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Abstract  22 

 This study examined the effects of microencapsulated organic acids and essential oils (EOA) 23 

combined with a protease supplement on the growth performance and gut health of broilers subjected to 24 

nutritional challenges through a diet high in wheat and corn distiller's dried grains with solubles (DDGS). 25 

The treatments were: 1) corn and soybean meal-based diet with high levels of wheat and corn DDGS 26 

(WD); 2) WD + microencapsulated organic acids and essential oils at 300 mg/kg (EOA); 3) WD + 27 

protease at 125 mg/kg (PRO); and 4) WD + EOA at 300 mg/kg + protease at 125 mg/kg (EOA + PRO). 28 

Body weight gain, feed intake and mortality rate did not differ among treatments (p > 0.05). However, 29 

feed conversion ratio from day 1-35 was lower in the EOA+PRO group than in the WD group (p < 0.05). 30 

The EOA+PRO group had a lower crypt depth (CD) and a higher villus height/crypt depth (VH/CD) ratio 31 

than the other groups (p < 0.01). The putrescine level was higher in the WD group than in the other groups 32 

(p < 0.05). On day 35, the EOA and EOA+PRO groups had higher claudin-1 mRNA expression than the 33 

WD and PRO groups (p < 0.01). Occludin mRNA expression was higher in the EOA and PRO groups 34 

than in the WD group (p < 0.01). In summary, the combination of EOA and protease improved feed 35 

efficiency and gut health in broilers fed a high wheat and corn DDGS diet. This was demonstrated by 36 

decreased CD, increased VH/CD ratio, increased mRNA expression of claudin-1 at the tight junction and 37 

decreased putrescine content in the hindgut, suggesting an indirect effect on pathogenic bacteria. 38 

Keywords (3 to 6): fumaric acid, thymol, alkaline serine endopeptidase, tight junction protein, 39 

amine40 
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Introduction 41 

Antibiotic growth promoters (AGPs) have traditionally been used in the poultry industry to 42 

improve growth, feed efficiency, and gut physiology [1]. However, increasing concerns about antibiotic-43 

resistant mic3roorganisms have led to global efforts to reduce or ban the use of AGPs in livestock 44 

production [2]. As a result, regulatory authorities have introduced restrictions and guidelines to promote 45 

responsible antibiotic use, which has led to the exploration of alternative strategies to improve poultry 46 

health and performance. 47 

To address these challenges, various feed additives are being explored as alternatives to AGP. 48 

Probiotics, prebiotics, organic acids and essential oils have shown promise. Organic acids improve broiler 49 

health by supporting immunological function, pancreatic enzyme activity and gut microbiota balance [3-50 

6]. Essential oils containing compounds such as thymol, carvacrol and eugenol provide benefits such as 51 

improved immune function and a reduction in pathogenic bacteria [7-9]. The combination of essential oils 52 

with organic acids (EOA) can further improve gut health and performance compared to single 53 

supplements [10-12]. 54 

Alternative feed ingredients such as wheat and corn Distillers Dried Grains with Solubles (DDGS) 55 

are commonly used in poultry feed. Corn DDGS, a by-product of ethanol production, provides protein 56 

and energy, but may have lower protein quality due to high levels of non-starch polysaccharides (NSP) 57 

and lower amino acid digestibility [13]. High NSP content in DDGS may promote colonization with 58 

Clostridium perfringens, especially under conditions of necrotic enteritis (NE) [14]. Similarly, wheat 59 

contains arabinoxylan, an NSP that increases gut viscosity, leading to reduced nutrient absorption and 60 

microbial imbalances, e.g. with Escherichia coli and Salmonella spp [15-19]. In addition, poor protein 61 

digestibility associated with high NSP content can lead to microbial fermentation of nitrogen metabolites, 62 

which impairs the intestinal barrier, increases tight junction (TJ) permeability and impairs broiler growth 63 

[20, 21]. 64 

Protease enzymes contribute significantly to minimizing undigested proteins, maximizing 65 

amino acid availability, reducing dietary protein requirements, supporting weight gain and feed 66 

efficiency, reducing proteolytic fermentation, reducing biogenic amines, and improving gut integrity 67 
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[22-24]. Consequently, there is considerable interest in the market to utilize undigested proteins through 68 

the use of exogenous enzymes such as proteases. This approach facilitates the formulation of balanced 69 

diets with reduced protein levels, which ultimately leads to cost savings in feed production [25, 26]. 70 

Microencapsulation is an important technique to deliver bioactive compounds into the 71 

gastrointestinal tract [27, 28]. It ensures the stability and targeted release of these compounds in the 72 

hindgut, where pathogenic bacteria are most prevalent [29]. Without microencapsulation, organic acids 73 

may dissociate in the upper gastrointestinal tract and essential oils may be absorbed before they reach 74 

the hindgut, reducing their efficacy. Microencapsulated organic acids and essential oils show 75 

significantly increased bactericidal and bacteriostatic activity compared to unprotected forms [27, 28, 76 

