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(Unstructured) Abstract (up to 350 words) 

Machine learning models were developed to predict the degree of microbial quality of beef by a non-destructive 

method using a near-infrared hyperspectral imaging system. Beef was stored under aerobic conditions at different 

temperature scenarios (refrigerated, thawed after freezing, or left at room temperature) for a period of 15 days to 

induce freshness change and microbial growth. Hyperspectral data cubes were obtained from a data acquisition 

system in a darkroom environment. The total aerobic bacteria (TAB) experiment was performed in the established 

meat science manner to provide reference values for the microbial contamination level of the sample. The region of 

interest designated as the red meat region was selected for spectral extraction. Regression models were developed to 

predict the TAB value from the extracted data. Partial least squares regression (PLSR), support vector machine 

(SVM), artificial neural network (ANN), and one-dimensional convolutional neural network (1D-CNN) methods 

were employed to construct TAB prediction models. Chemical maps were also created for each developed model to 

visualize the performance of the model. The model development process concluded with the iteration of all previous 

steps at completely different times and with different beef samples, generating the data for verification and applying 

it to the developed model to evaluate its versatility. As a result of the development, it was confirmed that the 

microbial quality of beef can be predicted by models generated from hyperspectral data (Best validation R2 = 0.8593, 

RMSE = 0.6947). Accurate quality prediction helps livestock breeders develop and apply better husbandry practices, 

which ultimately leads to higher quality beef production. 

 

Keywords (3 to 6): Beef, Hyperspectral Imaging, Machine Learning, Near-Infrared Spectroscopy, Total aerobic 

bacteria 

 

 

Introduction 

The freshness of meat, which is a key factor that influences the purchasing decisions of consumers [1], depends 

on the temperature and humidity conditions under which the product is stored, and its level of microbial 

contamination. Fresh meat is rich in nutritional components, such as protein, fat, and minerals, and has high water 

activity, all factors of which provide a favorable environment for microbial growth. Under such conditions, various 

types of microorganisms can cause meat spoilage [2]. Therefore, addressing these microbial issues is important for 

food preservation. Strategies include chemical treatment, vacuum treatment, heat treatment, and drying, but cold 

treatment by freezing and refrigeration is the most used method [3]. However, sudden temperature changes under 
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poor cold-chain conditions in sanitary facilities or during product transport can cause microbial contamination. 

Given that microbial reactions can adversely affect the food product, the potential for metabolic activity by 

microorganisms should be identified in advance to ensure stable food preservation [4]. 

Currently, the determination of freshness is based on chemical-base indicators, such as pH, volatile basic nitrogen 

(VBN) content, and 2-thiobarbituric acid-reactive substance (TBARS) value, or microbial contamination indicators, 

such as the total viable count (TVC) and total aerobic bacterial (TAB) count [5-7]. DeGeer measured and compared 

various quality parameters (pH, moisture, and lipid contents, TBARS value, microbial contamination level, and 

shearing force) of heat-cooked meat to identify the optimal conditions for dry aging beef [8]. Cheng et al. tried 

hyperspectral imaging to accurately predict the total volatile basic nitrogen (TVB-N) content of grass carp fillets 

during frozen storage, demonstrating its potential for rapid and non-destructive fish freshness assessment [9]. 

Leonard et al. explored the effect of lupin flour on sausage attributes by preparing sausages with different contents 

and analyzing cooking loss, TBARS, texture profile, etc [10]. Lee proposed a system for monitoring changes in the 

quality of vacuum-packaged dry-aged beef during storage and predicting the shelf-life of the product based on its 

current state. The pH, CIE colors, TBARS value, VBN content, microbial contamination level, and sensory 

characteristics of the cooked meat were evaluated [11]. Chen proposed a novel approach for real-time prediction and 

analysis of food safety risks using the one-step kinetic integrated Wiener process (OS-WP). This approach achieved 

high accuracy in modeling microbial growth and provided valuable early warning information for risk management 

and decision-making [12]. Although these studies reported highly accurate results, the measurement of freshness 

using traditional analytical methods is difficult to apply in the field because the techniques can be time consuming 

and expensive [13]. 

