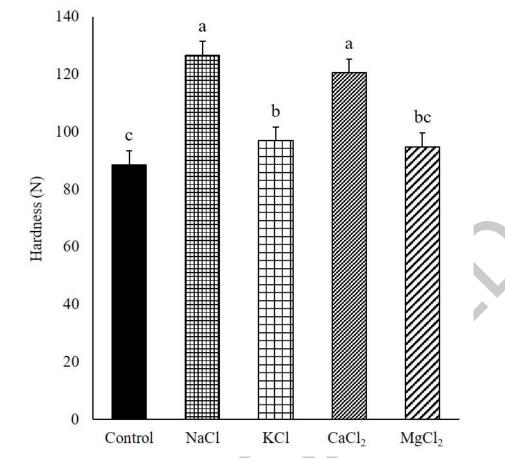
469Fig 1. Protein solubility (%) of the myofibrillar protein. ¹Control: myofibrillar protein extract470with 0.3% sodium pyrophosphate; NaCl: myofibrillar protein extract with 0.3% sodium471pyrophosphate and 2% NaCl; KCl: myofibrillar protein extract with 0.3% sodium pyrophosphate472and 2.55% KCl; CaCl₂: myofibrillar protein extract with 0.3% sodium pyrophosphate and 1.27%473CaCl₂; MgCl₂: myofibrillar protein extract with 0.3% sodium pyrophosphate and 1.08% MgCl₂.474a-d The different lowercase letters indicate significant differences between the means (p < 0.05).475

479 Fig 2. SDS-PAGE electrophoretogram of the supernatant of the homogenate samples.

¹Control: myofibrillar protein extract with 0.3% sodium pyrophosphate; NaCl: myofibrillar protein extract with 0.3% sodium pyrophosphate and 2% NaCl; KCl: myofibrillar protein extract with 0.3% sodium pyrophosphate and 2.55% KCl; CaCl₂: myofibrillar protein extract with 0.3% sodium pyrophosphate and 1.27% CaCl₂; MgCl₂: myofibrillar protein extract with 0.3% sodium pyrophosphate and 1.08% MgCl₂. ^{a-b} The different lowercase letters in the same row indicate significant differences between the means (p < 0.05).

486


Fig 3. Thermal denaturation of the myosin extracts. ¹Control: myosin extract with 0.3% sodium
pyrophosphate; NaCl: myosin extract with 0.3% sodium pyrophosphate and 2% NaCl; KCl:
myosin extract with 0.3% sodium pyrophosphate and 2.55% KCl; CaCl₂: myosin extract with 0.3%
sodium pyrophosphate and 1.27% CaCl₂; MgCl₂: myosin extract with 0.3% sodium pyrophosphate
and 1.08% MgCl₂.

500Fig 4. pH of the meat batters (A) and cooking yield (%) of the pork gel (B). ¹Control: pork gel501manufactured with 0.3% sodium pyrophosphate; NaCl: pork gel manufactured with 0.3% sodium502pyrophosphate and 2% NaCl; KCl: pork gel manufactured with 0.3% sodium pyrophosphate and5032.55% KCl; CaCl₂: pork gel manufactured with 0.3% sodium pyrophosphate and 1.27% CaCl₂;504MgCl₂: pork gel manufactured with 0.3% sodium pyrophosphate and 1.08% MgCl₂. ^{a-e} The505different lowercase letters indicate significant differences between the means (p < 0.05).

509

Fig 5. Hardness (N) of the pork gel samples. ¹Control: pork gel manufactured with 0.3% sodium pyrophosphate; NaCl: pork gel manufactured with 0.3% sodium pyrophosphate and 2% NaCl; KCl: pork gel manufactured with 0.3% sodium pyrophosphate and 2.55% KCl; CaCl₂: pork gel manufactured with 0.3% sodium pyrophosphate and 1.27% CaCl₂; MgCl₂: pork gel manufactured with 0.3% sodium pyrophosphate and 1.08% MgCl₂. ^{a-c} The different lowercase letters indicate significant differences between the means (p < 0.05).