30]. 77 

The hypothesis of this study is that microencapsulated essential oils and organic acids (EOA) 78 

in combination with protease can improve the growth and gut health of broilers fed a high wheat and 79 

corn DDGS diet, which serves as a nutritional model challenging avian gut resilience. The broiler 80 

chickens in the current study were raised under AGP-free programs. Chemical coccidiostats, which are 81 

not classified as veterinary medicinal products and can be used as feed additives according to the EU 82 

regulation [31], were used to control coccidiosis. The microencapsulated organic acids are fumaric, 83 

malic, sorbic and citric acids, and the essential oils are vanillin, eugenol and thymol, all encapsulated 84 

in hydrogenated vegetable fat. The protease used is an alkaline serine endopeptidase derived from the 85 

fermentation of Streptomyces. The aim is to investigate the effects of this microencapsulated EOA in 86 

combination with protease on the growth and gut health of broiler chickens fed a high wheat-corn 87 

DDGS diet. Gut health will be assessed by analyzing gut morphology, microbial metabolites in the 88 

caecum and mRNA expression of tight junction (TJ) proteins, which are critical for maintaining 89 

intestinal integrity. 90 

Materials and Methods 91 

Bird Husbandry and Experimental Design 92 
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 The experimental protocol was approved by the Animal Care and Use Committee of Kasetsart 93 

University (protocol number: ACKU62-AQK-012). A total of 1,400 male Ross 308 broiler chicks 94 

(Panuspokphand Co., Ltd., Chonburi, Thailand) were reared in 56 pens (1.5 m x 2.0 m). All birds were 95 

randomly assigned to 4 treatments using a completely randomized design. There were 14 replicates 96 

with 25 birds per replicate in each treatment. The dietary treatments were: 1) corn and soybean meal-97 

based diet with high levels of wheat and corn DDGS (WD); 2) WD + microencapsulated organic acids 98 

and essential oils at 300 mg/kg (EOA); 3) WD + protease at 125 mg/kg (PRO); and 4) WD + EOA at 99 

300 mg/kg + protease at 125 mg/kg (EOA + PRO). The EOA contained a combination of fumaric acid, 100 

sorbic acid, malic acid and citric acid with vanillin, eugenol, and thymol microencapsulated in 101 

hydrogenated vegetable fat. The protease enzyme was an alkaline serine endopeptidase with protease 102 

activity of 1.10 U/g. Both are commercially available products provided by Jefo Nutrition Inc. (St-103 

Hyacinthe, Quebec, Canada). During the trial, the birds had unlimited access to water and feed. The 104 

ambient temperature was 32°C for the first three days, then steadily dropped to 25°C on day 14. The 105 

light settings were 23 hours of light and 1 hour of darkness during the experiment. 106 

Experimental Diets 107 

 The main ingredients of the WD group were corn and soybean meal. In the starter, grower, and 108 

finisher diets, 20%, 25%, and 30% wheat replaced corn as the energy source, and 10%, 12.5% and 15% 109 

corn DDGS replaced soybean meal as the protein source. All experimental diets were formulated 110 

following the strain recommendations [32]. The diets were mixed with a horizontal mixer and pelleted at 111 

80°C according to the manufacturer’s instructions (Bangkok Animal Research Center Co., Ltd; 112 

Samutprakarn, Thailand). All experimental diets were analyzed for crude protein, ether extract, crude fiber, 113 

gross energy, calcium and phosphorus according to AOAC guidelines [33]. The details of the diet 114 

composition are listed in Table 1. 115 

Data Recording 116 

 The body weight of all birds and the feed intake per pen were recorded on days 1, 7, 14, 28, 117 

and 35. Feed intake (FI), feed conversion ratio (FCR), and body weight gain (BWG) were calculated 118 
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for each bird and each replicate. Mortality was recorded daily, and the weight of dead birds was recorded 119 

to calculate the adjusted FCR.  120 

Sampling 121 

 On days 14 and 35, one bird was randomly selected from each replicate (a total of 14 birds per 122 

treatment), its body weight (BW) was measured and it was then humanely sacrificed by stunning and 123 

bleeding. The mid jejunum was removed for intestinal morphological examination. The intestinal 124 

mucosa was scraped with a sterile glass slide. Intestinal mucosa samples were immediately frozen in 125 

liquid nitrogen and stored at -80°C for subsequent mRNA expression analysis of TJ proteins. Cecal 126 

content samples from 35-day-old birds were collected and stored in a freezer at -20°C to analyze 127 

ammonia, biogenic amines and volatile fatty acids (VFA) in the ceca. 128 

Gene Expression of Intestinal Barrier Tight Junction Proteins 129 

 RNA Isolation and cDNA Synthesis  130 

 After extraction from frozen jejunum mucosal samples using the GenUPTM total RNA kit 131 

(Biotechrabbit GmbH, Berlin, Germany), RNA quantity and quality were determined using a NanoDrop 132 

2000 spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA) at 260 and 280 nm. Subsequently, 133 

1 µg of RNA was used to synthesize the first strand of cDNA using a cDNA synthesis kit (Biotechrabbit 134 

GmbH, Berlin, Germany), and the resulting cDNA was stored at -20°C for subsequent analysis. 135 

 Real-Time PCR 136 

 Expression of the claudin-1, Zonula Occludens-1 (ZO-1) and occludin genes was determined 137 

by real time PCR using the specific primers listed in Table 2 [34, 35]. Rigorous testing ensured primer 138 

efficiency and linearity. Each reaction was performed in triplicate for each gene and sample. Gene 139 

expression was normalized using glyceraldehyde-3-phosphate de-hydrogenase (GAPDH) and TATA-140 

binding protein (TBP) as reference genes, according to the methodology described by Taylor et al [36]. 141 