To facilitate efficient food quality certification, vendors or evaluation agencies require highly reproducible and 

accurate technologies to rapidly identify the conditions of fresh and processed meats. One technology that can meet 

this need is near-infrared spectroscopy (NIRS), a non-destructive technique that offers the advantages of rapid 

measurement of a single sample and ease of data collection [14-16]. However, NIRS provides only one spectrum for 

a single round of data collection and yields no spatial information about the sample. Hyperspectral imaging (HSI) 

was developed to overcome the disadvantages of NIRS and has demonstrated the potential to provide both spatial 

and spectral information simultaneously [17]. As a non-destructive and contactless technique, HSI involves the 

integration of both spectral and imaging technologies for the examination of various components in samples. The 

system generates three-dimensional data in the form of a so-called hyperspectral data cube composed of a two-
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dimensional spatial image and a one-dimensional spectrum [18]. These data cubes can be used to analyze physical 

and geometrical characteristics (including morphology, color, and size) of an image, and the chemical composition 

of the sample can be predicted with an artificial intelligence model constructed using spectral information [19]. 

Various studies have employed hyperspectral imaging technology for non-destructive quality evaluation of 

livestock and seafood products. These studies have ranged from non-destructive analysis of omega-3 fatty acids in 

eggs to predicting fat content in pork and analyzing the frozen state of fish fillets and pork loins [20-22]. 

Kamruzzaman showed that hyperspectral imaging and multivariate analysis can be used to identify red meat species 

(pork, beef, lamb) with 98.67% accuracy, demonstrating the potential for rapid and objective meat authentication 

[23]. Wold developed a near-infrared (NIR) spectroscopy method for online and non-contact monitoring of core 

temperature in heat-treated fish cakes during industrial processing, achieving a root mean square error of prediction 

of 2.3°C [24]. Yang used HSI to predict the level of protein deterioration during pork drying, whereas Aheto et al. 

used the method for predicting the TBARS value of dry-cured pork [25-26]. Lohumi et al. applied analysis of 

variance (ANOVA), spectral similarity analysis, and HSI in the 400–1000 nm range to develop a system for 

predicting and visualizing the intramuscular fat content in beef samples. Advances in HSI technology have also led 

to studies on portable hyperspectral devices [27]. 

Consumer behavior towards meat and meat products is exhibiting increasing complexity and less predictability. 

And environmental impact has become significant driver of consumer perception [28]. Obviously, there is great 

scientific value in precisely determining the parameters that determine meat quality in the lab, whether by chemical 

methods or by directly observing microbial growth. However, these traditional tests are sometimes time-consuming 

and procedurally complex [29], therefore, several types of spectral analysis methods were employed and showed 

some promising solutions. However, a single point spectrum may not adequately represent the condition of the 

entire meat sample, which remains a drawback [30]. Accordingly, the aim of the present study is to use various 

machine learning techniques to develop a high-quality predictive model that can match hyperspectral imaging data 

with TAB counts for beef stored under different temperature conditions. It is to achieve precise identification of the 

contamination state of meat by combining microbiological factors and hyperspectral data. As a result, the study 

provided clues to optically visualize the distribution of microbial contamination in beef that could not be obtained by 

previous destructive chemical methods. 
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Materials and Methods 

Materials and Microbial Analysis  

Experimental samples were obtained from the M. longissimus thoracis muscle chunks of three Korean Holstein 

cows. The average weight of the muscle chunks was 5.57 ± 0.61 kg. The beef chunks were purchased shortly after 

slaughter. Immediately following their acquisition, the three beef chunks were placed in a refrigeration box that was 

maintained at a temperature of 3 ± 1°C and transported to the laboratory. The meat samples were stored in the 

laboratory for 7 d at 4°C to achieve stabilization prior to the commencement of the experiment. After the 

stabilization period, the meat was removed from the vacuum package and the fascia and fat were excised. The 

resultant lean meat was cut along the direction of the myofiber into portions of approximately 250 g, which were 

then packed in shape to allow air flow. This was designated as the experimental start date. The experiment was 

conducted for 15 d and comprised the following three groups. The samples of control group were stored in a 4°C 

refrigerated environment throughout the experiment. Samples of Treatment group 1 were frozen at -20 ± 2°C for 6 d 

and thawed at 23 ± 1°C for 24 h to affect the microbial quality of the samples, and the rest of the period was 

refrigerated under the same conditions as the control group. And the last samples of treatment group 2 were initially 

left at 23°C for 6 h to induce microbial growth and the subsequent process is the same as treatment group 1. The 

experimental protocols are shown in Fig. 1. 

