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(Unstructured) Abstract (up to 350 words) 10 

In recent years, the pig industry has experienced an alarming surge in piglet mortality shortly after 11 

farrowing due to crushing by the sow. This issue has been exacerbated by the adoption of 12 

hyperprolific sows and the transition to loose housing pens, adversely affecting both animal welfare 13 

and productivity. In response to these challenges, researchers have progressively turned to artificial 14 

intelligence of things (AIoT) to address various issues within the livestock sector. The primary 15 

objective of this study was to conduct a comparative analysis of different versions of object detection 16 

algorithms, aiming to identify the optimal AIoT system for monitoring piglet crushing events based 17 

on performance and practicality. The methodology involved extracting relevant footage depicting 18 

instances of piglet crushing from recorded farrowing pen videos, which were subsequently condensed 19 

into 2-3 min edited clips. These clips were categorized into three classes: no trapping, trapping, and 20 

crushing. Data augmentation techniques, including rotation, flipping, and adjustments to saturation 21 

and contrast, were applied to enhance the dataset. This study employed three deep learning object 22 

recognition algorithms––YOLOv4-Tiny, YOLOv5s and YOLOv8s––followed by a performance 23 

analysis. The average precision (AP) for trapping detection across the models yielded values of 0.963 24 

for YOLOv4-Tiny, and 0.995 for both YOLOv5s, and YOLOv8s. Notably, trapping detection 25 

performance was similar between YOLOv5s and YOLOv8s. However, YOLOv5s proved to be the 26 

best choice considering its model size of 13.6 MB compared to YOLOv4-Tiny’s 22.4 MB and 27 

YOLOv8’s 21.4 MB. Considering both performance metrics and model size, YOLOv5s emerges as 28 

the most suitable model for detecting trapping within an AIoT framework. Future endeavors may 29 

leverage this research to refine and expand the scope of AIoT applications in addressing challenges 30 

within the pig industry, ultimately contributing to advancements in both animal husbandry practices 31 

and technological solutions.  32 

 33 

 34 

Keywords (3 to 6): Piglet Crushing, Deep learning object-detection algorithm, YOLO, Trapping, 35 

AIoT 36 
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 38 

Introduction 39 

In recent years, the widespread use of hyperprolific sows to boost productivity in the pig industry has 40 

also resulted in a notable rise in piglet mortality. This increase is primarily attributed to instances in 41 

which the piglets are crushed by the sows shortly after the farrowing process [1]. Meanwhile, there is 42 

a global shift toward emphasizing animal welfare in livestock farms. This is evident in the transition 43 

from closed farrowing crates, which restrict maternal mobility, to loose or free housing systems that 44 

provide sows with increased freedom of movement. However, this transition has raised concerns 45 

about an increase in piglet crush rates, which are commonly attributed to risky behaviors such as 46 

rolling and sudden transitions from standing to sternal lying [2, 3]. Piglet crushing constitutes a 47 

significant cause of death among pre-weaned piglets, contributing to over 50% of pre-weaning losses 48 

in pig farming [4]. Notably, most of these piglet fatalities occur within the first three days after 49 

farrowing [5]. 50 

Factors affecting crushing incidents can be categorized into genetics, environmental factors, parity 51 

and litter size, pig weight and health, housing system, and management [4]. Previous research aimed 52 

at mitigating crushing issues, without the use of artificial intelligence (AI) technology, has primarily 53 

focused on identifying and reducing these factors. To address the root cause of crushing events, it is 54 

crucial to identify these incidents, especially in the absence of farm staff.  55 

Recent research has integrated AI to identify crushing incidents with minimal human intervention, 56 

primarily focusing on two main types: sound-based and video-based approaches. In sound-based 57 

research, a platform was developed using voice data to detect crushing through piglets' screams [6]. 58 