Intestinal Morphology 142 
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 Intestinal morphology examinations were performed according to Iji et al. [37]. A 1 cm sample 143 

of the jejunum (between the terminal loop of the duodenum and Meckel’s diverticulum) was excised 144 

and immediately fixed in 10% formalin. The fixed samples were dehydrated in ethanol, cleared in 145 

xylene, and embedded in paraffin. Two sections, each 7 μm thick, were mounted on microscope slides 146 

and stained with alcian blue, hematoxylin, and eosin. The stained sections were examined under a light 147 

microscope at 40x magnification using an Olympus CX33 microscope equipped with an Olympus DP22 148 

digital camera and DP2-SAL imaging software (Olympus Optical Corp., Tokyo, Japan). Villus height 149 

(VH), measured from the base transition zone between villus and crypt to the apex, Crypt depth (CD), 150 

measured from the base of the villi to the bottom of the glands, and villus width (VW), measured from 151 

the left villus crypt junction to the right of the villus crypt junction, were quantified. VH/CD ratio was 152 

determined by measuring 9 randomly selected villi and their corresponding crypts.  153 

Microbial Metabolites in the Ceca 154 

Volatile Fatty Acid Analysis 155 

VFA were analyzed by gas chromatography according to Thanh et al. [38]. In brief, 200 mg of 156 

ceca content was mixed with distilled water in a 1:1 ratio (w/v) and centrifuged at 13,500 rpm at 4°C 157 

for 20 min. Then, 100 µL of the supernatant was transferred and mixed with 100 µL of 24% 158 

metaphosphoric acid in 1.5 M sulfuric acid, stirred for 5 min, and allowed to stand overnight at 4°C. 159 

The mixture was then centrifuged at 10,000 rpm for 5 min at 4°C. The supernatant was mixed with an 160 

equal volume of 3 mM crotonic acid and used as an internal standard. Subsequently, 1 µL of the 161 

prepared sample was injected and separated by gas chromatography using a CP-Wax 52 CB (50 m x 162 

0.32 mm) column (Agilent Technologies Netherlands B.V., Amstelveen, Netherlands). Helium (2 163 

mL/min) was used as the mobile phase, and the injector and detector temperatures were 250°C and 164 

280°C, respectively. The column temperature was set to 200°C. External standards with 3 mM acetic 165 

acid, propionic acid, butyric acid, and 1.5 mM crotonic acid were used to identify the peaks.  166 

  167 
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Ammonia Analysis  168 

The frozen cecal content was analyzed according to Meyer et al. [39]. In brief, 500 mL of 100 169 

mM 3-(N-morpholino) propanesulfonic acid was added to 250 mg of cecal content. The sample was 170 

centrifuged at 4°C and 12,000 rpm for 20 min. Then, 250 µL of the supernatant was mixed with 25 µL 171 

of Carrez Clarification Reagent Kit (Sigma Chemical Corp., St. Louis, MO) and centrifuged at 4°C and 172 

12,000 rpm for 10 min. Ammonia was analyzed according to the method described by Weatherburn 173 

[40]. 174 

Amine Analysis 175 

Amine analysis of the extracted cecal contents was performed as described by Saarinen [41]. A 176 

500 µL aliquot of 0.4 M perchloric acid was used to deprotonate 250 mg of the frozen sample. The 177 

derivatization reaction of the amine in the extracted sample was carried out with dansyl chloride as 178 

described by Eerola et al. [42]. The derivative solution was filtered using a nylon membrane filter with 179 

a pore size of 0.22 µm. Subsequently, 10 µL of the sample was injected into an ODS2 column (4.0 m x 180 

250 m) (Waters Corp, Wexford, Ireland) using a 717 plus autosampler at 40°C. Peaks were detected at 181 

254 nm using a 2998 Photodiode Array Detector (Waters Corp, Milford, MA) and analyzed using 182 

Empower Software Build 2154 (Waters Corp, Milford, MA). HPLC-grade water was used as mobile 183 

phase A and HPLC-grade acetonitrile (Fisher Scientific, Pittsburgh, PA) was used as mobile phase B. 184 

The gradient elution was initially 50%, after 25 min 10%, after 35 min 50%, after 40 min 50% at a flow 185 

rate of 1 mL/min. Finally, 1-aminoheptane was used as an internal standard. 186 

 Putrescine dihydrochloride and cadaverine dihydrochloride were used as external standards and 187 

diluted in water to prepare the stock solution. Subsequently, the external standards were diluted with 188 

0.4 M perchloric acid for serial dilution.  189 

Statistical Analysis 190 

Percentage mortality data were obtained by square root transformation of Y+0.5 (Y 191 

= %mortality). Relative gene expression was log-transformed (log2 ∆∆Cq) prior to statistical analysis. 192 