The traditional plate count method was performed to obtain the reference of TAB count value. The measurement 

was performed in the following order, with some adjustments based on previous research [31-33]. First, 10 g of 

samples were immersed in 90 mL of 0.1% peptone water and homogenized with a mixer (BagMixer, Interscience, 

France) to properly disperse and dilute the microorganisms. 10-fold serial dilutions of the homogenate were 

prepared using sterilized peptone water. Then, 1 mL of the dilution was inoculated into liquefied agar medium 

melted at 45°C (plate count agar, BD Difco, Detroit, MI, USA), and the suspension was carefully shaken to mix the 

microorganisms evenly. The suspension was cultured in a 37°C incubator for 48 h, following which the number of 

resultant colonies was counted and expressed in units of log CFU/g. The experiment was repeated three times. 

 

Hyperspectral Imaging and Spectrum Extraction 

To acquire hyperspectral images, a darkroom environment was employed to block external light and an image 

acquisition system was installed inside. No special temperature control was installed in the darkroom. At that time, 

the room temperature was observed as 23~24°C. As shown in Fig. 2, the system consisted of a hyperspectral 

ACCEPTED



imaging camera (Pika L, Resonon Inc., Bozeman, MT, USA) with an attached lens. The camera was mounted on a 

stepper motor to allow its movement along a line while taking images. Four tungsten halogen lamps were installed 

to secure a stable light source. A black matte dish was used as the sample background. A total of 99 beef samples 

were used. For each experiment, nine samples from the same group were photographed at the same time and 

subjected to microbiological analysis. To ensure the stability of the light source and obtain high-quality 

hyperspectral data, a 20 min stabilization period was implemented before data acquisition. 

Next, the region of interest (ROI) was defined as the red meat region within the meat data, and spectrum of this 

region was extracted for analysis. The processes for determining the area of red lean meat in the hyperspectral data 

cube are presented in Fig. 3. Fig. 3a was reconstructed using only the visible light region (400-700 nm), whereas Fig. 

3b was extracted from spectral images in the 630–650 nm range as an average value corresponding to the red region. 

Fig. 3c is an extraction of only images having a wavelength of 540–560 nm, corresponding to the green area. By 

comparing Figs. 3b and 3c and generating their difference set, the red region can be extracted by selecting only the 

pixels that belong to the red region and neither to the black region nor to the white region. To achieve this, Figs. 3b 

and 3c were first converted into binary images, resulting in Figs. 3d and 3e, respectively. As the result, Fig. 3f shows 

the difference between the two binary images. Consequently, by selecting and extracting only the spectra from the 

activated region in Fig. 3f, the spectra of red meat can be exclusively obtained. 

 

Development of the Predictive Model 

The extracted spectrum data for the area of red lean meat were used to develop TAB prediction model. And four 

machine learning methods were employed including partial least squares regression (PLSR), support vector machine 

(SVM), artificial neural network (ANN), and one-dimensional convolutional neural network (1D-CNN). Also, four 

preprocessing techniques such as multiplicative scatter correction (MSC), standard normal variate (SNV) 

transformation, Savitzky–Golay 1st-order filtering, and min–max normalization were used. In addition, models 

named ‘raw’ were developed and these models used raw spectrum which are not preprocessed. In this study, 80% of 

the experimental data was used as the training set, and the remaining 20% was used as the test set to verify the 

model’s performance. The randomly selected training set was 10-fold cross-validated to validate performance and 

develop optimal models. 

PLSR is known as a widely used technique for the quantitative analysis of spectra [34]. As a method that 

complements the shortcomings of principal component analysis, PLSR is used mainly for component prediction in 
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the measurement field. It performs the least squares method by compressing data down to several latent variables 

containing the most information in a data set, including both the input variable X and the output variable Y. To 

develop the PLSR model, one data set—including both the X matrix obtained from the spectral data and the Y 

vector obtained from the TAB counts—was first generated. Then, the number of components with the lowest root-

mean-square error (RMSE) value was selected while changing the number of components from 1 to 40. The model 

was finally constructed using the number of components. Through this procedure, it can be seen that both the 

calibration and validation processes can be performed at once. 

