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Abstract  8 

This study was conducted to measure the seasonal concentrations of particulate matter (PM) and 9 

ammonia (NH3) emissions in laying hens performed according to the VERA Test Protocol and to 10 

calculate corresponding emission factors. During the winter and summer, the concentration of emitted 11 

PM10 was high at 391.6 μg/m3 and low at 223.7 μg/m3, respectively, whereas that of PM2.5 was high at 12 

50.4 μg/m3 and 62.8 μg/m3 in the winter and spring, respectively. Furthermore, the concentration of 13 

emitted NH3 was high at 9.33 and 8.37 ppm during winter and spring, respectively. The annual average 14 

emission concentrations for PM10 and PM2.5 were 323.5 and 49.6 5 μg/m3, respectively, whereas that for 15 

NH3 was 5.75 ppm. The emission factors of PM10 and PM2.5 were highest in summer and lowest in winter; 16 

and those in fall were higher than those in spring. Similarly, the highest and lowest NH3 emission factor 17 

values were recorded in the summer and winter, respectively. The annual emission factors of PM10, 18 

PM2.5, and NH3 were 0.027, 0.0045, and 0.383 kg/head/year, respectively. Our finding in this study 19 

highlight the importance of monitoring for the effective management of PM and NH3 emissions that 20 

occur over short time periods and indicate that the ventilation volume should also be considered on a 21 

seasonal basis. 22 

Keywords: Laying hens, Particulate matter, Ammonia, Seasonal variability, Ventilation 23 
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INTRODUCTION 25 

The atmospheric pollutants produced in poultry houses, notably carbon dioxide, ammonia (NH3), methane 26 

(CH4), hydrogen sulfide (H2S), nitrous oxide (NO), and particulate matter (PM), pose a hazard to the health of 27 

both chickens and farm workers. Airborne contaminants are predominantly generated from chicken bodies 28 

(feathers and skin dander), feed particles, litter, and feces, the concentrations of which are significantly influenced 29 

by environmental factors, including chicken activity, rearing conditions, litter moisture content, and humidity [1]. 30 

PM is an important class of air pollutant generated in poultry houses, which contributes to increases in 31 

atmospheric pollution when released into the external environment. Particles generated in poultry houses are 32 

potentially harmful to the respiratory health of both chickens and workers, particularly PM2.5, which has a fine 33 

particle size and can penetrate the lung alveoli after entering the respiratory tract [2,3]. Additionally, elevated 34 

concentrations of PM10 may contribute to increasing the risk of chronic bronchitis, asthma-like symptoms, 35 

cardiovascular diseases, and lung disease [4,5]. In addition to PM, NH3, produced via feces and the microbial 36 

composition of uric acid, is a major cause of air pollution in poultry houses associated with damage to the 37 

respiratory system, eyes, sinuses, and skin [6,7]. The NH3 generated in livestock houses can thus have a 38 

detrimental impact on the productivity and welfare of poultry [8,9], with daily weight gain and feed efficiency 39 

reductions being observed when NH3 levels exceed concentrations of 25 ppm [10,11]. 40 

The Clean Air Policy Support System (CAPSS) of the National Institute of Environmental Research (NIER) in 41 

Korea recommends a method for calculating emissions that uses the emission factors of nine pollutants, including 42 

NH3 [12]. However, the emission coefficient for the livestock sector presented in CAPSS is limited to the 43 

“excrement management” item alone. Calculating NH3 emissions from cattle and pigs requires the emission 44 

factors developed in Korea [12,13]. However, the calculation of the emission factors for other livestock species is 45 

based on the data obtained from EMEP/CORINAIR in Europe or the Environmental Protection Agency (EPA) in 46 

the US. Consequently, in Korea, additional research is required to calculate emission factors suitable for domestic 47 

chicken farming environments. In this regard, Jang et al. [12] and Kang et al. [13] have described measurement 48 

methods based on the VERA Test Protocol [14] to estimate PM and NH₃ emission factors from livestock facilities. 49 

The VERA Test Protocol, developed in the Netherlands, Germany, and Denmark, provides guidelines for 50 

estimating emission factors from livestock farms and ancillary facilities, which includes selection criteria for 51 

experimental facilities, measurement methods for each pollutant, and emission factor calculation formula [12]. 52 

With respect to PM, two methods are outlined for measuring concentrations, namely, the gravimetric method and 53 
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the light-scattering method, the latter of which is an indirect measurement technique. The VERA Test Protocol 54 

designates the gravimetric method as the primary experimental approach, and also details precautionary measures 55 

that should be adopted when using light-scattering equipment. 56 

The concentration of PM and NH3 within rearing cages can be influenced by a range of factors, including 57 

temperature, relative humidity, ventilation, illumination, measurement method, season, and the age of birds [15]. 58 