All data were tested for normality using the Kolmogorov–Smirnov test before performing statistical 193 

analyses. Statistical differences between treatments were analyzed using the GLM procedure from SAS 194 
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Studio University Edition (SAS Inst. Inc., Cary, NC). Differences among treatments were determined 195 

using Tukey’s test for honestly significant differences. Significant values were determined based on a 196 

p-value ≤0.05, and trends were reported at 0.05 < p ≤ 0.1.  197 

Results 198 

This experiment was conducted to investigate the effects of EOA in combination with protease 199 

on the growth and gut health of broilers raised without AGPs. It is crucial to challenge intestinal 200 

homeostasis, as in the absence of such challenges, gut-acting growth promoters may have limited effects 201 

on performance [43, 44]. Therefore, this study employed a nutritional model that challenged avian gut 202 

resilience using a diet high in wheat and corn DDGS. The EOA blend was supplemented in a 203 

microencapsulated form to ensure the stability and targeted release of these compounds in the hindgut, 204 

where pathogenic bacteria are most prevalent. Additionally, protease was included to assess its potential 205 

in improving nutrient utilization, particularly in overcoming the poor digestibility associated with the 206 

high NSP content in corn DDGS and wheat. The results of this study are presented below. 207 

Growth Performance 208 

In the current study, no effects of the dietary treatments (p > 0.05) were observed on BWG, FI 209 

and mortality rate (Table 3). On day 8-14, the PRO group had a higher FCR than the EOA+PRO group 210 

(p < 0.01), while the FCR of the WD and EOA groups did not differ from the others (p > 0.05). On day 211 

1-35, the WD group had a higher FCR than the EOA+PRO group (p < 0.05), while the FCR of the EOA 212 

and PRO groups did not differ significantly from the other groups (p > 0.05). 213 

Expression of Intestinal Barrier Tight Junction Proteins 214 

Figures 1 and 2 show the effects of the dietary treatments on the mRNA expression of selected 215 

intestinal barrier TJ proteins in the jejunum mucosa on days 14 and 35. On day 14, the mRNA 216 

expression of ZO-1 and occludin did not differ between the four dietary treatments (p > 0.05). There 217 

was a trend towards higher expression of claudin-1 mRNA in the EOA+PRO group compared to the 218 

others (p = 0.062). On day 35, the expression of ZO-1 mRNA did not differ significantly between 219 
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treatments (p > 0.05). The EOA and EOA+PRO groups had higher claudin-1 mRNA expression than 220 

the WD and PRO groups (p < 0.01). Occludin mRNA expression was higher in the EOA and PRO 221 

groups than in the WD group (p < 0.01), while the EOA+PRO group had similar expression to the other 222 

groups (p > 0.05). 223 

Gut Morphology 224 

On day 14, no significant differences in gut morphology were observed among the four dietary 225 

treatments (p > 0.05), as indicated in Table 4. On day 35, there were no differences in VH and VW 226 

between treatments (p > 0.05). However, the EOA+PRO group had a lower crypt depth and a higher 227 

VH/CD ratio compared to the other treatment groups (p < 0.01). 228 

Microbial Metabolites 229 

 Table 5 illustrates the effects of the dietary treatments on the microbial metabolites in the cecal 230 

content on day 35. No significant differences in the ammonia and VFA content were found among the 231 

dietary treatments (p > 0.05). In terms of biogenic amines, the WD group had a higher putrescine content 232 

than the other dietary treatments (p < 0.05). In addition, the WD group tended to have a higher 233 

cadaverine content than the other dietary treatments (p < 0.1). 234 

Discussion 235 

Growth performance 236 

In this study, body weight gain, feed intake, and mortality rate did not differ significantly among 237 

the dietary treatments, all of which were based on a basal diet containing a high proportion of wheat 238 

and corn DDGS. However, the FCR for the EOA+PRO group was lower than that of the WD group 239 

from day 1 to 35, whereas the EOA and PRO groups did not differ substantially from the others. The 240 

possible explanation could be the combined effect of EOA and PRO, which could improve the FCR of 241 

the birds by stimulating digestive enzyme activity and improving nutrient utilization under the 242 

challenging conditions of high wheat and corn DDGS in the diet. Several studies have shown that EOA 243 

can stimulate the activity of digestive enzymes and improve feed efficiency in broiler chickens [45, 46]. 244 
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In addition, administration of a single-component enzyme (serine alkaline endopeptidase) in broilers 245 

also improved ADG and FCR in a rye-wheat–soybean meal [18] and corn–soybean meal-canola-based 246 

diets [47]. Chowdhury et al. [30] partially confirm the results of this study, showing that broilers fed a 247 

diet supplemented with microencapsulated EOA and protease achieved better FCR than those fed EOA 248 

alone. In addition, they found that higher EOA content (300 mg/kg diet) increased FCR regardless of 249 

whether protease was included in the diet or not. 250 

Expression of Intestinal Barrier Tight Junction Proteins 251 

TJ proteins, including claudins, occludins, ZO-1, and the actin-myosin cytoskeleton, establish 252 

connections between layers of epithelial cells in the intestine and form a barrier that separates the lumen 253 

contents from the underlying tissue [48, 49]. These tight junctions are essential elements of the intestinal 254 

epithelial barrier and play a crucial role in maintaining the integrity of the gastrointestinal tract. When 255 

this barrier is compromised, luminal antigens such as microbes and toxins can disrupt homeostasis and 256 

increase the risk of systemic infection, chronic inflammation, and malabsorption [48, 50]. The 257 

breakdown of the intestinal barrier has been associated with the pathogenicity of specific gut bacteria, 258 

including Campylobacter jejuni, Salmonella enterica and Clostridium perfringens [51]. In this study, 259 

the additives EOA, PRO, and EOA+PRO had no effect on ZO-1 mRNA expression. The higher 260 

expression of claudin-1 mRNA in the EOA and EOA+PRO groups compared to the WD control group 261 

suggests an improvement in gut integrity when the diet is supplemented with these additives. There was 262 

no discernible difference between the PRO and the WD control groups, suggesting that the increased 263 

claudin-1 mRNA expression in the EOA+PRO group may be due to the effect of EOA rather than PRO. 264 