This study proposes an audio clip transform approach for preprocessing raw audio data and employs 59 

min-max scaling for machine learning to detect piglet screams. Despite technological advancements, 60 

these tools encounter challenges in scenarios where piglets cannot vocalize distress, such as head or 61 

full-body crushing incidents. In addition, pinpointing the precise location of the crushing event in 62 

cases involving multiple pens also poses a challenge. Furthermore, the barn environment’s diverse 63 

noises, including piglet scuffles, running fans, and other ambient sounds, can cause device 64 

malfunctions, hindering precise recognition of piglet crushing incidents. Conversely, in a video-based 65 

AI study on crushing, the emphasis shifted to assessing the risk of crushing by recognizing the sow's 66 

behavior rather than directly identifying crushing events [7]. This study assessed sow behavior using a 67 

three-axis accelerometer and video data. Following the recognition of sow behaviors, maternal care 68 

was evaluated by scoring the risk and number of behavioral patterns associated with increased 69 

trapping events. 70 

To maximize the utility of these technologies, a recent development involves the introduction of 71 

artificial intelligence of things (AIoT). AIoT represents the convergence of AI and internet of things 72 

(IoT), offering the capability to use networks and cloud services for real-time problem solving with 73 

minimal human intervention. Researchers have recently employed AIoT technologies to develop a pig 74 
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tracking and monitoring system [8, 9]. The pig farming industry is increasingly incorporating and 75 

using these technologies. However, for the optimal use of AIoT, it must function within the 76 

constraints of the IoT environment. Therefore, in choosing the most suitable AIoT model, it is 77 

essential to strike a balance between efficiency and functionality in a resource-constrained 78 

environment. The selection process should prioritize both performance and model size. 79 

 This study aimed to identify an object detection algorithm within an AIoT framework capable of 80 

efficiently detecting piglet trapping and subsequently implementing it in practical applications. Object 81 

detection algorithms are broadly categorized into two-stage and one-stage models. The two-stage 82 

model involves a local proposal followed by a classification stage, offering high accuracy, albeit at a 83 

slower pace [10]. Conversely, single-stage models simultaneously perform classification and 84 

localization, offering higher speed and making them particularly suitable for IoT and mobile device 85 

applications [10]. Among the prominent single-stage object detection techniques, YOLO was 86 

introduced in 2015 by Joseph et al. [11]. The YOLO model encompasses Darknet-based versions such 87 

as YOLOv3 and YOLOv4, PyTorch-based models such as YOLOv5, and their successor models [12]. 88 

In this study, we implement and compare three representative models: YOLOv4, a modern Darknet-89 

based model; YOLOv5, a popular PyTorch-based model; and YOLOv8, the latest model. The aim is 90 

to scrutinize these models, seeking the most effective in detecting piglet strangulation. Furthermore, 91 

the study aims to evaluate the feasibility of implementing, optimizing, and operating the selected 92 

model within an AIoT environment. 93 

94 
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 95 

Materials and Methods 96 

Video Material and Editing 97 

Five sows were housed in loose pen conditions (2.4 × 2.3 m), with each farrowing pen equipped with 98 

a slatted concrete floor and a heat lamp. AIoT was installed seven days before the expected farrowing 99 

date to observe piglet birth, crushing, trapping, sow posture, and piglet tracking. Internet protocol 100 

cameras (HN0-E60; Hanwha Techwin, South Korea) were positioned 1.5 m above the sow’s head 101 

with 1920 × 1080 pixels display resolution and 30 FPS frame rate.  102 

After recording the video, the footage was reviewed to identify the section where the trapping 103 

incidents occurred. These sections were then extracted and collected for 24 h following the onset of 104 

parturition. Once identified, these specific scenes were extracted, and images were obtained for each 105 

frame. In this study, the YOLO bounding box program was used to generate bounding boxes and 106 

corresponding labels for individual images. As shown in Fig. 1, a data augmentation technique was 107 

applied to enhance the diversity of the training dataset. This technique involved variations in 108 

saturation and contrast, along with rotations (90°, 180°, 270°) and horizontal and vertical flips. As a 109 

result of this augmentation process, the total number of images increased significantly from 544 to 110 

