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Abstract 8 

In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or dies, it will 9 
adversely affect the growing environment. In order to prevent the foregoing, it was necessary to continuously 10 
manage the cage for duck growth. This study proposes a method using an object detection algorithm to improve 11 
the foregoing. Object detection refers to the work to perform classification and localization of all objects present 12 
in the image when an input image is given. To use an object detection algorithm in a duck cage, data to be used 13 
for learning should be made and the data should be augmented to secure enough data to learn from. In addition, 14 
the time required for object detection and the accuracy of object detection are important. The study collected, 15 
processed, and augmented image data for a total of two years in 2021 and 2022 from the duck cage. Based on 16 
the objects that must be detected, the data collected as such were divided at a ratio of  9 : 1, and learning and 17 
verification were performed. The final results were visually confirmed using images different from the images 18 
used for learning. The proposed method is expected to be used for minimizing human resources in the growing 19 
process in duck cages and making the duck cages into smart farms. 20 
 21 
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Introduction 27 

In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or a duck is 28 
dead during growth, a person must make the duck stand up or collect the duck. To that end, it was necessary for 29 
humans to continuously manage the cage during the growing process of ducks. In order to improve the 30 
foregoing, this study proposes a method to use an object detection algorithm to utilize a robot in a duck cage to 31 
observe ducks to check if any duck fell or died and make any duck fell stand up and collect any duck dead. 32 
According to Zaidi, Syed Sahil Abbas, et al. [24], object detection means the work to classifying and localize all 33 
objects present in the image when an input image is given. Object detection algorithms can be largely divided 34 
into one-stage methods and two-stage methods, and each method has advantages and disadvantages. The one-35 
stage method is faster but less accurate. Data are necessary to train AI algorithms. In particular, a lot of 36 
processed data is required to use an object detection algorithm. However, there is no processed public data about 37 
the state of ducks in a duck cage environment. Therefore, in order to detect objects in the duck cage, it was 38 
necessary to firsthand collect, process, and augment data. This study collected, processed, and augmented image 39 
data from a duck cage for a total of two years of 2021 and 2022. The data collected as such will be discussed 40 
again in Materials and Methods. Finally, among the one-stage algorithms, RetinaNet [9] was used for learning 41 
and experiment. Unlike published data, data collected firsthand have many limitations. In particular, problems 42 
of the limited number of data and the imbalance of the correct answer to the data often occur. RetinaNet [9] is 43 
the most common algorithm that enables solving the imbalance problem of correct answers in collected data. By 44 
utilizing RetinaNet, it is possible to solve the bias of learning models created by the problems of imbalance of 45 
correct answers in data caused by relatively insufficient data collection. 46 

This study is closely related to object detection in smart farms. Gikunda, Patrick Kinyua, and Nicolas 47 
Jouandeau [13] and Dhanya, V. G., et al. [22] collected and investigated cases where artificial intelligence was 48 
used in relation to smart farms. Dhanya, V. G., et al. [22] state that the agricultural industry is going through a 49 
process of rapid digital transformation and that technology is being made more powerful by state-of-the-art 50 
approaches such as artificial intelligence technology. Sa, Inkyu, et al. [5] proposes a DeepFruits model that finds 51 
about five kinds of fruits, such as sweet pepper and rockmelon, in a greenhouse using Faster R-CNN [2]. 52 
Bargoti, Suchet, and James Underwood [6] propose a method for finding apples, mangos, and almonds in an 53 
orchard by applying the DeepFruits [5] network. Sørensen, René A., et al. [10] propose a method for finding 54 
thistles that cause loss in crop yield using DenseNet [11] based on aerial photographs of crops. Albuquerque, 55 
Caio KG, et al. [15] studies a method for identifying water in a watering machine based on Mask R-CNN [7] in 56 
image frames captured by an unmanned aerial vehicle (UAV). Osorio, Kavir, et al. [16] compared and analyzed 57 
Mask R-CNN [7], SVMs [1], and YOLOv3 [12] for methods to detect weeds in lettuce crops. Riekert, Martin, et 58 
al. [17] conducted a study on a method to find a pig's position using Faster R-CNN [2]. Tedesco-Oliveira, 59 
Danilo, et al. [18] applied Faster R-CNN [2] and SSD [4] to study the development of an automated system for 60 
predicting cotton yields from color images acquired with a simple mobile device.  Zhou, Zhongxian, et al. [19] 61 
compared various back-bone networks of SSD [4] to conduct a study on a method to find kiwi fruit in real time. 62 
Tang, Jiwen, et al. [21] propose a method of applying object detection to detect the distribution and precise 63 
shape of center pivot irrigation systems. Shojaeipour, Ali, et al. [20] applied two-stage YOLOv3 [12]-ResNet50 64 
[3] to study a method for detecting the mouth region of a cow from a cow face image dataset for livestock 65 
welfare and management. Syed-Ab-Rahman et al. [23] propose an end-to-end anchor-based model to detect and 66 
classify citrus disease states.  67 