It is possible that claudin-1 mRNA expression was upregulated due to the antibacterial properties of 265 

EOA. In addition, Yang et al. [28] observed that the EOA group expressed more claudin-1 mRNA than 266 

the antibiotic group or the control group, but there was no significant change in the mRNA expression 267 

of occludin or ZO-1. Mcknight et al. [52] observed comparable levels of claudin-1 mRNA expression 268 

in both the EOA and antibiotic groups, which were higher than those in the control group. 269 

In this study, the EOA and PRO groups showed a higher level of occludin mRNA expression 270 

than the WD group, while EOA+PRO was not significantly different from the others. This result 271 
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suggests that either the mixture of organic acids and essential oils or the protease can stimulate occludin 272 

by upregulating occludin mRNA expression without a combination effect of EOA and PRO in the 273 

EOA+PRO group. The combination of essential oils and organic acids has been shown to be beneficial, 274 

e.g. in terms of improved feed efficiency or upregulated mRNA expression of TJ proteins such as 275 

claudin-1 and occludin when added to broiler diets [28, 43, 45, 52].  276 

Intestinal Morphology 277 

Morphological indicators of intestinal health, such as VH, CD and the VH/CD ratio, provide 278 

information about the ability of the intestine to digest and absorb nutrients [53, 54]. Higher villi 279 

generally indicate a healthier gut, as they provide a larger surface area for nutrient absorption, while 280 

shallower crypts are typically associated with a healthier gut, as deeper crypts may indicate increased 281 

cell turnover or pathological conditions [54,55]. A higher VH/CD ratio usually reflects a well-282 

functioning and healthy gut, while a lower ratio may indicate problems such as inflammation or 283 

impaired nutrient absorption [55]. In addition, a lower VH/CD ratio indicates a reduced number of 284 

absorptive cells and an increased number of goblet cells, leading to increased mucin secretion [55, 56]. 285 

Changes in mucin quantity or composition may impair nutrient uptake or increase energy requirements 286 

to maintain homeostasis [55, 57]. The addition of EOA to broiler diets has been shown to be an effective 287 

strategy to improve gut morphology [45, 46, 58]. These results could not be confirmed in this study, as 288 

supplementation with EOA did not produce any significant effects on gut morphology. However, the 289 

EOA+PRO group showed increased VH/CD ration and decreased CD, suggesting a combination effect 290 

of protease supplementation in combination with EOA on gut morphology. The discrepancies between 291 

the present study and previous research may be due to differences in dietary formulations, microbial 292 

and environmental conditions, methodological approaches, and the synergistic effects of the 293 

supplements used.  294 

The possible mechanisms of EOA and PRO that improved the expression of TJ proteins and 295 

intestinal morphology under nutritional challenge in this study might be related to toll-like receptors 296 

(TLRs), which are part of the innate immune system, recognize pathogens and trigger inflammatory 297 

reactions [59]. Excessive activation of TLRs can lead to chronic intestinal inflammation, which 298 
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damages the intestinal mucosa, disrupts tight junctions and increases intestinal permeability [50, 60]. 299 

EOA, which contain antimicrobial and anti-inflammatory compounds such as thymol and carvacrol, 300 

influence signaling through TLRs by reducing exposure to pathogens and attenuating excessive 301 

inflammatory responses. This in turn contributes to the maintenance or improvement of tight junction 302 

protein expression and intestinal morphology [45]. While protease enzymes support gut health by 303 

improving protein digestion, which helps maintain tight junction integrity and enhance gut morphology 304 

[26]. Efficient protein breakdown prevents excessive stress on TJPs and reduces gut inflammation, 305 

leading to better gut barrier function and healthier intestinal structure [26, 50].  306 

Microbial Metabolites 307 

In this study, the lower putrescine levels in the EOA, PRO and EOA + PRO groups compared to 308 

the WD group may be due to the suppression of putrefactive proteins and microbes in the gut. Previous 309 

studies have shown that the combination of essential oils and organic acids reduces the prevalence of 310 

pathogenic bacteria such as Clostridium perfringens, Escherichia coli and Salmonella, while beneficial 311 

bacteria such as Lactobacilli increase [10-12]. This change in microbial composition could explain the 312 

lower putrescine levels observed. In addition, the improved protein and amino acid digestibility in birds 313 

fed protease-containing diets may have limited the nutrients available for microbial growth, thereby 314 

reducing microbial metabolites [61,  62]. Several studies have also found a decrease pathogenic microbial 315 

populations such as in Clostridium perfringens, Escherichia coli and Salmonella spp. in the ileum of 316 

broilers fed diets containing protease [62-64]. Park and Kim [65] found that the combined effect of 317 

