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Abstract

Respiratory diseases have been recognized as a significant cause of reduced livestock productivity since 1995.
Respiratory diseases in the swine industry caused by both biological and non-biological factors are collectively
referred to as porcine respiratory disease complex (PRDC). However, there is a lack of eco-friendly anti-inflammatory
drugs (AIDs) that can effectively control lung inflammation caused by PRDC. P2Y purinoreceptor 14 (P2Y14) has
been identified as a key regulator of macrophage inflammatory responses; however, its regulatory role in porcine lung
inflammation remains unclear. In this study, we investigated the role of P2Y 14 in inflammation in 3D4/31 PAMs and
attempted to develop a novel AID. An extract of the Mexican medicinal plant Aporocactus flagelliformis (AFWE)
reduced ROS production and pro-inflammatory cytokine expression in phorbol myristate acetate-stimulated 3D4/31-
PAMs. It also reduced glucose uptake, glycogen accumulation, and expression of genes related to the P2Y 14 cascade.
Polarity-based fractionation and liquid chromatography-mass spectrometry identified limonin as an anti-inflammatory
compound in AFWE. Limonin reduced P2RY 14 and proinflammatory gene expression induced by the P2Y 14 ligand
UDPG in 3D4/31-PAMs, demonstrating its inhibitory effect on P2Y 14-mediated inflammation. These results suggest
that P2Y 14 is an inflammatory receptor in PAMs and an effective target for AID development. We also propose AFWE

and limonin as candidate AIDs for pigs.

Keywords: Porcine respiratory disease complex, Porcine alveolar macrophages, inflammation, P2Y 14, Aporocactus

flagelliformis, limonin



29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

INTRODUCTION

The porcine respiratory disease complex (PRDC) causes economic losses in the swine industry by reducing pork
production efficiency and increasing feed costs, carcass disposal costs, and medical expenses [1]. Various factors,
including overcrowded rearing conditions, porcine circovirus type 2 (PCV2), porcine reproductive and respiratory
syndrome virus, swine influenza virus, Mycoplasma hyopneumoniae, and Pasteurella multocida influence the onset
of PRDC [2]. Infections by PRDC-related viruses lead to proinflammatory cytokine expression and tissue damage in
porcine lungs [3], which can be alleviated by anti-inflammatory drugs (AIDs). However, the development and
selection of suitable AIDs for PRDC are limited because of a lack of research [4]. Therefore, in this study, we aimed
to develop an AID for porcine.

Inflammation caused by infection is primarily mediated by macrophages. PCV2 targets macrophage populations,
including alveolar macrophages (AMs), and induces a strong inflammatory response [5]. Increased expression of
NOX2, which mediates reactive oxygen species (ROS) production, has been reported in PCV2-infected macrophages
[6]. This induces autophagy and PCV2 replication, which can be inhibited by blocking autophagy or ROS [7, 8].
Additionally, PCV2-infected macrophages show increased expression of proinflammatory cytokines, including tumor
necrosis factor-o (TNFa) and cyclooxygenase-2 (COX2) [9]. The acute inflammatory response in macrophages is
mediated by P2Y purinoceptor 14 (P2Y 14), which is a member of the pyrimidinergic G protein-coupled receptor family.
Activation of P2Y 4 by uridine-5'-diphosphoglucose (UDPG), which is produced and secreted during glycogenesis,
induces the expression of signal transducer and activator of transcription 1 (STAT1) and TNFa [10]. Although the
ability of P2Y 4 to recognize UDPG has been reported in porcine coronary arteries [11], the role of P2Y 14 in porcine
macrophages (PAMs) is unclear.

With the global ban on antibiotics in animal feed, there has been increased attention on developing eco-friendly
antibacterial and anti-inflammatory strategies to maintain porcine health and productivity [12]. Succulent plants,
which are also used as porcine feed, have shown some anti-inflammatory effects in porcine cells and are emerging as
natural anti-inflammatory agents [13-15]. The succulent Aporocactus flagelliformis (A. flagelliformis), also known as
rattail cactus, is traditionally used in Mexico to treat heart disease and diabetes [16, 17]. Inhibition of P2Y 14 in porcine
shows potential for treating these conditions [11, 18]. Here, we focused on the therapeutic effects of A. flagelliformis
on P2Y 4 and various diseases.

In this study, we developed an A. flagelliformis water extract (AFWE) and investigated its anti-inflammatory

effects on 3D4/31-PAMs, including ROS production, proinflammatory cytokine expression, and bactericidal activity.

4
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We also evaluated the effects of AFWE on P2Y 14 metabolism. Limonin was identified using liquid chromatography-
mass spectrometry (LC-MS) as a major compound of AFWE. The binding potential of limonin to porcine P2Y 14 was

assessed and the therapeutic effects of limonin on UDPG-induced inflammation were evaluated.

MATERIALS AND METHODS

Preparation of A. flagelliformis water extract

Fresh A. flagelliformis (Xplant, Seoul, Korea) was cut into 2-3 cm lengths, washed with deionized water (dH>O),
and extracted with dH>O (300 mL dH»O for 100 g A. flagelliformis) for 15 min at 110 °C using a WAC-60 autoclave
(Daihan Scientific, Wonju-si, Gangwon-do, Korea). The aqueous phase was collected, sterile filtered using a 0.2 um

cellulose-acetate filter (16534-K, Minisart, Sartorius, Goettingen, Germany), and stored at -80 °C before use.