The SVM technique was originally developed for classification purposes, but it can be applied for support vector 

regression (SVR) problems through the use of a loss function. In this study, ε-insensitive loss function was used as 

following Eq. 1: 

    (1) 

where  is the th element of the  vector, and is the value predicted by the model. 

To develop the ANN model, a structure with an appropriate layer had to be designed. In the ANN, the connection 

structure between neurons, such as the number of hidden layers and the number of nodes of each layer, is 

collectively referred to as a topology, the optimal determination of which generally requires a large number of trial-

and-error runs [35]. In this study, performance was tested by varying the number of hidden layers and the number of 

nodes in the model. The hidden layers were either one or two, and the number of nodes in each layer started at 25 

and increased by one to 35. The optimal topology was found to be two hidden layers with 32 nodes each. The 

rectified linear unit (ReLU) was used as the hidden layer activation function, and adaptive moment estimation was 

used as the optimizer in the compilation process. 

A CNN-based model, which is a class of ANN, is the most widely used architecture in deep learning approaches. 

Of the various CNN techniques, 1D-CNN was used in our study because the extracted spectrum was one-

dimensional signal. Generally, the structure of a CNN-based model consists of an input layer, multiple hidden layers 

(convolutional layers, pooling layers, fully connected layers), and an output layer [36]. A structure of 1D-CNN 

based model also comprises a convolutional layer and a 1D filter suitable for spectral data. As was carried out for 

the ANN, the layer structure for the 1D-CNN was determined through trial-and-error repetitions, and the one with 

the highest performance was selected. Additionally, a dense layer consisting of 100 nodes was added before the 

result was reached. The ReLU function was used for all hidden layers. Fig. 4 shows the structure of the 1D-CNN 

used in this study. Since the models were created using four different techniques, evaluation indicators were needed 
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for the comparison of their performances. This was achieved through three commonly used indicators for the 

evaluation of predictive model: R2, mean absolute error (MAE), and root mean square error (RMSE), calculated 

using Eqs. 2-4, respectively: 

   (2) 

   (3) 

   (4) 

where  is the total number of data points, is the actual output values,  is the predicted output values, and is 

average. 

 

Verification of the Predictive Model 

To ensure the generalizability of the developed model, a rigorous verification process was implemented. While 

the training and test sets were strictly separated during model development, both used samples from the same 

carcass. This potential limitation in variability prompted an additional verification step. At a different time, 

completely different beef samples were purchased and stored under identical conditions to those used for model 

development. All procedures used for the training and test sets were meticulously replicated with these new samples 

to create a dedicated verification set. This verification set was then applied to the previously developed models to 

assess their versatility. 

 

 

Results and Discussion 

TAB measurements 

Fig. 5 shows the TAB values for different treatments of the beef samples. Similar to the results reported by other 

research, the TAB increased by approximately 3 folds with each passing week [37]. And no specific packaging or 

air conditioning treatments were applied to the samples, resulting in higher microbial counts compared to previous 
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study [38]. Statistical differences among the results were evaluated using Scheffe's post hoc test, with a significance 

level set at 5%. For this analysis, SPSS 26.0 statistical software package (IBM, NY, USA) was utilized. As 

anticipated, the five experimental dates clustered into three distinct groups based on their proximity. Furthermore, 

the analysis revealed that storage duration had a more pronounced effect on the proliferation of TAB. 

 

Spectrum Extraction and Performance of the Regression Models 

A total of 5,285 spectra were extracted from the hyperspectral images of red meat area. The entire data set (n = 

5,285) was then divided into a training set (n = 4,228) and a test set (n = 1,057). Table 1 shows the performance of 

the PLSR models in predicting TAB for different preprocessing methods. All models developed using the five data 

types achieved a coefficient of determination (R2) of 0.8 or higher, indicating successful training without significant 

issues. Evaluation on the five test data subsets likewise resulted in R2 values of 0.8 or greater. If the R2 values of the 

training and test sets were significantly different, it would suggest overfitting [39], but since this is not the case, it 

was determined that overfitting did not occur during the modelling process. The number of components in the PLSR 

models was in the range of 19–23. 