essential oils and protease on reducing ammonia emissions may be due to their role in enhancing nitrogen 318 

retention, although this combination did not show a synergistic effect on growth performance or bacterial 319 

counts. 320 

Volatile fatty acids are associated with microbial fermentation in the hindgut [66]. Low quality 321 

dietary proteins can increase the content of VFA in the cecum. For example, Meyer et al. [39] reported 322 

that the addition of feather meal at 5% increased the propionic acid concentration in the ceca of laying 323 

hens. The use of corn gluten [67] or DDGS [14] as a protein source in broiler feed increased propionic 324 

acid and butyric acid level in the ceca. Yang et al [28] showed a significant increase in butyric acid with 325 
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a tendency to increase acetic acid and total short-chain fatty acids in the ileal contents of the EOA-326 

supplemented group compared to the antibiotic group, with no significant difference observed 327 

compared to the control group. It was anticipated that dietary treatments or feed additives would modify 328 

the microbial substrate, thereby altering VFA levels in the ceca. However, in the present study, no 329 

significant effects of dietary treatments on cecal VFA levels were observed. This lack of effect may be 330 

attributed to the low inclusion level of the essential oil blend at 300 mg/kg, which might not have been 331 

sufficient to induce detectable differences in cecal VFA concentrations. In contrast, a study by Ceylan 332 

et al. [68] demonstrated that higher levels of essential oils, at 700 or 1,200 mg/kg, significantly increased 333 

cecal acetate, propionate, butyrate, and total short-chain fatty acid concentrations in broilers. 334 

The nonsignificant differences in VFA levels observed in our study could also be related to the 335 

high absorption rate of VFAs in the lower intestinal tract. VFA absorption in the ceca occurs rapidly, 336 

reducing existing VFA concentrations and facilitating the renewal of cecal contents [69]. Over 95% of 337 

VFAs produced from fermentation are ionized at the prevailing pH of the large intestine and are actively 338 

absorbed by Na+-coupled monocarboxylate transport proteins (SMCT1). Meanwhile, the non-339 

dissociated form is transported by the H+-coupled low-affinity monocarboxylate transporter protein 340 

(MCT1) [69, 70]. Both transporters function concurrently in poultry to maximize VFA absorption 341 

across a wide range of lumen pH levels [71, 72]. 342 

  343 
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Conclusions 344 

In summary, dietary supplementation with a combination of EOA and protease improved 345 

growth performance by improving feed efficiency in broiler chickens fed a high wheat and corn DDGS 346 

diet. This improvement was accompanied by better gut health as evidenced by reduced crypt depth, 347 

increased VH/CD ratio and increased mRNA expression of the tight junction protein claudin-1. In 348 

addition, both the combined treatment with EOA and PRO and the individual EOA and PRO 349 

supplements significantly reduced putrescine levels in the hindgut. Further studies are recommended to 350 

better understand the actual mechanism of action of these changes in the gut of broiler chickens. 351 
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Table 1. Ingredient, calculated and analyzed nutrient composition of experimental diets1. 583 

Ingredient (%) Starter diet (d 0-10) Grower diet (d 11-24) Finisher diet (d 25-35) 