Among these, ventilation is a major factor that influences not only the formation, concentration, emission, and 59 

distribution of PM and NH3 but also the breeding environment, such as the temperature and humidity of poultry 60 

houses, and sensory temperature of chickens.  61 

On most poultry farms, ventilation is the primary method used to control the temperature and humidity within 62 

indoor facilities, the use of which varies depending on the season, and, accordingly, the concentrations of PM and 63 

NH3 emitted from poultry houses also vary. In Korea, most of the laying hen farms have similar structures and 64 

facilities, but the ventilation volume depending on the rearing environment on each farm tends to differ, given that 65 

individual farm owners can adjust the environmental conditions by adjusting the ventilation rate or the stocking 66 

number of birds. Also, conventional ventilation methods can be utilized to control the temperature and humidity 67 

within cages, controlling the concentrations of harmful gases and PM generated in poultry houses tends to be 68 

more difficult. Consequently, for ideal and effective ventilation management, accurate measurement and analyses 69 

are necessary not only for temperature and humidity control but also for the emission of harmful gases and PM 70 

within poultry houses. Accordingly, in this study, we sought to measure the seasonal emissions of PM and NH3 71 

within a laying hen house in real-time and to calculate the corresponding emission factors for use as basic data to 72 

optimize automatic ventilation systems, and thereby enhance the quality of air within the poultry house 73 

environment. 74 

 75 

MATERIALS AND METHODS 76 

Birds and housing 77 

For the purpose of the present study, we measured PM and NH3 emissions at laying hen houses of the Poultry 78 

Research Institute of the National Institute of Animal Science, Pyeongchang, Korea, in accordance with the 79 

standards presented in the VERA Test Protocol [15]. The poultry house (Length × Width × Height: 75 m × 14 m 80 

× 7 m) was windowless, with air circulation being facilitated using a tunnel ventilation system, and housed 13,500 81 

Hy-Line Brown laying hens. Fourteen exhaust fans (1.4 m × 1.4 m) were installed on the ends wall of the house 82 
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and inlets were installed on the side walls. Laying hen cages had four tiers and were equipped with automatic 83 

feeders, nipple drinkers, and a conveyor belt for the removal of manure under each tier. The poultry house was lit 84 

using light-emitting diode bulbs, which were turned on and off at 04:00 and 21:00, respectively, thereby providing 85 

illumination for 17 h. Feed was provided via an automatic feeder at 10:00 and 18:00 h. Other management 86 

practices were consistent with the established management guidelines of the Korean Feeding Standard [16]. 87 

Measurement of PM and NH3 88 

The concentrations of emitted PM and NH3 were measured based on the criteria presented in the VERA Test 89 

Protocol [14]. PM (PM10 and PM2.5) was measured using a GRIMM Environmental Dust Counter (Model: 90 

EDM164; GRIMM Aerosol Technik Co., Germany), and NH3 concentrations were measured using an NH3 meter 91 

(MULTIRAE; RAE Systems Inc., USA) (Figure 1). Monitoring was performed over a 1-year period from 92 

September 2021 to August 2022. During this time, measurements were taken once monthly, with each monthly 93 

session consisting of 24 hours of data collection over three consecutive days at five-minute intervals. 94 

Measurements were performed at two locations within the house, each 1.5 m from the inlets and ventilation fans 95 

(Figure 2).  96 

Calculation and data processing 97 

The date for PM and NH3 emission factors presented in this study were calculated using the following formula 98 

presented in the VERA Test Protocol [14] and expressed as the emission values of one laying hen per year. 99 

Emission factors (g/head/year) =  

Emission concentrations (μg/m3) × Ventilation volume (m3/s) 

Number of birds × 365 days 

Seasonal average values and emission coefficients of PM (PM10 and PM2.5) and NH3 emission concentrations 100 

and emission factors were calculated and are presented in tables. The annual variations in these values, based on 101 

the average values of the emission concentrations measured for each month, are presented graphically. 102 

Statistical analysis 103 

All data was analyzed using the General Linear Model (GLM) procedure of SAS software (version 9.4, SAS 104 

Institute). Duncan’s multiple range test was used to determine significant differences among seasons. Differences 105 

were considered statistically significant at p < 0.05. 106 

 107 

RESULTS AND DISCUSSION 108 
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Changes in particulate matter and ammonia emission concentrations 109 