Based on this, our paper analyzes the method of directly collecting, processing, and augmenting data for 68 
object detection on the state of ducks in a duck cage, and the application and the results of application of object 69 
detection algorithms. In order to check whether learning is successfully carried out using the collected data, the 70 
data are divided at a ratio of 9:1 based on the objects that must be detected and are learned and verified. As for 71 
the evaluation, the average precision is measured using the separated data for evaluation, and the final result is 72 
visually checked using images different from the images used for learning. The proposed method is expected to 73 
be used for minimizing human resources in the growing process in duck cages and making smart farms. 74 
 75 

 76 

Materials and Methods 77 

Data Collection 78 

Data collection and generation is one of the most important and time-consuming tasks in any field of artificial 79 
intelligence. In this study, the data necessary for object detection are largely the video data of ducks in the duck 80 
cage, the bounding boxes that specify the locations of ducks by image frame, and the state class labels. However, 81 
there are no studies similar to this or it is not a common situation. That is, there is no public data. Therefore, this 82 
study proceeds from the data collection stage. When raising ducks in duck cages, ducks are not raised from eggs. 83 
Generally, baby ducks hatched from eggs are brought to a duck cage and raised, and all are delivered after a 84 
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certain age. This is a characteristic of broiler ducks, and because of this characteristic, it is difficult to secure a 85 
large amount of data. However, deep learning requires a large amount of data in various types. To solve this 86 
problem, this study received image data directly from the duck cage over two years, 2021 and 2022, and uses 87 
techniques such as data augmentation. When receiving video data, the main point of view is whether the video 88 
has an appropriate height that can be used in real situations and whether the duck states are sufficiently diverse. 89 
An example of the video data provided is as shown in fig2. 90 

 91 

Data Labeling 92 

The training images are extracted from the video as frames at the duck farm in 2021, and the bounding boxing 93 
and class labeling are carried out directly by human hands. There are three states where ducks can exist in the 94 
image: normal, fallen, and dead. In this case, as the length of the video increases, the number of frames becomes 95 
too large. As a result, the differences between the images between the frames of the video are not large, and as 96 
the video moves, frames where it is difficult to recognize the shapes of the ducks occur. In addition, when 97 
humans firsthand create labels, as the number of images increases, the problem of taking longer time also occurs. 98 
That is, taking and using all image frames is not good for learning and only increases the data generation time. 99 
In order to solve this problem, this study selected only one image per 5 to 10 frames, and labeled the 1285 100 
images selected as such first. Duck cages raise large numbers of ducks. Therefore, when labeling an image for 101 
object detection, there is a problem that the number of ducks is excessively large, and ducks are dense. To solve 102 
this problem, it is necessary to clarify criteria when creating labels and to establish common rules. In this study, 103 
labels are created based on the duck in the frontmost of the image. In addition, only those ducks whose face, 104 
body, tail, and feet are clearly identified are identified in the normal state. The characteristics of the dataset 105 
created are examined with the labels and images created with the rule. Some problems were found due to the 106 
labeling results of the 2021 data. The ratios of dead ducks and fallen ducks in the data are overwhelmingly 107 
insufficient. This study solves this problem in three methods. First, we added more data which is provided in 108 
2022 for improving the performance of the detection, and apply it to train. Second, we solved the problem by 109 
augmenting insufficient data using a data augmentation technique. Finally, the focal loss proposed in RetinaNet 110 
[9] is used. Focal loss was proposed to solve the class imbalance problem. The problem that humans firsthand 111 
carry out labeling one by one occurs. If labeling is carried out by humans, there is the problem that a long time 112 
is taken, and the stability of the label cannot be guaranteed. To solve the foregoing problems, the object 113 
detection model was first trained using the 2021 data. Thereafter, using the model, an automatic labeling 114 
program was created. Based on the program, the 2022 duck cage image data provided later were extracted by 115 
image frame, and thereafter, labeling was carried out first using an automatic labeling program. Finally, the 116 
labeling was inspected and corrected by humans to save time and improve stability. As such, 2852 images and 117 
labels were finally created. An example of a label created as such is shown in fig 4. 118 
 119 