The performance of the SVM, ANN, and 1D-CNN models is shown in Table 2. These models consistently 

outperformed the PLSR model in terms of prediction accuracy. When evaluated on the training set, almost all 

preprocessed data types achieved R2 values of 0.9 or higher, except 1D-CNN with some preprocessing methods. 

When testing SVM models, using data preprocessed by MSC achieved the best performance, with an R2 value of 

0.9617 and an RMSE of 0.4659. And this result suggests that data preprocessing methods with scatter correction, 

such as MSC and SNV, are advantageous compared to other techniques. This finding is consistent with the SVM's 

reliance on hyperplanes for class separation, as outlier removal through scatter correction can contribute to improved 

model performance. 

As presented in Table 2, the predictive performance of the ANN model was superior to that of the other models. 

The training set yielded R2 values of 0.99 or higher, whereas the test set yielded R2 values of 0.97 or higher, which 

indicated a fit of the model with the experiment data. The best performance during test was exhibited by the ANN 

model constructed using min–max normalization data, which yielded an R2 value of 0.9926 and RMSE value of 

0.2114. This is comparable to or slightly better than previous study [16]. The 1D-CNN models were the only ones 

that showed significant deviations in performance according to the data preprocessing technique used. Since the 1D-

CNN does not follow the basic structure of a CNN that extracts morphological characteristics, the development of a 
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segmental structure through the extraction of only the red meat region from the original hyperspectral data cube did 

not affect the interpretation of the results. 

Fig. 6 presents the best test result for four models. Among these models, the ANN model with min-max 

normalization achieved the superior predictive performance. As can be observed in Figs. 6a and 6b, the PLSR and 

SVM based models exhibited lower performance compared to ANN and 1D-CNN based models shown in Figs. 6c 

and 6d, respectively. This is well illustrated by the wider distribution of predictions for samples sharing the same 

reference value in Figs. 6a and 6b. Consequently, it is reasonable to posit that prediction using neural network 

architecture offers a more viable modeling approach. 

 

Construction of Chemical Map and Model Verification 

Fig. 7 shows the chemical map of predicted total aerobic bacterial (TAB) count generated by inputting the 

hyperspectral data extracted from the red meat into the ANN model, which was identified to have the best predictive 

performance. Since only the spectral data extracted from the red meat area were used, all regions other than the red 

meat appeared as black spaces. This method allowed for direct visual observation of the differences in microbial 

quality of beef samples from each experimental group. Compared to previous studies [40], we believe that the time-

dependent microbial quality changes of beef samples were more clearly discernible due to the enhanced resolution 

and contrast provided by our study. The control group samples that were kept in refrigerated storage showed a 

generally uniform color distribution. The result suggests that an inappropriate storage method could cause 

deterioration of the meat quality that may be undetectable by visual inspection. 

As a final step, additional experiments were conducted to verify the practical performance of the TAB prediction 

models which were presented in Table 1 and 2. For this purpose, the TAB prediction performance of developed 

models was re-evaluated on a completely separate new beef samples from the beef samples used in the development 

of TAB prediction models. Table 3 shows the test performance of the best models for predicting TAB during the 

first model development process and the final verification step. As a result of verification test, it was observed that 

the R2 of the PLSR model decreased by 42.78% compared to the test results specified in Table 1. However, the R2 

values of the other three models, SVR, ANN, and 1D-CNN based prediction models, were confirmed to be 0.7988, 

0.8593, and 0.8479, respectively. These results are 16.94%, 13.43%, and 12.76% lower than the R2 values of the 

SVR, ANN, and 1D-CNN based prediction models shown in Table 2, respectively. 
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Although it was confirmed that the TAB prediction performance for completely new beef samples was reduced, 

the RMSE of the ANN and 1D-CNN based models acquired during verification test were 0.6947 and 0.681, 

respectively. These RMSE results can be analyzed as having a prediction error of about 7%, considering that the 