9792, creating a more comprehensive training dataset. The dataset was then divided into training, 111 

validation and test sets using a 6:2:2 ratio, resulting in 5875 images for training, 1958 images for 112 

validation and 1959 images for testing. This setup was based on a previous study that used YOLO to 113 

detect tomatoes in real time, which also used a 6:2:2 data split [13]. The systematic application of data 114 

augmentation and dataset separation aimed to increase the model's resilience in adapting to different 115 

learning environments. In the original dataset configuration prior to augmentation, there were 4570 116 

classes for no trapping, 267 classes for trapping, and 129 classes for crushing. 117 

 118 

Model training and object detection 119 

The annotated dataset, without further conversions, served as the input for training three object 120 

detection algorithms: YOLOv4-Tiny, YOLOv5s, and YOLOv8s. YOLOv4-Tiny, a model based on 121 

Darknet, YOLOv5s, the most popular PyTorch-based model, and YOLOv8s, the most recently 122 

published model, were all trained in the Google Colab environment. We applied transfer learning to 123 

our dataset using the pre-trained model weights from the ImageNet dataset. In the experiments 124 

summarized in Table 1, the YOLO model was trained for 50 epochs with a batch size of 64 and a 125 

fixed learning rate of 0.01. This setup was used to fine-tune the model weights for optimal training 126 

performance. For models like YOLOv4-Tiny that do not use an epoch-based system, the training 127 

process is controlled by a hyperparameter called max-batch. The value of max-batch is calculated 128 

using the formula: 129 

 130 
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Given that the number of images per epoch was set to 5875 and the batch size to 64, the resulting 131 

max-batch value was approximately 4,589.84. This value was rounded to 4590, which was used as the 132 

max-batch parameter during training. During training, the input image was resized to 416 × 416 to for 133 

feature map extraction. 134 

Each version of YOLO introduces architectural innovations aimed at improving the model's 135 

performance in object detection. YOLOv4 employs CSPDarknet53 for efficient feature extraction, 136 

coupled with SPP and PAN for multi-scale feature integration [14]. YOLOv5 enhances this with a 137 

focus structure and CSP backbone, paired with FPN and PAN for refined feature aggregation [15]. 138 

YOLOv8 further advances the architecture by incorporating C2f modules, optimizing both the 139 

backbone and neck for superior detection capabilities [16, 17]. 140 

Fig. 2 illustrates the results of applying YOLOv5s to a piglet crushing site after the learning process. 141 

Three classes were identified in this study: no trapping, trapping, and crushing. "No trapping" denotes 142 

that the piglet is fully visible on the screen without any part of its body being covered or crushed. 143 

Conversely, "trapping" indicates that the piglet has been compressed by its mother, resulting in part or 144 

all of its body being obscured. The term "crushing" is used when the piglet stops moving after being 145 

caught, indicating that it has succumbed to compression and has died. While detecting crushing from 146 

a single image is challenging due to data limitations and the visual similarity between sleeping and 147 

crushed piglets, this study represents a significant step forward. The foundation laid by this research 148 

will inform the development of more advanced detection systems. Future efforts will focus on 149 

incorporating tracking to improve detection accuracy. 150 

 151 

Model evaluation metrics 152 

The evaluation of a classification model involves several metrics, such as precision, recall, average 153 

precision, mean average precision, and F1 score. These metrics provide insight into different aspects 154 

of model performance.  155 

In Equation (2), precision represents the percentage of instances that the model correctly classified 156 

as true among all instances it classified as true. Specifically, precision is calculated as: 157 

 

(2) 

where True Positives (TP) are the cases where the model correctly identifies a positive instance, 158 

and False Positives (FP) are the cases where the model incorrectly classifies a negative instance as 159 

positive. Equation (3) defines recall as the percentage of true instances that the model correctly 160 

identifies as positive out of the total number of actual positive instances. Recall is calculated as: 161 

 

(1) 
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where False Negatives (FN) are the cases where the model fails to identify an actual positive 162 

instance, incorrectly classifying it as negative. Precision measures the accuracy of positive predictions, 163 

while recall assesses the model's ability to detect all positive instances. Average Precision (AP) 164 

measures the precision value averaged over different confidence levels for a given class. It provides a 165 

comprehensive view of a model's performance by evaluating the precision at different confidence 166 

levels. The Mean Average Precision (mAP), as defined in Equation (4), represents the average of the 167 