Dataset 120 

The number of data sets finally created is 2852. The average size of the image is 1748.30 and 999.94 for the 121 
width and height, respectively, and the total numbers of normal ducks, fallen ducks, and dead ducks in all 122 
images are 10461, 1208, and 381, respectively. The maximum number of normal ducks, fallen ducks, and dead 123 
ducks in one image is 24, 1, and 1, respectively.  Ducks in all states may or may not exist. Also, ducks in 124 
various states may appear simultaneously. The ratios of one duck object to image are 0.056, 0.053, and 0.082, 125 
respectively. Ducks in most states appear evenly throughout the image, but dead ducks always appear below the 126 
halfway of the image. [table. 1] 127 
 128 

RetinaNet Training 129 

The purpose of this study is to find duck objects in the duck cage in real time. There are many similar object 130 
detection algorithms. However, as a characteristic of the collected datasets, the ratio of fallen ducks and dead 131 
ducks is overwhelmingly lower than that of normal ducks. This problem is called the state imbalance problem. 132 
To solve this problem, this study uses RetinaNet [9]. RetinaNet [9] has the advantage that the backbone model 133 
and the region proposal network can be freely changed. In addition, it is easy to apply new datasets because 134 
many studies have been conducted. Furthermore, the introduction of the focal loss solves the problem of state 135 
imbalance to some extent. The focal loss is an extended version of the cross entropy loss that reduces the 136 
weights of easy examples and focuses learning on difficult examples. Finally, real-time object detection is 137 
possible because it is a one-stage model. Therefore, RetinaNet [9] is used as the basic model of this study. A 138 
figure of the learning pipeline using RetinaNet [9] is as shown in fig5. 139 
 140 

Data Augmentation 141 
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The more the data used in deep learning, the better the deep learning. However, the total number of data used 142 
in this study is 2852. Many studies try to obtain more data for learning. However, when it is difficult to secure 143 
additional data, data are increased through data augmentation. This study augments data before using the data 144 
for learning. The techniques used in that case are brightness conversion, contrast conversion, saturation 145 
conversion, rotation, random resize, and flip. For brightness, contrast, and saturation conversions, values 146 
between 0.9 and 1.1 are randomly applied based on the image value. In the case of rotation, values between -20 147 
degrees and 20 degrees are applied according to the characteristics of the image. Flip is applied left and right, 148 
and the application probability is 0.5. For random resize, a length of one of 640, 672, 704, 736, 768, and 800 is 149 
selected based on the length of the shortest side, and the length of the longest side is up to 1333. Finally, each 150 
technique is applied independently of the other. That is, several techniques may be applied at the same time, or 151 
none may be applied. Fig6 is an example of an image to which augmentation was applied. 152 
 153 

Fine Tuning 154 

Fine-tuning is a method used to train one’s own model based on an existing model that has been trained. 155 
Many deep learning approaches use fine-tuning to achieve a task. In this study too, the RetinaNet [9] model 156 
pretrained using the COCO dataset is fined-tuned and learned. There are two models prepared for fine-tuning, 157 
1x model and 3x model, which will be used depending on the schedule. He, Kaiming, Ross Girshick, and Piotr 158 
Dollár [14] questioned fine-tuning and studied a new way of learning. They introduce training scheduling 159 
techniques, batch normalization, and methods that do not use fine-tuning. According to them, a learning 160 
schedule to search the COCO Dataset once based on the COCO Dataset is defined as a 1x schedule. That is, the 161 
prepared 1x pretraining model means a model that searches the COCO dataset once, carries out 90000 iterations, 162 
and has learning rates reduced to 1/10 at 60k and 80k. The 3x pretraining model is a model that searches the 163 
COCO dataset twice, caries out 270000 iterations, and has the learning rate reduced to 1/10 every 210k and 164 
250k. In this study, both models are used for learning and the results are compared thereafter. 165 
 166 