Cell culture condition

3D4/31 porcine alveolar macrophages (3D4/31-PAMs; ATCC-CRL-2844; ATCC, Manassas, VA, USA) and
A549 human alveolar epithelial cells (A549-AECs; CCL-185, ATCC) were maintained in a 5 % CO, atmosphere at
36.5 °C. Cells were grown in a 4:6 ratio of Dulbecco’s modified Eagle’s medium (10-013-CVR, Corning, Corning,
NY, USA) and Roswell Park Memorial Institute (RPMI) 1640 medium (10-040-CVR, Corning) supplemented with
10 % (v/v) fetal bovine serum (TMS-013, Merck Millipore, Burlington, MA, USA) and 1 % (v/v) penicillin-

streptomycin (LS202-02, Welgene, Gyeongsan-si, Gyeongsangbuk-do, Korea).

Drugs and treatment

Cells were cultured for 12 h prior to treatment. Cells were treated for 24 h, refreshed medium/treatment, and
stimulated with 2 nM phorbol myristate acetate (PMA; P1585-1MG, Sigma-Aldrich, St. Louis, MO, USA). The
treatments included 60 pg/mL AFWE, 30 pM limonin (A10531, Adooq Bioscience, Irvine, CA, USA), and 200 uM
UDPG (U4625-25MG, Sigma-Aldrich). Limonin was prepared at a final concentration of 50 mM in 99.9 % dimethyl

sulfoxide (DMSO; sterile, cell culture grade).

Quantification of cell viability and proliferation
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To quantify cell viability, cells were cultured with 10 % (v/v) water-soluble tetrazolium salt-8 (WST8) reagent
(QM2500, BIOMAX, Seoul, Korea) for 2 h, and the optical density at 450 nm (ODas) was measured using a FilterMax
F3 microplate reader (Molecular Devices, San Jose, CA, USA). For quantification of proliferation, cells were
harvested and stained with 0.2 % (v/v) trypan blue (15250-061, Gibco, North Andover, MA, USA) for 1 min, and

viable cells were counted using a hemocytometer.

Measurement of intracellular ROS level
Cells were cultured with 1 pM 2',7'-dichlorofluorescein diacetate (H.DCFDA; 35845, Sigma-Aldrich) for 30

min, washed with phosphate-buffered saline (PBS; pH 7.4), harvested, washed with PBS, and analyzed by flow

cytometry.

Immunoblotting and densitometry analysis

Cells were lysed in radioimmunoprecipitation assay buffer containing 1. mM phenylmethanesulfonyl fluoride
(P7626-5G, Sigma-Aldrich) for 1 h at 4 °C. The supernatant was collected by centrifugation at 14,000 RCF for 15
min. Protein concentration was quantified using Bradford’s assay with a bovine serum albumin (BSA; 10735086001,
Roche, Basel, Switzerland) standard. Proteins were separated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis and transferred onto polyvinylidene fluoride membranes (3010040001, Roche) using a HorizeBLOT
2M transfer system (ATTO, Tokyo, Japan). Membranes were blocked with 5 % (w/v) skim milk, washed with tris-
buffered saline [TBST; pH 7.6, 0.05 % (v/v) Tween 20], and probed with primary antibodies at 4 °C for 12 h.
Membranes were then washed with TBST, proved with secondary antibodies, and washed with TBST. The membranes
were then exposed to an enhanced chemiluminescence reagent, visualized using an X-ray film (EASEC, AGFA,
Mortsel, Belgium), and quantified by densitometry analysis using ImageJ Ver. 1.5.3q (National Institutes of Health,

Bethesda, MD, USA). The antibodies used for immunoblotting are listed in Table 1.

RNA isolation and quantitative real-time PCR (qRT-PCR)

All procedures were performed according to the manufacturer’s instructions. RNA was isolated using TRIzol
reagent (15596026, Invitrogen, Carlsbad, CA, USA), quantified using NanoDrop, and converted to cDNA at a
concentration of 1 pg using Oligo dT20 primers with the WizScript cDNA Synthesis Kit (W2202, Wizbiosolutions,

Seongnam-si, Gyeonggi-do, Korea). cDNA was quantified using SYBR Green qPCR Master Mix (DQ485; BioFACT,
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Dacjeon, Korea), StepOnePlus RT-PCR System (Applied Biosystems, Foster City, CA, USA), and StepOne software
Ver. 2.3. The fold change in mRNA expression was normalized to ribosomal protein S29 (RPS29) using the 2 44V

method. The primer sequences used for qRT-PCR are listed in Table 2.

In vitro bactericidal assay

3D4/31-PAMs (1x10° cells), Escherichia coli (E. coli) DH5a (1x107 CFU, colony forming unit), and 5 % (v/v)
porcine serum were mixed in a final volume of 1 mL of Hanks' balanced salt solution (HBSS, pH 7.4) and incubated
at 37 °C for 1 h with shaking (180 rpm). After centrifugation at 12,000 RCF for 1 min, the supernatant (non-engulfed
bacteria) was spread onto Luria-Bertani (LB; 244602, BD, Detroit, MI, USA) agar plates. The pelleted cells (with
engulfed bacteria) were washed twice with HBSS, suspended in 1 mL of RPM 1640 medium, and incubated for 0, 20,
and 40 min at 37 °C with shaking (180 rpm). After each incubation period, the cells were lysed with dH,O for 5 min
and spread on LB agar plates. The CFUs were counted after incubation for 12 'h at 37 °C. Images of the LB agar plates

were captured using iPhone X (Apple, Cupertino, CA, USA).

Measurement of autophagic activity
Cells were cultured with 1 pg/mL acridine orange (A6014, Sigma-Aldrich) for 15 min, washed twice with PBS,

harvested, washed with PBS, and analyzed by flow cytometry.