Seasonal changes in the concentrations of PM (PM10 and PM2.5) and NH3 emission are shown in Table 2. PM10 110 

was emitted at high levels in winter (391.6 μg/m3) and low levels in summer (223.7 μg/m3) (p < 0.05). The 111 

concentrations of emitted PM2.5 were high in winter (50.4 μg/m3) and spring (62.8 μg/m3) (p < 0.05). Similar to 112 

PM2.5, we recorded high and low concentrations of NH3 emitted in winter and spring at 9.33 and 8.37 ppm, 113 

respectively (p < 0.05). In terms of annual average emissions, we recorded concentrations of 323.5 μg/m3, 49.6 5 114 

μg/m3, and 5.75 ppm for PM10, PM2.5, and NH3, respectively. 115 

The monthly changes in the concentrations of PM and NH3 emitted over the year are shown in Figure 3, which 116 

indicated reductions in the concentrations of PM10 emitted in December, March, June, and September, whereas 117 

the concentrations of emitted PM2.5 were found to be high from December to May. Following the observed 118 

reduction in NH3 emissions in December, we recorded a subsequent increase from December to February, which 119 

was followed by a further reduction in March. 120 

The VERA Test Protocol [14] stipulates the conditions for housing and measurement methods used for 121 

calculating internationally standardized emission factors, among which is a recommended 2-monthly 122 

measurement cycle. However, in countries such as Korea with four distinct seasons, it is essential to obtain 123 

measurement data for each season, given the notable seasonal variation in the poultry environment. However, 124 

although previous studies conducted in different countries have adopted diverse measurement approaches, few 125 

have performed seasonally-based measurements. In addition, most of the studies conducted to date have tended 126 

to focus on emission factors rather than emission concentrations. In this study, we obtained monthly measurements 127 

to accurately calculate PM and NH3 emission concentrations in Korea, and accordingly assessed the results on a 128 

seasonal basis. The observed reductions in the concentrations of PM10 emitted in December, March, June, and 129 

September are believed to reflect seasonal changes and the corresponding changes in ventilation. However, PM2.5 130 

is not only released directly from the emission source but is also generated in the form of ammonium sulfate and 131 

ammonium nitrate via through chemical reactions of sulfur oxides, nitrogen compounds, and volatile organic 132 

substances with NH3 or ozone [17]. Consequently, we might expect PM2.5 and NH3 to show emission patterns that 133 

differ from those of PM10. 134 

It has been established that the concentrations of PM and NH3 are influenced by the ventilation system (flow 135 

or ventilation rate) within poultry houses [18-20]. For example, Li et al. [18] have shown that in response to an 136 
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increase in the rate of ventilation, there is a corresponding reduction in the concentrations of PM10 emitted, and 137 

vice versa, whereas Prodanov et al. [19] observed reductions in the concentration of emitted NH3 at the lowest 138 

ventilation rate they assessed (0.03 m/s), with the highest emission concentration of 8.50 ppm being recorded. 139 

Furthermore, Shen et al. [20] have reported a negative correlation between ventilation and the concentration of 140 

PM and NH3 emitted, which is consistent with our findings in this study indicating a negative association between 141 

the ventilation volume and emission concentrations (PM10, PM2.5, and NH3). 142 

We speculate that our observation of increases in the concentration of PM2.5 or NH3 emitted during winter and 143 

spring can be attributed to the fact that gases are insufficiently dispersed owing to the minimal rates of ventilation 144 

in winter and tend to accumulate within the poultry house, subsequently collecting in the vicinity of ventilation 145 

fans as ventilation increases in spring. In addition, we found that for both PM2.5 and NH3, emission concentrations 146 

tended to be high in winter and spring, which we speculate can be ascribed to the fact that PM2.5 is a precursor of 147 

NH3, as reported by Shin et al. [17]. However, Hong et al. [1] have reported a lack of correlation between the 148 

concentrations of simultaneously generated NH3 and PM2.5, as it is assumed more time is required for the 149 

conversion of PM2.5 to NH3 within poultry houses. 150 

The average annual concentration of emitted PM10 recorded in this study was 323.5 μg/m3, which is lower than 151 

the 590 μg/m3 value reported by Zhao et al. [21]. In contrast, PM2.5 and NH3 concentrations of 49.6 μg/m3 and 152 

5.75 ppm, respectively, recorded in the present study are higher than the corresponding values obtained by Zhao 153 

et al. [21] (35μg/m3 and 4.0 ppm). These disparate findings are believed to reflect differences in the facilities and 154 

environment of the poultry houses in which emission concentrations were measured. In this regard, accurate 155 

comparisons of emission concentrations between cages can be made based on considerations of the number of 156 

birds raised and the ventilation volume in poultry houses. 157 

Changes in particulate matter and ammonia emission factors 158 

Table 3 shows the seasonal changes in PM and NH3 emission factors. In contrast to the emission concentration, 159 

the emission coefficients of PM10 and PM2.5 were found to be highest in summer and lowest in winter, and those 160 

in fall were higher than those in spring (p < 0.05). Similarly, we obtained high and low NH3 emission factors in 161 

summer and winter, respectively, although in contrast to PM (PM10, PM2.5), the emission coefficient in spring was 162 

higher than that in fall (p < 0.05). The annual emission factors obtained for PM10, PM2.5, and NH3 were 0.027, 163 