Train Details 167 

For learning and validation, the data are divided into train data and validation data at a ratio of 9:1. When 168 
dividing the data, the data are divided based on classes so that the data can be divided fairly by class. In addition, 169 
a total of three models are learned: a model to which data augmentation was not applied, a model to which data 170 
augmentation was partially applied, and a model to which data augmentation was fully applied. As for the model 171 
to which data augmentation was partially applied, it was found that the model to which only random resize and 172 
random flip were applied as elements found during learning performed better. Details can be found in Result 173 
Section. The basic RetinaNet [9] used in learning is a combination of ResNet50 [3] and FPN [8]. In addition, 174 
two models trained on the COCO dataset were prepared. We fine-tune from the two prepared models. In this 175 
case, focal loss is used as the loss and SGD is used as the optimizer. The basic learning rate is 1e-3, and the 176 
warm-up scheduler and the step scheduler are used as the learning schedulers. Therefore, the learning rate is first 177 
warmed up to 1000 iterations. The step scheduler reduces the basic learning rate by 1e-1 each at the last 178 
iterations, 5000 and 6000 iterations. The batch size is 16 and the iteration is 7000. One RTX 3090 was used for 179 
learning, and the time taken for the learning was about 2 hours. 180 

 181 

 182 

Results 183 

The most commonly used value to measure performance in object detection is average precision (AP). In 184 
short, AP means the percentage of correct answers in the predicted boxes. AP is again divided into AP50, AP75, 185 
etc. according to the ratio of intersection over union (IoU) according to the degree of overlap between the 186 
predicted box and the correct answer box. AP means the average accuracy measurement method for all ratios of 187 
IoU, which increases by 0.05 from 0.5 to 0.95, AP50 means when IoU is greater than 0.5, and AP75 means 188 
when IoU is greater than 0.75. In this study, how accurate the combination of basic ResNet50 [3] and FPN [8] is 189 
checked for each AP according to the pretraining model and whether augmentation is carried out. Table 2. is a 190 
table of measurement of AP for 270 pieces of validation data. Table 3 is the result of measurement of AP by 191 
class for the same validation data. 192 

According to Table 2 and Table 3, it can be seen that the performance of the 3x model is basically higher than 193 
that of the 1x model. In addition, the performance of the model to which only random resize and flipping were 194 
applied is superior to that of the model to which full augmentation was applied for validation data. It can be seen 195 
that excessive augmentation does not help the validation performance because the number of validation data is 196 
small, and the images are mainly those images with angles and shapes similar to those of the learning images. 197 
However, this is far from generalization, which is the goal of learning. Therefore, the validation data are 198 
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augmented through flipping and rotation to generate 2770 validation data, and more general performance is 199 
measured thereafter. The results are in Table 4 and Table 5 below. 200 

Through the results in Table 4 and Table 5, it can be seen that the generalization performance of the model to 201 
which full augmentation was applied is better. Therefore, in this study, the test is conducted using a model to 202 
which full augmentation is applied. In addition, between the 1x model and the 3x model, the 3x model generally 203 
has better performance. However, in the present evaluation, the average AP performance of the 1x model was 204 
shown to be better. Since the AP75 performance of the 3x model was better, the 3x model was used and applied 205 
to images different from the images used for learning and evaluation. Because the images to which the models 206 
were applied as such have no information of the actual objects, it was checked with eyes whether the images 207 
were searched well. The results checked with the eyes are as shown in fig 7, fig 8, and fig 9.  208 

In addition, the average inference time per one image for all models is within 0.003 seconds. This shows that 209 
the inference time of this model is short and effective. Therefore, the model can be used for real-time detection.  210 

 211 
 212 

 213 

Discussion 214 

This study collected and defined anomalous object detection datasets for making a smart farm for anomalous 215 
duck detection in a duck cage environment. Thereafter, using the datasets, learning and evaluation were caried 216 
out utilizing RetinaNet, a one-stage network. Finally, for good results, image augmentation, warm-up scheduler, 217 
etc. were used for comparison to explore the best algorithm between basic ResNet50 and FPN models. The 218 
datasets defined through the foregoing were shown to be usable and basic model guidelines were established. 219 
However, there are some limitations. First, the backbone network was not changed. In the case of object 220 
detection, the performance varies greatly depending on the size of the backbone network and the method of the 221 
region of interest network. If the size of the backbone model is increased, the accuracy will increase. However, 222 
due to the definition of the problem that objects should be detected in real time, a search process to find a 223 
network of an appropriate size is necessary. Second, a method that uses an object detection model other than 224 
RetinaNet is necessary. RetinaNet is a network that has been studied a lot and has characteristics suitable for 225 
solving our problems, but it is also an old model. This means that experiments should be caried out on other 226 
models that advanced RetinaNet while retaining the features. Finally, research on the improvement of a new 227 
network tailored to the datasets is needed. Currently, we applied our datasets based on a famous model and 228 
focused on exploring how well it performs. A study like this is also a study, and through this, we showed that 229 
our problem definition is solvable and that our datasets can be used well in a general model. However, this does 230 
not mean that general models published well fit our datasets. Research on new models that fit the characteristics 231 
of our datasets is also needed. All of these limitations will be addressed in the future based on this study by 232 
utilizing and developing the insights found in this study. 233 
 234 
 235 