Glucose uptake assay
Cells were suspended in PBS containing 50 pM 2-NBD-glucose (2-NBDG; 11046-10MG, Cayman Chemical,

Ann Arbor, MI, USA) and 0.1 % (w/v) BSA, incubated for 30 min, washed with PBS, and analyzed by flow cytometry.

Measurement of intracellular lipid droplet content
Cells were cultured with 1 uM BODIPY*%5% (D3922, Invitrogen) for 30 min, washed twice with PBS, and
subjected to fluorescence microscopy or flow cytometry. For flow cytometry, cells were harvested, washed with PBS,

and analyzed.

Visualization and quantification glycogen

Glycogens were visualized using Best’s carmine staining [19] with minor modifications. Cells were fixed for 15
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min with 3.8 % (w/v) formaldehyde, washed with PBS, and stained with 0.625 % (w/v) Best’s carmine solution
(C1022; Sigma-Aldrich) for 30 min. Cells were then rinsed twice with dH,O containing 2 % (v/v) methanol and 4 %
(v/v) ethanol, washed with ethanol for 1 min, and imaged. Glycogen content was quantified using the anthrone method
[20] with minor modifications. Cells (1x103) were lysed in 50 uL of 30 % (w/v) KOH for 20 min at 100 °C and 350
pL of 43 % (v/v) ethanol was added. The cell lysate (50 uL) was reacted with 100 uL of 0.2 % (w/v) anthrone (319899,
Sigma-Aldrich) at 100 °C for 20 min. The ODgy of the lysate and glucose (G8270, Sigma-Aldrich) standards were

measured using a FilterMaxF3 microplate reader.

Fractionation of AFWE
Serial fractionation of AFWE was performed using ethyl acetate, ethyl ether, ethanol, and isopropyl ether (extra-
pure grade). The AFWE was shaken in a specific solvent system for 10 min and allowed to stand at 25 °C until the

mixture formed two layers (1-2 h). The organic layer was then concentrated to 20 x in DMSO using a rotary evaporator.

LC-MS of AFWE

LC was carried out using an Acquity UPLC system (Waters, Milford, MA, USA) with an Acquity BEH C18 1.7
pm column (2.1 x 100 mm). The LC processed the samples at 0.2 mL/min using water/methanol with 0.1 % (v/v)
formic acid at 40 °C. MS was performed using the SYNAPT G2 platform (Waters). Molecules were identified using
m/z CLOUD (https://www.mzcloud.org) and molecular structures were illustrated using ChemDraw Ultra Ver. 12.0.2

(CambridgeSoft, Cambridge, MA, USA).

Computational prediction of molecular docking

The 3D structure of porcine-P2Y 4 (AF-F1SJN3-F1) was downloaded from the AlphaFold Protein Structure
Database Ver. 2022-11-01 (https://alphafold.ebi.ac.uk). The canonical SMILES of the ligands (Limonin #179651 and
UDPG #8629, PubChem release 2021.10.14) were retrieved from the PubChem Database
(https://pubchem.ncbi.nlm.nih.gov). Molecular docking and visualization were performed using DiffDock-L [21]

hosted at Neurosnap.ai (https://neurosnap.ai).

Flow cytometry analysis

Flow cytometry was performed using a Guava easyCyte Flow Cytometer (Merck Millipore) and Guava InCyte
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software Ver. 2.6. An average of 3x10° cells was measured for the single-channel assay and an average of 5x10° cells
was measured for the dual-channel assay. Flow cytometry plots and fluorescence intensities were obtained using the

FlowJo Ver. 10.6.2 (TreeStar, Ashland, OR, USA).

Imaging and processing

Microscopy was performed using DMi8 fluorescence microscope (Leica, Wetzlar, Germany). LAS X software
Ver. 2.0.0.14332 was used for the fluorescence images, and LAS software Ver. 4.7.1 for the bright-field images. To
display representative images, contrast and brightness adjustments were processed using Photoshop 2024 (Adobe

Systems, San Jose, CA, USA).

Statistical analysis

Statistical analyses were based on at least 3 independent biological experiments and were performed using
GraphPad PRISM software Ver. 10.2.3 (GraphPad Software, San Diego, CA, USA). All data are shown as mean +
standard deviation. Analysis of variance (ANOVA) with Tukey’s multiple comparison test or unpaired two-tailed

Student’s t-test was used for statistical analyses. Statistical significance was set at p < 0.05.

RESULTS

A. flagelliformis water extract suppresses proinflammatory features in 3D4/31-PAMs

To determine the anti-inflammatory properties of 4. flagelliformis, we developed AFWE and evaluated its
bioactivity against ROS production, cytokine expression, and bactericidal activity in 3D4/31-PAMs. First, fresh 4.
flagelliformis was extracted using a water extraction method (Fig. 1A and 1B). The dry weight of AFWE was found
to be 6 mg/mL, giving an extraction efficiency of 1.8% based on the solid content. To determine the cytotoxicity of
AFWE on pulmonary alveoli, WST8 was performed on 3D4/31-PAM and A549-AEC. Although AFWE was not
cytotoxic to 3D4/31-PAMs, A549-AECs viability was increased by 60 pg/mL AFWE and decreased by 6 pg/mL
AFWE treatment (Fig. 1C). As the number of tissue-resident AMs decreases with the severity of lung infection [22,
23], we tested the protective effect of AFWE on the proliferation of 3D4/31-PAMs. However, 60 pg/mL AFWE did