APs computed across multiple classes or instances, providing an aggregate measure of performance 168 

across all classes. 169 

 170 

 

(4) 

 mAP@0.50 is a metric that evaluates the performance of an object detection algorithm by 171 

averaging the precision scores across all classes, assuming that predictions with an Intersection over 172 

Union (IoU) of 0.50 or higher are considered correct. The IoU in Equation (5) is a metric used to 173 

evaluate the accuracy of predictions made by an object detection algorithm. It is defined as the ratio of 174 

the area of overlap between the ground truth bounding box and the predicted bounding box to the area 175 

of their union.  176 

 

(5) 

Specifically, IoU measures how well the predicted bounding box aligns with the ground truth 177 

bounding box, providing a quantifiable measure of prediction quality. 178 

The F1 score is a model evaluation metric used in classification models. Another widely used 179 

evaluation metric is accuracy, which is defined as the proportion of true values among all predictions. 180 

However, accuracy has a limitation, particularly in the context of unbalanced data, where it can be 181 

misleading. In scenarios where, for instance, the probability of cancer is 1%, the model can achieve 182 

99% by classifying all patients as non-cancerous, presenting a potential vulnerability. Therefore, the 183 

F1 score is frequently employed for assessing unbalanced data. Equation (6) defines the F1 score as 184 

the harmonic mean of the precision and recall values. These metrics collectively provide a 185 

comprehensive evaluation of the classification model.  186 

 

(6) 

The precision-recall curve is a graph of the change in precision and recall values as the confidence 187 

threshold changes. The graph has recall on the x-axis and precision on the y-axis. The AP signifies the 188 

 

(3) 
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average of the precision across different recall values. In the context of a precision recall curve, AP 189 

corresponds to the area under the curve. 190 

191 
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 192 

Results and Discussion 193 

 194 

Comparison of the average precision of different YOLO versions  195 

Table 2 provides a comprehensive comparison of the AP, mAP, and F1 score derived from the 196 

training of YOLOv4-Tiny, YOLOv5s, and YOLOv8s. The performance across these models remains 197 

consistently robust, with a marginal difference observed. YOLOv5s (0.994) and YOLOv8s (0.994) 198 

achieved higher mAP compared to YOLOv4-Tiny (0.958), as shown in Table 2. A study comparing 199 

YOLOv4-Tiny and YOLOv5s found that YOLOv5s performed better, with a 0.133 higher mAP value 200 

than YOLOv4-Tiny [18]. In addition, a comparison between YOLOv5 and YOLOv8 showed a very 201 

small difference in mAP values of 0.006 [19]. This suggests that the performance difference between 202 

YOLOv5 and YOLOv8 is negligible. These findings are consistent with our results, which also show 203 

that YOLOv5 and YOLOv8 have similar performance metrics, while YOLOv4-Tiny lags behind. 204 

When we analyzed the performance metrics by class, YOLOv4-Tiny performed poorly overall. 205 

However, it performed best in the Crushing class. YOLOv5s and YOLOv8s showed similar 206 

performance, probably due to their similar structures. Notably, YOLOv8s achieved relatively higher 207 

APs in the No trapping scenario compared to YOLOv5s, reflecting its structural improvements. The 208 

No trapping class of YOLOv8s (0.993) has an AP that is 0.002 higher than that of YOLOv5s (0.991). 209 

However, due to rounding to the fourth decimal place, the mAP for both models are almost identical: 210 

0.9943 for YOLOv8s and 0.9937 for YOLOv5s, indicating a slight difference. 211 

Model size is a critical factor in the practicality of IoT deployments, especially in small-scale 212 

computing environments. With a compact model size of 13.6 MB, YOLOv5s stands out as the most 213 

suitable choice for AIoT applications. This is in stark contrast to the larger sizes of YOLOv4-Tiny 214 