Corn, 7.9% CP 30.30 26.85 25.40 

Wheat, 13% CP 20.00 25.00 30.00 

Soybean meal, 48.5% CP 29.60 24.72 17.87 

Corn DDGS, 27% CP2 10.00 12.50 15.00 

Soybean oil 4.44 5.83 6.85 

Mono-dicalcium phosphate 1.74 1.50 1.25 

Limestone 1.29 1.19 1.13 

Pellet binder3 0.30 0.30 0.30 

Salt 0.07 0.08 0.06 

Broiler vit/min premix 4 0.20 0.20 0.20 

DL-Methionine 0.34 0.29 0.27 

L-Lysine HCl 0.44 0.42 0.47 

L-Threonine 0.19 0.16 0.16 

Sodium bicarbonate 0.36 0.32 0.33 

Choline Chloride, 60% 0.38 0.36 0.35 

Cocidiostat (Cygo)5 0.05 0.05 0.05 

L-Isoleucine 0.10 0.07 0.09 

L-Arginine base, 98% 0.14 0.13 0.18 

L-Valine 0.06 0.03 0.04 

ME for poultry; Kcal/kg 3,000 3,100 3,200 

Crude protein; % 23.0 21.5 19.5 

Crude fat; % 7.17 8.61 9.74 

Crude fiber; % 3.48 3.14 3.03 

Digestible6 Lysine; % 1.47 1.34 1.22 

Digestible Methionine; % 0.68 0.62 0.57 

Digestible Methionine + Cysteine; % 1.07 0.99 0.91 

Digestible Tryptophane; % 0.23 0.21 0.18 

Digestible Isoleucine; % 0.86 0.78 0.71 

Digestible Threonine; % 0.86 0.77 0.69 

Digestible Valine; % 0.96 0.87 0.78 

Digestible Arginine; % 1.37 1.23 1.10 

Calcium; % 0.96 0.87 0.79 

Total Phosphorus; % 0.81 0.75 0.68 

Available Phosphorus; % 0.48 0.44 0.40 

Choline; mg/kg 1,700 1,600 1,550 

Sodium; % 0.16 0.16 0.16 

Analyzed nutrient    

GE; Kcal/kg 4,675 4,700 4,798 

Crude protein; % 21.3 19.7 17.7 

Crude fat; % 2.7 2.9 2.8 

Crude fiber; % 7.3 8.7 9.4 

Ash; % 5.8 5.3 4.8 

Calcium; % 1.0 1.0 0.9 

Phosphorus; % 0.8 0.8 0.7 

1 Experimental diet: 1) corn-soybean meal basal diet with wheat and corn distiller’s dried grain (WD); 2) WD + 584 
microencapsulated organic acids-essential oils blend at 300 mg/kg (EOA); 3) WD + protease at 125 mg/kg (PRO); 4) WD + 585 
microencapsulated organic acids-essential oils blend at 300 mg/kg + protease at 125 mg/kg (EOA+PRO).   586 
2 Corn distiller dried grain with soluble. 587 
3 Pellet binder from Pelex Dry, Bentoli, Inc., Elgin, IL. 588 
4 Broiler vit/min premix provided per kilograms of diet : vitamin A (all-trans retinol) 1,2000 IU; vitamin D3 (cholecalciferol) 589 
2,400 IU; vitamin E (dl-α-tocopherol) 60 mg; vitamin K 240 mg; vitamin B1 300 mg; vitamin B2 800 mg; vitamin B6 400 590 
mg; vitamin B12 2 mg; niacin 5000 mg; pantotenic 1500 mg; biotin 40 mg; folic 200 mg; Cu (copper sulfate) 1,500 mg; 591 
Fe(ferrous sulfate) 4000 mg; Mn (manganese sulfate) 10,000 mg; Zn (zinc sulfate)  10,000 mg; I (Iodide) 100 mg; Se 592 
(Selenate) 100 mg.  593 
5Cocidiostat from Cygro, Zoetis Inc., Parsippany, NJ. 594 
6Apparent ileal digestible amino acids  595 
 596 
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Table 2. Nucleotide sequences of primers for quantitative real-time PCR assay. 598 

Gene1 Primer sequences GenBank accession number 

Claudin-1 FP 5 -́AAGGTGTACGACTCGCTGCT-3  ́ NM_001013611.2 

 RP 5 -́CAGCAACAAACACACCAACC-3  ́  

ZO-1 FP 5 -́AAGTGGGAAGAATGCCAAAA-3  ́ XM_015278975.2 

 RP 5 -́GGTCCTTGGATCCCGTATCT-3  ́  

Occludin FP 5 -́ACGGCAAAGCCAACATCTAC-3  ́ NM_205128.1 

 RP 5 -́ATCCGCCACGTTCTTCAC-3  ́  

GAPDH FP 5 -́CAACCCCCAATGTCTCTGTT-3  ́ NM_204305.1 

 RP 5 -́TCAGCAGCAGCCTTCACTAC-3  ́  

TBP1 FP 5 -́GTCCACGGTGAATCTTGGTT-3  ́ NM_205103.1 

 RP 5 -́GCGCAGTAGTACGTGGTTCTC-3  ́  

1GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ZO-1, zona occludens 1; TBP, TATA-binding protein. FP, forward 599 
primer; RP, reverse primer. 600 
Source of primer: ZO-1, occludin, GADPH, and TBP [34], claudin-1 [35]. 601 
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Table 3. Growth performance (mean1) of broiler chickens fed a high wheat and corn DDGS diet2 supplemented with 603 
microencapsulated organic acids-essential oils blend and protease enzyme. 604 

Trait WD EOA PRO EOA+PRO Pooled SEM3 P-value 

Body weight gain (g/bird) 

d 1-7 174 172 174 172 2.12 0.236 

d 8-14 343 346 344 346 2.90 0.677 

d 15-28 1,186 1,187 1,198 1,203 6.43 0.675 

d 29-35 585 612 590 595 7.21 0.563 

d 1-35 2,286 2,303 2,308 2,317 8.59 0.721 

Feed intake (g/bird) 

d 1-7 178 177 176 175 1.68 0.152 

d 8-14 428 430 432 431 2.62 0.550 

d 15-28 1,769 1,778 1,765 1,784 5.74 0.399 

d 29-35 1,091 1,129 1,116 1,092 7.63 0.242 

d 1-35 3,474 3,487 3,500 3,481 9.07 0.868 

Feed conversion ratio (kg/kg) 

d 1-7 1.022 1.026 1.017 1.022 0.142 0.766 

d 8-14 1.254ab 1.238ab 1.257a 1.235b 0.1397 0.007 

d 15-28 1.487 1.496 1.483 1.492 0.1797 0.697 

d 29-35 1.824 1.853 1.896 1.842 0.3306 0.366 

d 1-35 1.529a 1.515ab 1.517ab 1.499b 0.1643 0.037 

Mortality (%) 

d 1-7 0.00 0.00 0.00 0.00 0.000 - 

d 8-14 0.29 0.00 0.29 0.30 0.572 0.801 

d 15-28 0.00 0.30 0.31 0.00 0.5169 0.576 

d 29-35 0.00 0.00 0.00 0.61 0.5016 0.103 

d 1-35 0.29 0.29 0.57 0.86 0.7065 0.676 

 a,b,c Within a row, means with different superscripts differ significantly (P < 0.05).  605 
1Each value represents the mean of 14 replicates.  606 
2Dietary treatments: WD = corn-soybean meal basal diet with wheat and corn distiller’s dried grain; EOA = WD + 607 
microencapsulated organic acids-essential oils blend at 300 mg/kg; PRO = WD + protease at 125 mg/kg; and 608 
EOA+PRO = WD + microencapsulated organic acids-essential oils blend at 300 mg/kg + protease at 125 mg/kg.   609 
3 Pooled standard error of mean (n = 56). 610 
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Table 4. Growth performance (mean1) of broiler chickens fed a high wheat and corn DDGS diet2 supplemented with 612 
microencapsulated organic acids-essential oils blend and protease enzyme. 613 