not upregulate the proliferation of PMA-stimulated 3D4/31-PAMs (PS-3D4/31-PAMs) (Fig. 1D).
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AFWE (0.006-60 pg/mL) reduced the intracellular ROS levels in PS-3D4/31-PAMs (Fig. 1E). 60 pg/mL AFWE
showed no antioxidant effect on unstimulated 3D4/31-PAMs (Fig. 1F). This antioxidant effect of AFWE on PS-
3D4/31-PAM is supported by the inhibition of NADPH oxidase 2 (NOX2) complex expression, a source of ROS, in
inflamed AMs [24]. AFWE (60 pg/mL) suppressed the expression of NOX2 complex, including gp91PHX (NOX2)
(Fig. 1G), neutrophil cytosolic factor 2 (NCF2), NCF1, NCF4, and cytochrome b-245 o chain (CYBA) in PS-3D4/31-
PAMs (Fig. 1H). Overall, 60 pg/mL AFWE lowered ROS production via the downregulation of NOX2 without toxicity
in 3D4/31-PAM. Furthermore, AFWE treatment at concentrations lower than 60 pg/mL was toxic in A549-AEC, so
we established 60 pg/mL as the optimal AFWE concentration for alveolar immunomodulation and conducted
subsequent experiments.

Next, we confirmed that AFWE inhibited proinflammatory gene expression and bactericidal activity in 3D4/31-
PAMs. AFWE decreased the levels of proinflammatory markers such as COX2 (Fig. 2A), prostaglandin-endoperoxide
synthase 2 (PTGS2), TNF, and interleukin 1 [ (IL1B) (Fig. 2B) in PS-3D4/31-PAMs while slightly reducing the
expression of the anti-inflammatory marker ARG and resistin-like  (RETNLB) (Fig. 2B). Bactericidal assays (Fig.
2C) revealed that AFWE diminished the bactericidal activity against E. coli DH5a in 3D4/31-PAMs (Fig. 2D and 2E).
Moreover, AFWE reduced the E. coli-induced autophagy (Fig. 2F). These results indicate that AFWE downregulates
proinflammatory features, including ROS production, proinflammatory gene expression, and bactericidal activity, in

3D4/31-PAMs.

A. flagelliformis water extract suppresses P2Y4-associated metabolism in 3D4/31-PAMs

To confirm whether AFWE regulates P2Y s-associated metabolism in PAMs, glucose metabolism and P2Y 14
cascade were quantified. Glucose uptake was reduced (Fig. 3A), and the LD content was upregulated (Fig. 3B and 3C)
by AFWE in the 3D4/31-PAMs. The increased glycogen content in 3D4/31-PAMs following PMA stimulation was
prevented by AFWE treatment (Fig. 3D and 3E). Considering that lipid accumulation in polarized macrophages
depends on fatty acid uptake [25], our results indicate that AFWE selectively blocks P2Y14 (glycogen)-mediated
inflammation. Glucose uptake, glycogenesis, and the pentose phosphate pathway (PPP) are essential for P2Y 14-
mediated proinflammatory responses. In particular, activation of the glycogenesis, characterized by intracellular
glycogen accumulation, is required for the production of the P2Y 14 ligand UDPG [10] (Fig. 3F). qRT-PCR showed
that AFWE suppressed the expression of genes related to glucose uptake (SLC2A41, solute carrier family 2 member 1),

glycogenesis (PGM1, phosphoglucomutase 1; PYGL, glycogen phosphorylase L; GAA, o-glucosidase), and PPP

10
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(G6PD, glucose-6-phosphate dehydrogenase; TKT, transketolase) in the 3D4/31-PAMs (Fig. 3G and 3H). AFWE
suppressed P2RY14 and STATI expression in the PS-3D4/31-PAMs (Fig. 3I), suggesting that AFWE suppresses
metabolism related to P2Yis activation. These results suggest that AFWE suppresses P2Y4-associated

proinflammatory features in PAMs

Identification of potential P2Y14 antagonistic compound in A. flagelliformis water extract

Polarity-based fractionation and LC-MS were performed to identify anti-inflammatory compounds in AFWE.
The obtained fractions were concentrated 20-fold before use, and the dry weight of AFWE-OL3 was 52 mg/mL (Fig.
4A). AFWE-OL3 (52 pg/mL) reduced the levels of P2Y 14 and PYGL in the immunoblotting of 3D4/31-PAMs (Fig.
4B). Genetic or chemical inhibition of PYGL can effectively inhibit P2Y 1s-mediated cytokine expression by reducing
NADPH production [10]. The LC chromatogram of AFWE-OL3 showed a major peak at retention time (RT) 9.56
(Fig. 4C). The mass spectrum of RT9.56 was analyzed using the m/z CLOUD Mass Spectral Database, and the most
similar compound was identified as limonin, also known as obaculactone and evodin (Fig. 4D). Based on the peak
area (39%) at RT 9.56, AFWE-OLS3 is expected to contain 28.42 mg/mL limonin. Considering that AFWE-OL3 was
20-fold enriched, it is estimated that limonin is present in AFWE at a concentration of 1.42 mg/mL. Limonin (Fig.
4E), a limonoid polyphenol found in citrus, has been reported to protect against lipopolysaccharide (LPS)-induced
acute lung injury [26]. Interestingly, in citrus fruits, the glucose unit of UDPG can be transferred to limonin by
limonoid glucosyltransferase [27].