Acknowledgments 236 

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture 237 
and Forestry(IPET) and Korea Smart Farm R&D Foundation(KoSFarm) through Smart Farm Innovation 238 
Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and 239 
Ministry of Science and ICT(MSIT), Rural Development Administration(RDA) (grant number: 421024-04). 240 
And this work was supported by Korea Institute of Planning and Evaluation for Technology in Food, 241 
Agriculture and Forestry(IPET) funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA) (grant 242 
number: 321092-03-1-HD030). And this research was supported by the Catholic University of Korea. 243 
 244 
 245 

 246 

247 

ACCEPTED



7 

References 248 

1. Noble WS. What is a support vector machine? Nature biotechnology. 2006;24(12):1565-7. doi: 249 
https://doi.org/10.1038/nbt1206-1565. 250 

2. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal 251 
networks. Advances in neural information processing systems. 2015;28. 252 

3. He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE 253 
conference on computer vision and pattern recognition; 2016. 254 

4. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al., editors. Ssd: Single shot multibox detector. 255 
European conference on computer vision; 2016: Springer. 256 

5. Sa I, Ge Z, Dayoub F, Upcroft B, Perez T, McCool C. Deepfruits: A fruit detection system using deep neural 257 
networks. sensors. 2016;16(8):1222. doi: https://doi.org/10.3390/s16081222. 258 

6. Bargoti S, Underwood J, editors. Deep fruit detection in orchards. 2017 IEEE international conference on 259 
robotics and automation (ICRA); 2017: IEEE. 260 

7. He K, Gkioxari G, Dollár P, Girshick R, editors. Mask r-cnn. Proceedings of the IEEE international 261 
conference on computer vision; 2017. 262 

8. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S, editors. Feature pyramid networks for object 263 
detection. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. 264 

9. Lin T-Y, Goyal P, Girshick R, He K, Dollár P, editors. Focal loss for dense object detection. Proceedings of 265 
the IEEE international conference on computer vision; 2017. 266 

10. Sørensen RA, Rasmussen J, Nielsen J, Jørgensen RN, editors. Thistle detection using convolutional neural 267 
networks. EFITA WCCA 2017 Conference, Montpellier Supagro, Montpellier, France; 2017. 268 

11. Zhu Y, Newsam S, editors. Densenet for dense flow. 2017 IEEE international conference on image 269 
processing (ICIP); 2017: IEEE. 270 

12. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint arXiv:180402767. 2018. doi: 271 
https://doi.org/10.48550/arXiv.1804.02767. 272 

13. Gikunda PK, Jouandeau N, editors. State-of-the-art convolutional neural networks for smart farms: A review. 273 
Intelligent computing-proceedings of the computing conference; 2019: Springer. 274 

14. He K, Girshick R, Dollár P, editors. Rethinking imagenet pre-training. Proceedings of the IEEE/CVF 275 
International Conference on Computer Vision; 2019. 276 

15. Albuquerque CK, Polimante S, Torre-Neto A, Prati RC, editors. Water spray detection for smart irrigation 277 
systems with mask r-cnn and uav footage. 2020 IEEE International Workshop on Metrology for 278 
Agriculture and Forestry (MetroAgriFor); 2020: IEEE. 279 

ACCEPTED



8 

16. Osorio K, Puerto A, Pedraza C, Jamaica D, Rodríguez L. A deep learning approach for weed detection in 280 
lettuce crops using multispectral images. AgriEngineering. 2020;2(3):471-88. doi: 281 
https://doi.org/10.3390/agriengineering2030032. 282 

17. Riekert M, Klein A, Adrion F, Hoffmann C, Gallmann E. Automatically detecting pig position and posture 283 
by 2D camera imaging and deep learning. Computers and Electronics in Agriculture. 2020;174:105391. 284 
doi: https://doi.org/10.1016/j.compag.2020.105391. 285 

18. Tedesco-Oliveira D, da Silva RP, Maldonado Jr W, Zerbato C. Convolutional neural networks in predicting 286 
cotton yield from images of commercial fields. Computers and electronics in agriculture. 2020;171:105307. 287 
doi: https://doi.org/10.1016/j.compag.2020.105307. 288 