Trait WD EOA PRO EOA+PRO Pooled SEM3 P-value 

Day 14       

  Villus height, µm 572 542 600 545 40.29 0.159 

  Villus width, µm 103 92 110 107 11.01 0.123 

  Crypt depth, µm 110 107 116 110 11.05 0.722 

  VH/CD4 5.1 5.2 5.3 5.2 0.57 0.965 

Day 35       

  Villus height, µm 683.00 727.47 746.77 734.74 46.22 0.239 

  Villus width, µm 85.08 95.99 106.19 84.86 14.21 0.117 

  Crypt depth, µm 115.93a 125.03a 120.71a 93.68b 13.54 0.009 

  VH/CD4 5.88b 6.03b 6.38b 7.90a 0.55 <0.001 

1Each value represents the mean of 14 replicates.  614 
a,b Within a row, means with different superscripts differ significantly (P < 0.05).  615 
2Dietary treatments: WD = corn-soybean meal basal diet with wheat and corn distiller’s dried grain; EOA = WD + 616 
microencapsulated organic acids-essential oils blend at 300 mg/kg; PRO = WD + protease at 125 mg/kg; and EOA+PRO 617 
= WD + microencapsulated organic acids-essential oils blend at 300 mg/kg + protease at 125 mg/kg.  618 
3 Pooled standard error of mean (n = 56). 619 
4 Villus height per crypt depth ratio. 620 
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Table 5. Microbial metabolite (mean1) in cecal content of broiler chickens fed a high wheat and corn DDGS diet2 supplemented 622 
with microencapsulated organic acids-essential oils blend and protease enzyme at 35 days of age. 623 

Trait WD EOA PRO EOA+PRO Pooled SEM3 P-value 

Ammonia  

(mg/g wet content) 

6.67 6.86 6.86 6.62 0.72 0.966 

Biogenic amine (µg/g wet content)     

   Putrescine 84a 33b 34b 31b 26 0.013 

   Cadaverine 1576 1302 1203 1180 240 0.087 

Volatile fatty acid (mmol/g wet content) 

   Acetic acid 69.15 73.77 69.55 78.93 12.36 0.646 

   Propionic acid 4.07 4.5 4.25 3.78 0.92 0.713 

   Butyric acid 4.32 4.08 4.17 4.42 1.3 0.983 

1Each value represents the mean of 14 replicates except volatile fatty acid represents 11 replicates. 624 
 a,b Within a column, means with different superscripts differ significantly (P < 0.05).   625 
2Dietary treatments: WD = corn-soybean meal basal diet with wheat and corn distiller’s dried grain; EOA = WD + 626 
microencapsulated organic acids-essential oils blend at 300 mg/kg; PRO = WD + protease at 125 mg/kg; and 627 
EOA+PRO = WD + microencapsulated organic acids-essential oils blend at 300 mg/kg + protease at 125 mg/kg. 628 
3 Pooled standard error of mean (n = 56). 629 
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Caption 631 

 632 

Figure 1. Zona occludens-1 (ZO-1) (A), Claudin (B) and Occludin (C) mRNA relative expression in jejunum 633 

mucosa of broiler chickens fed a high wheat and corn DDGS diet supplemented with microencapsulated organic 634 

acids-essential oils blend and protease enzyme at 14 days of age. Each value represents the mean of 14 replicates 635 

± SEM (n=14), and different letters denote significant P values > 0.05 and < 0.10. Dietary treatments: WD = corn-636 

soybean meal basal diet with wheat and corn distiller’s dried grain; EOA = WD + microencapsulated organic 637 

acids-essential oils blend at 300 mg/kg; PRO = WD + protease at 125 mg/kg; and EOA+PRO = WD + 638 

microencapsulated organic acids-essential oils blend at 300 mg/kg + protease at 125 mg/kg. 639 
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 641 

Figure 2. Zona occludens-1 (ZO-1) (A), Claudin (B) and Occludin (C) mRNA relative expression in jejunum mucosa of broiler 642 

chickens fed a high wheat and corn DDGS diet supplemented with microencapsulated organic acids-essential oils blend and 643 

protease enzyme at 35 days of age. Each value represents the mean of 14 replicates ± SEM (n=14), and different letters denote 644 

significant difference (P<0.05). Dietary treatments: WD = corn-soybean meal basal diet with wheat and corn distiller’s dried 645 

grain; EOA = WD + microencapsulated organic acids-essential oils blend at 300 mg/kg; PRO = WD + protease at 125 mg/kg; 646 

and EOA+PRO = WD + microencapsulated organic acids-essential oils blend at 300 mg/kg + protease at 125 mg/kg. 647 
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