TAB destructively measured in actual beef samples were distributed in the range of 2.5 to 10. Through the 

verification test results, it was also observed that models based on artificial neural network methods such as ANN 

and 1D-CNN show better prediction performance than other machine learning-based models. Also, these results 

show the same trend as the model evaluation results shown in Table 2. If learning data for more diverse beef 

samples is acquired and additional, periodic learning processes are performed, the performance of machine learning 

models that can predict specific ingredients can be expected to improve to a certain level. Although this study cannot 

be said to have developed a sufficiently satisfactory prediction model that can be applied to all beef samples, it 

confirmed the possibility of predicting the TAB of beef non-destructively and non-invasively using machine 

learning methods and hyperspectral imaging technique. Further empirical research applying the methods and models 

presented in this study could lead to the development of commercially viable beef quality evaluation technology 

applicable in real-life settings. Accurate quality prediction helps livestock breeders develop and apply better 

husbandry practices, which ultimately leads to higher quality beef production. These technologies also enable faster 

response to consumer demand, enabling product development to meet market trends. Collaboration between industry 

and academia will play an important role in integrating these advanced technologies into existing quality 

management systems. 

 

Conclusions 

In this study, models for the non-destructive prediction of TAB in beef samples using NIR hyperspectral data 

were developed. Beef samples were exposed to various temperature conditions for 15 d to induce microbial growth 

and changes in meat freshness. For each meat sample, spectral data were obtained using a hyperspectral imaging 

system, and the TAB values were evaluated using the conventional plate count method to derive the reference 

counts for microbial contamination levels. In total, 5,285 spectra were extracted for the raw spectrum data and 

divided into a training set (80%) and a test set (20%). Then, models were developed using the PLSR, SVR, ANN, 

and 1D-CNN techniques. The predictive performance of each model was evaluated using the performance indicators 

R2, MAE, and RMSE. The ANN model was found to have the best predictive performance when the data was 

preprocessed using the min-max normalization method. In addition, even in a verification experiment performed 
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with completely different beef samples at a separate time, the ANN based TAB prediction models showed somehow 

acceptable performance (R2: 0.85). 

Recently, machine learning or deep learning-based ANN, CNN techniques have shown good performance in 

various fields. This study also successfully demonstrated the potential of ANN and 1D-CNN models for predicting 

TAB in beef using NIR hyperspectral data. These results are consistent with the growing body of research 

demonstrating the effectiveness of deep learning architectures in various analytical tasks. In our study, while both 

1D-CNN and ANN models achieved high predictive performance, the ANN structure consistently outperformed for 

all data preprocessing methods. Interestingly, 1D-CNN performance showed greater sensitivity to preprocessing 

techniques, suggesting the potential for further optimization in this area. 

In our study, there were some difficulties or limitations associated with the experiment and data acquisition. The 

number of sample groups was set to only three, and the observed microbial values were grouped by experimental 

day, resulting in a less diverse microbial population compared to real-world situations. Also, the experimental period 

was considered insufficient to represent all actual situations in the field. These experimental conditions have 

limitations in securing the diversity that can occur in actual distribution situations. To improve the generalizability 

of the models, future research should include data with a wider range of TAB that reflects the natural variability of 

microbial quality in beef. In addition, exploring the integration of other relevant data sources, such as temperature or 

storage conditions, alongside NIR spectral data could potentially refine model accuracy. Nonetheless, the 

approaches suggested in this study have the potential to provide more feasible and efficient tools for non-destructive 

microbial quality assessment in the meat industry. 
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Tables and Figures 

 

Table 1. Performance of the PLSR models in predicting total aerobic bacterial counts for different 

preprocessing methods. 

Preprocessing n a Data set R2 MAE RMSE 

Raw 19 
Training 0.8766 0.6624 0.8512 

Test 0.8630 0.7043 0.8823 

MSC 21 
Training 0.8816 0.6482 0.8358 

Test 0.8622 0.6811 0.8755 

SNV 19 
Training 0.8891 0.6220 0.8073 

Test 0.8650 0.6775 0.8734 

Savitzky-Golay 

1st Filter 
23 

Training 0.8761 0.6645 0.8546 

Test 0.8588 0.6891 0.8893 

Min–Max 

Normalization 
19 

Training 0.8764 0.6555 0.8440 

Test 0.8637 0.7270 0.9130 

a Number of Components 
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Table 2. Performance of the support vector machine, artificial neural network, and one-dimensional 

convolutional neural network model in predicting total aerobic bacterial counts for different preprocessing 

methods. 