To assess the potential interaction between limonin and porcine-P2Y 14, we performed computational molecular
docking analysis. The structure of the porcine-P2Y 14 (Fig. 4F) used in this study exhibited a very high confidence for
ARG253/LYS277/GLU278 (Fig. 4G), a key amino acid in the interaction between P2Y 4 and UDPG [28]. Our
prediction showed that UDPG interacts with ARG253/LYS277/GLU278 in porcine-P2Y 14 (Fig. 4H). The prediction
of limonin docking to porcine-P2Y 4 showed consistency in limonin poses (Fig. 41). The prediction model with the
highest score showed an interaction between limonin and ARG253/LYS277 (Fig. 4]). These results suggest the

potential binding of limonin to the UDPG-binding site of porcine-P2Y 4.

Limonin suppresses UDPG-induced proinflammatory gene expression in 3D4/31-PAMs
To confirm the anti-inflammatory effect of limonin on PAMs, we assessed the dose-response effect of limonin

on viability and proinflammatory gene expression. Limonin treatment, at a final concentration of 30 uM, increased

11
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the viability of 3D4/31-PAMs cultured with or without PMA (Fig. 5A). Dose-response screening of limonin using
qRT-PCR showed that 30 uM limonin suppressed the expression of P2RY14, STATI, and PTGS2, but not ARG, in
PS-3D4/31-PAMs (Fig. 5B). Based on these results, we suggest that limonin at a final concentration of 30 uM has the
potential to suppress P2Y 14-mediated inflammation in PAMs.

Next, to assesses the effects of limonin on UDPG-induced inflammation, 3D4/31-PAMs were stimulated with
combination of PMA with UDPG. Significantly increased expression levels of retinoic acid receptor f (RARB), STATI,
PTGS?2, and arginase-1 (ARG1) were observed in 3D4/31-PAMs stimulated with 200 pM UDPG. Limonin treatment
suppressed the expression of P2RYI4, RARB, STATI, PTGS2, and ARGI in 3D4/31-PAMs stimulated with
PMA/UDPG (200 uM) (Fig. 5C). The PMA/UDPG-induced ROS production in 3D4/31-PAMs was reduced by
limonin treatment (Fig. 5D). These results suggest that limonin has the potential to suppress UDPG/P2Y 14-induced

inflammation in PAMs.

DISCUSSION

PRDC remain the most serious threat to pig health and productivity. This study sought to explore the association
of P2Y 4 with porcine respiratory inflammation and to develop a new AID. AFWE inhibited ROS production by
reducing the expression of NOX family members in PS-3D4/31-PAMs and suppressed glucose uptake and
glycogenesis. We also demonstrated the potential of AFWE to inhibit P2Y 4-mediated inflammation by reducing the
expression of P2RY14, STATI, TNF, ILB1, and PTGS2. Limonin reduced the UDPG-induced expression of P2RY14,
RARB, STAT1, and PTGS?2 in 3D4/31-PAMs. These results suggest the involvement of P2Y 14 as a major regulator of
inflammatory responses in PAMs and propose AFWE and limonin as AID candidates that can control this receptor.

Macrophages under inflammatory stimuli or after phagocytosis of bacteria increase cytokine and ROS production
to recruit immune cells and eliminate pathogens [29]. AFWE inhibited NOX2 complex expression, ROS production,
and bactericidal activity in 3D4/31-PAMs. These results are consistent with reports that NOX2 is a major source of
ROS that kills phagocytic bacteria and that NOX2 deficiency impairs bactericidal activity [30]. AFWE inhibited the
expression of proinflammatory genes PTGS2, TNF, and ILIB in 3D4/31-PAMs. TNF and IL1B induce macrophage
activation and PTGS2 expression. COX2 (encoded by PTGS2) is a major target for anti-inflammatory drug
development, as it plays a central role in the regulation of inflammatory processes through the modulation of vascular

permeability and tissue swelling [31]. Therefore, the inhibitory effect of AFWE and limonin on PTGS2 expression
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suggests their potential as anti-inflammatory drugs. ARG1 expression was increased by PMA in 3D4/31-PAMs and
slightly reduced by AFWE. ARG is classically used as a marker of anti-inflammation; however, AMs have been
reported to express both inflammatory and anti-inflammatory markers and express high levels of ARG1 under chronic
infection [32, 33]. Therefore, we suggest that the increase in ARG levels by PMA and UDPG is due to the metabolic
features of AMs.

Glucose is essential for energy metabolism and P2Y 4-mediated inflammation. AFWE slightly decreased the
glucose uptake of 3D4/31-PAMs but increased the LD content and had no effect on viability and proliferation. Given
the high dependence of AMs proliferation and development on fatty acid metabolism [34], we suggest that activation
of fatty acid metabolism may have maintained energy metabolism. PMA treatment increased SLC2A1 expression but
decreased glucose uptake and did not increase P2Y 14 cascade gene expression. PMA/UDPG treatment increased RARB
and STATI expression, suggesting that P2Y 4-mediated inflammation was activated. These results suggest that PMA
is inadequate to induce P2Y 14 activation at the mRNA expression level, and that PMA/UDPG combination treatment
is suitable for P2Y 4 activation in 3D4/31-PAM.

Increased P2Y 4 activity is closely related to the exacerbation of various diseases including asthma [35],
coronavirus disease 2019 [36], gouty arthritis [37], and intestinal inflammation [38], suggesting a variety of
therapeutic uses for P2Y 14 antagonists. In porcine, P2Y 14 has been reported as a therapeutic target for heart disease
and diabetes [11, 18], and we demonstrated its role in porcine alveolar immunity. We observed increased glycogenesis,
a characteristic feature of P2Y 4-mediated inflammation, in PS-3D4/31-PAMs. These results suggest an increased
glucose requirement by macrophages in inflammatory responses, and are consistent with LPS-induced increased
glucose consumption and hypoglycemia [39]. Additionally, porcine skeletal muscle growth rate is associated with the
expression of glycogenesis-related genes (PGM1, phosphoglucomutase 1; UGP2, UDPG pyrophosphorylase 2) [40].
These findings make it interesting to study the effects of P2Y 14 and UDPG levels on porcine productivity.