(22.4 MB) and YOLOv8s (21.4 MB), as shown in Table 2. Consequently, YOLOv5s proves to be the 215 

optimal model for AIoT applications, balancing high performance with a compact model size. 216 

 217 

Detection results using YOLOv5s  218 

Fig. 3 illustrates the precision-recall curve for all classes of YOLOv5s, the model considered most 219 

suitable for AIoT applications. YOLOv5s exhibits an AP of 0.991 for no trapping, 0.995 for trapping, 220 

and 0.995 for crushing, yielding an overall mAP of 0.994 (Fig. 3).  221 

Although the AP for no trapping is slightly lower than that for the other classes, the recognition for 222 

trapping, which is the relevant class in this study, is 0.995 (Fig. 3), indicating a high level of 223 

performance.  224 

The confusion matrix represents the ratio of the actual true value to the predicted true value for 225 

each class. Out of the total 18,281 detected individuals, 16,796 individuals were in no trapping, 1,049 226 

individuals were in trapping, and 436 individuals were in crushing. Due to the data imbalance with the 227 

overwhelming number of individuals in no trapping, Fig. 5 presents the confusion matrix, depicting 228 
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the performance as a percentage for each class. In Fig. 4, the confusion matrix for YOLOv5s provides 229 

a detailed breakdown of the predictions across all classes. In the no trapping class, the model achieves 230 

accurate predictions 98.9% of the time, with background recognition errors (failures to recognize no 231 

trapping) occurring only 1 % of the time (Fig. 4). For the trapping class, the model predicts trapping 232 

with 97.1% accuracy but occasionally misclassifies it as no trapping (2.7 %) (Fig. 4). Similarly, in the 233 

crushing class, the model achieves accurate predictions 97.9 % of the time but may misidentify it as 234 

no trapping (2.1 %) (Fig. 5). In particular, the background has a high probability (96.8%) of correctly 235 

predicting no trapping class when no trapping event is present (Fig. 4).  236 

In the confusion matrix, the misidentification rate of no trapping in the background with objects is 237 

0.968. Other studies showing confusion matrices for YOLOv5 also reveal a notable misidentification 238 

rate for other classes in the background with no objects [20]. However, this is a feature of confusion 239 

matrices, which are presented as percentages due to unbalanced data. Although 0.968 (Fig. 4) seems 240 

quite high, it represents a small percentage of the total misidentifications. To address this confusion, it 241 

is more intuitive to evaluate performance in terms of accuracy or F1 score. 242 

Fig. 5 illustrates the optimal confidence hyperparameter values for class differentiation. A 243 

confidence value of 0.608 achieves the best F1-score of 0.97 for no trapping, whereas trapping is best 244 

detected with a confidence hyperparameter of 0.638, resulting in a perfect F1 score of 1.00 (Fig. 5). 245 

Similarly, for crushing, an optimal F1 score of 1.00 was achieved with a confidence hyperparameter 246 

value of 0.740 (Fig. 5). Attaining balanced performance across all classes, a confidence 247 

hyperparameter value of 0.621 achieves the highest F1-score of 0.99 (Fig. 5), demonstrating the 248 

model’s effective recognition of all classes. 249 

The F1 confidence curve graph reveals a clear pattern with a rapid increase in the F1 score in the 250 

0.0-0.2 confidence range. Performance is generally maintained or slightly improved up to 0.2-0.7. 251 

However, the F1 score shows a notable decrease when the confidence level exceeds 0.8. This aligns 252 

with similar findings in other studies where the variation in the F1 score with confidence showed a 253 

sharp increase up to 0.2 and a modest increase up to 0.7 [21]. Furthermore, in other studies, the 254 

confidence interval with the highest F1 score is usually in the range of 0.5-0.7, and the graphs in this 255 

study show the highest F1 score in this range for no trapping, trapping, and all classes, which is 256 

consistent with this result. However, for the crushing class, the best performance is in the high 257 

confidence interval (0.740) (Fig. 5), which seems to be a temporary phenomenon due to the lack of 258 

data for the crushing class. 259 

 260 

Limitations and future research 261 

While YOLO demonstrates robust performance in detecting trapping based on images, it has inherent 262 

limitations. Notably, the system can only detect trapping when a portion of the piglet's body is visible 263 

within the camera's field of view. This leaves it incapable of identifying situations where the entire 264 

body is trapped or events that occur outside the camera's field of view due to obstructions. In addition, 265 

the system is susceptible to false positives, particularly when certain parts of the sow's body, such as 266 
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the ears, are mistakenly identified as trapping points, leading to inaccuracies in detection. 267 