Machine 

Learning 
Preprocessing Data set R2 MAE RMSE 

SVM 

Raw 
Training 0.9364 0.3844 0.6093 

Test 0.9166 0.4594 0.6962 

MSC 
Training 0.9706 0.2038 0.4156 

Test 0.9617 0.2672 0.4659 

SNV 
Training 0.9731 0.1907 0.3982 

Test 0.9560 0.2808 0.4950 

Savitzky–Golay 

1st Filter 

Training 0.9353 0.3941 0.6155 

Test 0.9171 0.4620 0.6914 

Min–Max 

Normalization 

Training 0.9343 0.3850 0.6169 

Test 0.9210 0.4701 0.6891 

ANN 

Raw 
Training 0.9960 0.1172 0.1519 

Test 0.9841 0.1490 0.3084 

MSC 
Training 0.9987 0.0695 0.0884 

Test 0.9764 0.1483 0.3741 

SNV 
Training 0.9991 0.0546 0.0716 

Test 0.9901 0.1479 0.2372 

Savitzky–Golay 

1st Filter 

Training 0.9976 0.0948 0.1191 

Test 0.9876 0.1214 0.2718 

Min–Max 

Normalization 

Training 0.9967 0.1006 0.1376 

Test 0.9926 0.1247 0.2114 

1D-CNN 

Raw 
Training 0.8654 0.6720 0.8876 

Test 0.8557 0.6854 0.9118 

MSC 
Training 0.9291 0.5252 0.6426 

Test 0.8767 0.6658 0.8510 

SNV 
Training 0.9886 0.2150 0.2571 

Test 0.9580 0.3080 0.4976 

Savitzky–Golay 

1st Filter 

Training 0.7677 0.9097 1.1510 

Test 0.7673 0.9391 1.1684 

Min–Max 

Normalization 

Training 0.9942 0.1415 0.1848 

Test 0.9719 0.2781 0.3990 
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Table 3. Test performance of the best models for predicting total aerobic bacterial counts during the first 

model development process and the final verification step. 

Model type Method Preprocessing R2 MAE RMSE 

Developed 

using the first 

beef samples 

PLSR SNV 0.8650 0.6775 0.8734 

SVR MSC 0.9617 0.2672 0.4659 

ANN Min–Max 0.9926 0.1247 0.2114 

1D-CNN Min–Max 0.9719 0.2781 0.3990 

Tested using 

new beef 

samples for 

verification 

PLSR MSC 0.4949 1.4984 1.8281 

SVR SNV 0.7988 0.6570 0.8152 

ANN MSC 0.8593 0.5245 0.6947 

1D-CNN SNV 0.8479 0.5093 0.6810 
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Fig. 1. Experimental protocols based on the number of days for each experimental group. 
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Fig. 2. Configuration of devices for obtaining hyperspectral data. 
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Fig. 3. Images for determining the red lean meat regions (the ROI) in the hyperspectral images. (a) 

Reconstructed RGB image; (b) 630–650 nm average image; (c) 540–560 nm average image; (d) Binary 

image for the 630–650 nm reconstruction; (e) binary image for the 540–560 nm reconstruction; (f) red 

lean meat regions extracted from the difference. 
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Fig. 4. Layer structure of the one-dimensional convolutional neural network used in this study. 

ACCEPTED



 

 

Fig. 5. Counts of total aerobic bacteria (TAB) according to sample treatments and days of storage. The 

values represented by the bars are the mean of three replicates of the experiment, and the error bars 

represent the standard deviation. Denoted by +, ++ when Scheffe's post hoc test shows statistical 

significance. 
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Fig. 6. Graphs depicting the best prediction of total aerobic bacterial count by each model. (a) Partial least 

squares regression model; (b) Support vector machine model; (c) Artificial neural network model; (d) 

One-dimensional convolutional neural network model. ACCEPTED



 

 

 

Fig. 7. Chemical map of total aerobic bacteria in red meat samples, constructed using the ANN model of 

highest performance. Each pixel represents a location where a spectrum was actually acquired, with non-

lean fat areas appearing blank because no spectrum was acquired. TAB values are in units of log CFU/g. 
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