The selection of extraction solvents considers various factors such as extraction efficiency, environmental hazards,
and residual toxicity. In line with the global trend toward eco-friendly industries, the importance of water extraction
technology is increasing [41]. Succulent Opuntia species, known to have potential as livestock feed [13], have been
reported to lack antioxidant and antibacterial effects in aqueous extracts [42]. This is attributed to the low solubility
of major bioactive compounds such as polyphenols in water [43]. Using LC-MS, we identified limonin as a potential
bioactive compound in AFWE. Limonin can be extracted from Citrus grandis (pomelo) via water and resin absorption

[44]. Additionally, limonin is abundant in the peel of Citrus aurantifolia (lime), which is often discarded as waste and
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can be extracted using the low-toxicity solvent, ethanol [45]. In this study, the limonin content of AFWE estimated by
LC-MS was 23.69% (w/v), 1.42 mg/mL. A 14.21 pug/mL of limonin content was expected with 60 pg/mL AFWE
treatment, which was similar to the optimal anti-inflammatory activity concentration of 30 uM (14.12 pg/mL) of
limonin. This suggests that limonin confers anti-inflammatory activity to AFWE. Overall, these findings suggest that
AFWE and limonin are promising AID candidates for the eco-friendly livestock industry.

Limonin has been noted for its various pharmacological activities but has limited clinical potential due to unclear
mechanisms of action [46]. In this study, we confirmed that AFWE and limonin reduced PMA-induced expression of
PTGS2, STAT1, and P2RY14 in 3D4/31-PAMs. Our molecular docking prediction also indicated that limonin has a
higher binding score to porcine-P2Y 4 than to UDPG. These results suggest that the potential mechanism of action
(MOA) of AFWE and limonin involves binding to and inhibiting the activity of porcine-P2Y 4. Further research is
required to clarify this MOA, including confirmation of the nuclear localization of STATI1/RARP, which is
characteristic of P2Y 14 activation [10]. Our molecular docking analysis used the predicted porcine-P2Y 4 structure
due to the limited number of studies on porcine-P2Y 14. Although UDPG binding to P2Y 14 induces structural changes
[28], mechanical binding studies of limonin to porcine-P2Y 14 have not been conducted. Nevertheless, the reduction in
the UDPG-induced expression of RARB, STATI, and PTGS2 in 3D4/31-PAMs by limonin suggests the potential of
limonin to inhibit P2Y 14-mediated inflammation.

In summary, AFWE exerted anti-inflammatory effects in 3D4/31-PAMs, inhibiting ROS production and
NOX2/PTGS2/TNFA expression reported in PRDC. Limonin, a compound identified from AFWE, inhibited the
UDPG-induced expression of P2Y 4 cascade genes and PTGS2 in 3D4/31-PAMs. Overall, our results suggest that
P2Y 4 is a target for the control of PRDC and provides new insights into the inflammatory response of PAMs.

Furthermore, we propose AFWE and limonin as candidate AIDs for porcine.
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Fig. 1. Development of AFWE and its antioxidant effects on 3D4/31-PAMs. (A) Representative image of the A.
flagelliformis used in this study. (B) Representative image of A. flagelliformis water extract (AFWE). (C) Viability of
the 3D4/31-PAMs and A549-AECs treated with AFWE for 48 h (n = 3). p by two-tailed Student’s T-test. (D)
Proliferation of 3D4/31-PAMs treated with AFWE and PMA (n = 3). p by three-way ANOVA. (E-F) Intracellular
ROS levels in 3D4/31-PAMs treated with AFWE for 24 h and PMA for 2 h (n = 3). (E) Dose-response screening of
AFWE with PMA. (F) Intracellular ROS levels in the presence or absence of PMA. (G) Immunoblotting of gp91PHox
in 3D4/31-PAMs treated with AFWE for 24 h and PMA for 12 h (n = 3). (H) Expression of NOX-related genes in
3D4/31-PAMs treated with AFWE for 24 h and PMA for 4 h (n = 3). p by one-way ANOVA. ™p > 0.05, *p < 0.05,

**p < 0.01, ***p <0.001, and ****p < 0.0001.

19



A 207 = 60 o =N = 207 ...
kK = 50 gk 3 3 * Kk 15] ==
AFWE -+ -+ o £ 15 3 40 il
a © :
PM- 2 +_1o &.210 < 30 2 L 2 ns 1.0 ns
core [ ¥ 52 5% -
e 532 05 x = 1 1 05
practn [Em— 2 52 05 1 E o=
- 0 0 0 0.0
: _PTGS2 TNF IL1B RETNLB 1o
®Vehicle ® AFWE @ PMA ® AFWE PMA Proinflammatory Anti-inflammatory
o T ST —— .