19. Zhou Z, Song Z, Fu L, Gao F, Li R, Cui Y. Real-time kiwifruit detection in orchard using deep learning on 289 
Android™ smartphones for yield estimation. Computers and Electronics in Agriculture. 2020;179:105856. 290 
doi: https://doi.org/10.1016/j.compag.2020.105856. 291 

20. Shojaeipour A, Falzon G, Kwan P, Hadavi N, Cowley FC, Paul D. Automated muzzle detection and 292 
biometric identification via few-shot deep transfer learning of mixed breed cattle. Agronomy. 293 
2021;11(11):2365. doi: https://doi.org/10.3390/agronomy11112365. 294 

21. Tang J, Arvor D, Corpetti T, Tang P. Mapping center pivot irrigation systems in the southern Amazon from 295 
Sentinel-2 images. Water. 2021;13(3):298. doi: https://doi.org/10.3390/w13030298. 296 

22. Dhanya V, Subeesh A, Kushwaha N, Vishwakarma D, Kumar TN, Ritika G, et al. Deep learning based 297 
computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture. 2022. 298 
doi: https://doi.org/10.1016/j.aiia.2022.09.007. 299 

23. Syed-Ab-Rahman SF, Hesamian MH, Prasad M. Citrus disease detection and classification using end-to-end 300 
anchor-based deep learning model. Applied Intelligence. 2022;52(1):927-38. doi: 301 
https://doi.org/10.1007/s10489-021-02452-w. 302 

24. Zaidi SSA, Ansari MS, Aslam A, Kanwal N, Asghar M, Lee B. A survey of modern deep learning based 303 
object detection models. Digital Signal Processing. 2022:103514. doi: 304 
https://doi.org/10.1016/j.dsp.2022.103514. 305 

 306 

 307 

308 

ACCEPTED



9 

Tables and Figures 309 

 310 
Table 1. Dataset Information 311 

 Total 

Number 

Max 

Number 

Min 

Number 

Avg 

region 

rate 

min 

top left 

x 

min 

top left 

y 

max 

top left 

x 

max 

top left 

y 

Duck 10461 24 0 0.0563 0.00 0.00 1818.65 896.53 

Slap 1208 1 0 0.0531 0.00 0.00 1380.64 850.54 

Dead 381 1 0 0.0825 0.00 97.48 1611.73 832.36 

 312 
Table 2. Duck detection RetinaNet result 313 

backbone scheduler augmentation AP AP50 AP75 

Resnet50-FPN 1x none 73.969 97.035 87.633 

Resnet50-FPN 3x none 74.630 97.046 88.686 

Resnet50-FPN 1x part 79.599 98.060 91.569 

Resnet50-FPN 3x part 79.797 98.023 91.569 

Resnet50-FPN 1x all 66.286 97.788 81.559 

Resnet50-FPN 3x all 67.101 97.711 84.954 

 314 
Table 3. Duck detection RetinaNet result by class 315 

backbone scheduler augmentation Duck Slap Dead 

Resnet50-FPN 1x none 62.291 76.794 82.821 

Resnet50-FPN 3x none 61.985 79.549 82.357 

Resnet50-FPN 1x part 68.187 84.082 86.527 

Resnet50-FPN 3x part 68.467 85.362 85.563 

Resnet50-FPN 1x all 58.852 72.208 67.797 

Resnet50-FPN 3x all 59.518 72.910 68.876 

 316 
Table 4. Duck detection augmentation validation data RetinaNet result 317 

backbone scheduler augmentation AP AP50 AP75 

Resnet50-FPN 1x none 34.413 86.847 16.997 

Resnet50-FPN 3x none 33.917 86.609 16.562 

Resnet50-FPN 1x part 37.432 91.314 20.255 

Resnet50-FPN 3x part 37.340 90.682 19.787 

Resnet50-FPN 1x all 70.984 97.182 88.584 

Resnet50-FPN 3x all 70.784 97.361 89.745 
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Table 5. Duck detection augmentation validation data RetinaNet result by class 319 

backbone scheduler augmentation Duck Slap Dead 

Resnet50-FPN 1x none 32.513 38.990 31.737 

Resnet50-FPN 3x none 32.061 37.264 32.426 

Resnet50-FPN 1x part 37.408 41.936 32.953 

Resnet50-FPN 3x part 37.499 41.278 33.244 

Resnet50-FPN 1x all 62.786 76.781 73.386 

Resnet50-FPN 3x all 64.474 76.871 71.007 
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