To address these challenges, future research will explore the integration of optical flow technology. 268 

Optical flow, a method for tracking objects by analyzing the temporal flow of video and detecting 269 

pixel movement between frames, has the potential to enhance trapping prediction [22]. This study 270 

aims to implement video-based trapping prediction technology using optical flow to overcome the 271 

limitations associated with image-based detection. This innovative approach aims to improve 272 

accuracy, particularly in distinguishing between similar objects such as the ears of a sow. By 273 

predicting object movement and controlling pixel flow, this research expects accurate identification of 274 

trapped piglets or sow body parts. This methodology will extend detection capabilities to scenarios in 275 

which the entire body is trapped, a subtlety overlooked by conventional image-based trapping 276 

detection models. 277 

278 
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 279 

Conclusions 280 

In this study, our objective is to apply an AIoT system that minimizes human intervention to address 281 

the critical issue of piglet crushing by sows, a leading cause of mortality in pig farms. Given the 282 

constrained AIoT environment, our model selection criteria extend beyond performance, 283 

encompassing model size as a pivotal factor for efficient deployment within AIoT frameworks. 284 

YOLOv4-Tiny did not demonstrate significantly superior performance compared with the other 285 

models. Moreover, its considerable model size makes it unsuitable for deployment in small-scale 286 

computing environments such as the IoT. Despite YOLOv8s being the latest version, it introduces 287 

potential uncertainties in stability when compared to the other models. In addition, the AP 288 

performance, especially for trapping, is comparable to YOLOv5s, even though YOLOv8s has a model 289 

size about 7.8 MB larger. These shortcomings render the model less suitable than YOLOv5s for 290 

certain AIoT applications based on specific metrics. Notably, YOLOv5s stands out for its exceptional 291 

performance in the trapping class and remarkably small model size. These qualities position it as an 292 

ideal choice for AIoT applications, particularly for tracking piglet crushing challenges in pig farms. 293 

294 
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 366 

Tables and Figures 367 

 368 

Table 1. Parameters of YOLO models  369 

Parameters YOLOv4-Tiny YOLOv5s YOLOv8s 

Number of 

iterations 
Max-batch:4590 Epoch: 50 Epoch: 50 

Batch 64 64 64 

Learning Rate 0.01 0.01 0.01 

 370 
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 372 

 373 

Table 2. Comparison of different YOLO versions with respect to performance  374 

Model Size F1-score 
No trapping 

AP 
Trapping AP Crushing AP mAP@0.50 

YOLOv4-Tiny 22.4MB 0.92 0.933 0.949 0.993 0.958 

YOLOv5s 13.6MB 0.99 0.991 0.995 0.995 0.994 

YOLOv8s 21.4MB 0.99 0.993 0.995 0.995 0.994 

1) F1-score: Harmonic mean of the precision and recall scores 375 
2) AP: Average of precision for each class 376 
3) mAP@0.50: Mean of AP for all classes when IoU threshold is 0.5 377 
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 381 
Fig. 1. Piglet crushing field image data augmentation 382 

383 

ACCEPTED



20 

 

 384 
 385 

Fig. 2. Classification (no trapping, trapping, and crushing)386 
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 387 
Fig. 3. Precision-recall curve for detecting piglet trapping events using YOLOv5s 388 
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 390 
 391 

Fig. 4. Confusion matrix for detecting piglet trapping events using YOLOv5s392 
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 393 
Fig. 5. F1-Confidence curve for detecting piglet trapping events using YOLOv5s 394 
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