» 2¢4, Supernatant (non-engulfed)
L — AO staining

‘0

I

I

I . '

! AFWE Mixed with E.coli . */,3 5

| @ 24h O 37°C 180rpm 1h = O * Centrifugation O
! L]

1

L——p Bacterial survival rate

| 3D4/31-PAMs ° Pellet (engulfed)
D E Engulfed
Omin 20min '
% g 4_ ® 125
- L S
o e 5 gy 1007 = ; :
k=] =2
k) g5 \
> 2 22 75
=0
& 25
iii :
u g 1] = %6 5 @ Vehicle
L s &< oT © AFWE
5 0 & : i 0 20 40
& N Time (min)
@ v
F Autophagy activity Granularity
1000 1 1.1 *x* 15 ns
= (]
1 —_ =
800 é% i : .
600 1 =5 o 1
400 zL 00 r
? g% 0.8 = 0B
@[ 200 1 T & Q
%] b 7]
0 | — —— 0 @ 00
100 10" 102 103 104 0 10' 102 10% 10% & & &
é'(\\o Q‘$ é\\o (($
KU o KU

483 AO-red
484 Fig. 2. AFWE suppresses proinflammatory gene expression and bactericidal activity in 3D4/31-PAMs. (A)
485  Immunoblotting of COX2 in 3D4/31-PAMs treated with AFWE for 24 h and PMA for 12 h. (B) Expression of
486  inflammation-related genes in 3D4/31-PAMs treated with AFWE for 24 h and PMA for 4 h. p by one-way ANOVA.
487  (C-F) In vitro bactericidal assay of 3D4/31-PAMs treated with AFWE for 24 h. (C) Graphical scheme of the in vitro
488 bactericidal assay. (D) Representative images and levels of non-engulfed bacteria (n = 4). p by unpaired two-tailed
489 Student’s t-test. (E) Representative images and bacterial survival rates (normalized to each time point at 0 h) (n = 3).
490  p by two-way ANOVA. (F) Autophagic activity was quantified using flow cytometry with acridine orange (AO).
491  Intracellular granularity (SSC, side scatter) is shown (n = 3). p by unpaired two-tailed Student’s t-test. "5p > 0.05, *p
492  <0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Fig. 3. AFWE suppresses P2Y14- associated metabolism in 3D4/31-PAMs. (A) The glucose uptake rate in 3D4/31-
PAMs treated with AFWE for 24 h and PMA for 2 h (n = 3). (B-D) 3D4/31-PAMs treated with AFWE for 24 h and
PMA for 24 h (n = 3). (B-C) Fluorescence microscopy (B) and flow cytometry (C) of LD content in 3D4/31-PAMs.
(D) Best’s Carmine glycogen staining. (E) Quantification of glycogen content by using anthrone. (G-1) Expression of
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with PMA for 12 h (n = 3). p by one-way ANOVA. ™p > 0.05, *p < 0.05, and **p < 0.01. (C) LC-MS spectrum of the
AFWE-OL3. (D) Mass spectrum similarity based on modified NIST (National Institute of Standards and Technology)
score. (E) Structure of limonin and UDPG. (F-G) Protein structural model of porcine-P2Y14 (F) and the positions of
ARG253, LYS277, and GLU278 (G) in porcine-P2Y 14 (TM, transmembrane). Colored by model confidence (pLDDT,
per-residue confidence score). (H) Predicted model for the UDPG-bound porcine-P2Y14. (1-J) Prediction model for

limonin-bound porcine-P2Y 1. (1) Top 25 modes. (J) Representative model with the highest DiffDock confidence level.

23



A 3D4/31-PAMs B
.20 = 157 _m 15
—_— . * =
S o =< 1.0 % =3 1.0 & :
> 1.0 e T . e P = L 3 &° - T .
22 N 05 %3] 0.5
© o s
2 £ * £
r 00+ T T T T T ~ 00— T T T T T =~ 0.0 T T T T T
Limonin (uM) 0 1 3 10 30 100 Limonin (uM) - 0 1 3 30 100 -0 1 3 30 100
PMA - - - - - - PMA - + + + + + - + + + + +
A549-AECs 15y L. — 3 s
= 2.0 ns E, E o
= . - -
g51'5 * %?\110 _r'i . 5?\]2 E_I_%?
= . x
> b 1.0t T e e o N = D 1] e
z< i hand 4
s 05 £ e £
o = 0= T T T T T =0 T T T T T T
£ 00t Limonin(uM) - 0 1 3 30 100 - 0 1 3 30 100
Limonin (uM) 0 1 3 10 30 100 PMA - + + + + + -+ o+ o+ o+ o+
PMA + + + + + +
c % >R E
20 T 4 kil 4 T -
< < <
2z
r — 15 Z _ 3 E ~ 3
EG DE:G £G
3 10 @l 2 =3 2
z & o5 d_l T oy |-'L| = Ty ﬁ -
< =
2 |ni"i || « Omﬁﬁ r.]r:-l || “ O‘ﬁmr‘hl |l ||
T T | T L— | S B B B . S — | — L—
leomn + -+ - -t Limonin + -+ - + -+ Limonin + - +
PMA- - + + + + + + PMA- - + + + + + + PMA - + o+ o+ o+ o+ 4+
UDPG (pM) - - 100 100 200 200 UDPG (pM)- - - - 100100200 200 UDPG (uM) - - - 100100 200200
ikl D ROS level
30 4 * 10
< < e
z _ zZ_.3 N e~ gl .
EE 20 %G P Vehlcm JNW % g puiing
57 53 g g8 6
~ 10 o) N 5 |Limenin,,./ Lo
2= € m m |$| S UDPG/PMA g ® 4
<< T o
aQ 0 . : 8LEL ) s
Limonin- + - + - + - + leonln -+ -4 + = el
PMA- - + + + + + + PMA - - + + + + + +
UDPG (uM)- - - - 100100200200 UDPG (uM) - - 100100200200  4go 40! 402 10° 40+  Limonmin- + - +
515 H,DCFDA UDPG/PMA- - + +

516

517 Fig. 5. Limonin suppresses P2Yi4-associated proinflammatory features in 3D4/31-PAMs. (A) Viability of
518 3D4/31-PAMs and A549-AECs treated with limonin for 24 h and PMA for 24 h (n = 3). (B) Inflammatory gene
519 expression in 3D4/31-PAMs treated with limonin for 24 h and PMA for 4 h (n = 3). #p < 0.01 by unpaired two-tailed
520  Student’s t-test. (C) Expression of genes related to P2Y 14 activation in 3D4/31-PAMs treated with limonin for 24 h
521  and PMA/UDPG for 4 h. (D) Intracellular ROS levels in 3D4/31-PAMs treated with AFWE for 24 h and PMA/UDPG
522  for 2 h (n = 3). p by one-way ANOVA. p by one-way ANOVA, "p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, and
523 ****p < 0.0001.

524

24



525

526

527

Tables and Figures

Table 1. Antibodies used in this study for immunoblotting

Antibody (dilution) Catalog No. Manufacturers
Anti-B-actin antibody (1:10000) A5441 Sigma-Aldrich
Anti-gp91PHOX antibody (1:1000) sc-20782 Santa Cruz Biotechnology
Anti-COX2 antibody (1:500) 5c-19999 Santa Cruz Biotechnology
Anti-P2Y 14 antibody (1:500) ab136264 Abcam
Anti-PYGL antibody (1:500) ab190243 Abcam
Anti-mouse 1gG, HRP-linked antibody (1:5000) #7076 Cell signaling
Anti-rabbit 1gG, HRP-linked antibody (1:5000) #7074S Cell signaling
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Table 2. Primers sequences used in this study for gqRT-PCR

Gene symbol (accession)

Sense (5’ to 3°)

Antisense (5’ to 3°)

RPS29 (NM_001001633.2)

CGGAAATACGGCCTCAATATG

GCCAATATCCTTCGCGTACTG

NCF2 (NM_001123142.1) GTGAATGAAGAGTGGCCGGA CAAATCTGTGGTTGCGCGTT
NCF1 (NM_001113220.1) GCGGGGAATCCATTGCAAAA CTGCAACGGTGCAAGATGAG
NCF4 (XM_013997542.2) GTGCAGCTCATGGTGAGACA TGGGTGATATGCAGCTTCCAG
CYBA (NM_214267.1) GGAGCGCTGCGAACAAAAGT CAGGAAGGCCCGGATGTAGT
PTGS2 (NM_214321.1) AATGGACGATGAACGGCTG TGAAGTGGTAGCCACTCAGG
TNF (NM_214022.1) CGTTGTAGCCAATGTCA TAGGAGACGGCGATGC

IL1B (NM_214055.1) TGCAAGGAGATGATAGCAACAAC | TCTCCATGTCCCTCTTTGGGT
ARG1 (NM_214048.2) GTGGACCCTGCAGAACACTA ACCTTGCCAATTCCCAGCTT
RETLNB (NM_001103210.1) | AATCGCAAGGGGTTCTCAGT TTGGAGCAGAGGGATTGAGC
IL10 (NM_214041.1) CGGCGCTGTCATCAATTTCT GGCTTTGTAGACACCCCTCTC
SLC2A1 (XM_021096908.1) CTGCTCATCAACCGCAATGA GGCTCTCCTCCTTCATCTCC
HK1 (NM_001243184.1) GCACGATGTGGTGACCTTAC CCAGTCCCTACGATGAGTCC
HK2 (NM_001122987.1) CACTGCTGAAGGAAGCCATC GGGTCTTCATAGCCACAGGT
PFKFB3 (XM_021065026.1) | GGACCGATGTTACCTTTGCC TTGGCGTGGTTCAGTCTTTC
PFKM (DQ363336.1) CGCTCCACTGTGAGAATTGG GCTAAGCCCTCAAAGCCATC
PFKP (XM_021065066.1) CCGACGGACACAAGATGTTC TTGTCCCAAGAATGGAGCCT
SLC37A4 (NM_001199719.1) | CTGTGGTCAGAAGCTCGTGT GGAGAAGGTCTTGCGGTTGA
G6PC1 (NM_001113445.1) TTACCTGCTGCTAAAGGGGC ACATGCTGGAGTTGAGAGCC
PGM1 (NM_001246318.1) CCTGTGGACGGAAGCATTTC ATGTACAGTCGGATGGTGGC
UGP2 (NM_213980.1) GCAGTAGGGGCTGCCATTAAA GCACGGTAGGAAATTCTCGC
GYS1 (AJ507152.1) TAGGCCGGGTATAACTCCCT AAAGGGGCCGCAACCATTA
PYGL (NM_001123172.1) CACCTGCATTTCACACTGGTC AGTAGTACTGCTGCGTGCG
GAA (XM_021066505.1) CCTACACGCAGGTCGTCTTC GTTGGAGACAGGAACACCGT
G6PD (XM_021080744.1) GCGAGAAACTCCAGCCCATT GTAGGTGCCCTCGTACTGGA
PGD (XM_003127557.4) TACTTCGGGGCTCACACCTA GTACGAAGAGGAGGACACGC
TKT (NM_001112681.1) GGGACAAGATAGCTACCCGC TAGCACTCGATGAAGCGGTC
TKTL1 (XM_021080741.1) CTACCCAGAAGGTGGCATCG GATGGACCAGGATGTCAGGC
P2RY14 (XM_021069620.1) CCACATTGCCAGAATCCCCT CAGGCATACATTTGCAGCCG
RARB (XM_005669304.3) CTCCGCAGCATCAGTGCTAA TGGGGTCAAGGGTTCATGTC
STAT1 (NM_213769.1) CAAAGGAAGCCCCAGAACCT CCCACCATTCGAGACACCTC
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