0.0045, and 0.383 kg/head/year, respectively. 164 
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Changes in PM and NH3 emission factors measured over a 1-year period are shown in Figure 4. The emission 165 

factors of PM10 and PM2.5 were found to be characterized by patterns similar to that of the ventilation volume, 166 

with a notable increase in the emission factors occurring in summer in response to an increase in the ventilation 167 

volume. Moreover, we detected an increase in the emission factor of NH3 in spring, whereas during the other 168 

seasons, the patterns of change were found to be similar to the emission factors for PM. 169 

According to CAPSS of the Ministry of Environment, 78.7% of Korean domestic NH3 emissions originate from 170 

agriculture, of which 91.8% is associated with “manure management” in the livestock sector [22]. For cattle and 171 

pigs, the emission factors for hazardous substances are based on emission factors developed in Korea. However, 172 

in contrast to emission estimates based on the European EMEP/CORINAIR or U.S. EPA, the emission factors 173 

obtained for PM and NH3 in Korea cannot be assessed by dividing these into categories such as waste generation, 174 

storage, and treatment when calculating emissions [23]. In addition, given that the PM and NH3 emission 175 

coefficients of poultry farms have rarely been measured in Korea, data from the US EPA [24] and 176 

EMEP/CORINAIR [25,26] are used for calculating the PM and NH3 emission coefficients of poultry farms in this 177 

country [23]. Consequently, related research and an accumulation of empirical data are required to facilitate 178 

calculations of emission factors in a context specific to the environment and conditions of domestic poultry farms. 179 

In contrast to Korea, numerous studies have been conducted on the concentrations of emitted PM and NH3 in 180 

other countries [18,19,21,27-29]. However, on the basis of the emission factor calculation formula for PM and 181 

NH3 specified by the VERA Test Protocol [14], a positive correlation with ventilation has been observed [14]. In 182 

Korea, ventilation is used to control temperature and humidity of poultry house environments, and hence the 183 

volume of ventilation will differ depending on the season. Consequently, emission factors will tend to be 184 

characterized by seasonal variation. In addition, changes in the pattern of emission factors have been found to 185 

correspond to changes in ventilation volume. However, when viewed on a single year basis, the values of emission 186 

factors obtained for PM and NH3 in this study were found to be higher than the data presented in the NIER [30] 187 

and similar to that in the US EPA [31]. 188 

 189 

CONCLUSION 190 

Our findings in this study highlight the importance of real-time measurements for the effective management of 191 

PM and NH₃ emissions that occur over short time periods. Additionally, to enable accurate calculations of 192 
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emission factors, measurements should be made continuously for more than one year. The concentrations of PM 193 

and NH₃ generated in poultry houses vary depending on factors such as chicken activity, worker access, 194 

measurement methods, and ventilation. In Korea, the ventilation systems of poultry houses are primarily 195 

controlled by temperature and humidity, with few instances where air pollutants are considered in the ventilation 196 

process. Recently, with the growing interest in smart livestock farming, ventilation systems have become 197 

increasingly automated. For such automated systems to optimally manage poultry house environments, the 198 

selection of appropriate ventilation volume should be based on a comprehensive consideration of various 199 

environmental factors. As demonstrated in this study, real-time measurements of PM and NH₃ emission 200 

concentrations can serve as reference data for determining the optimal ventilation system for managing the internal 201 

environment of poultry houses. 202 
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Table 1. Environmental conditions of laying hen house where the PM and NH3 emissions were measured. 284 

 Autumn 

(Sep.~ Nov., 2021) 

Winter 

(Dec. 2021 

~ Feb., 2022) 

Spring 

(Mar. ~ May, 

2022) 

Summer 

(Jun. ~ Jul. 2022) 

Temperature (℃)     

- Maximum 18.9 16.3 19.3 22.0 

 - Minimum 17.6 14.8 15.7 20.6 

 - Average 18.3 15.4 17.5 21.3 

Humidity (%)     

- Maximum 25.0 25.3 25.0 84.0 

 - Minimum 14.0 16.3 25.0 60.0 

 - Average 19.5 20.8 25.0 72.0 

Ventilation (cfm)     

- First 17,733 12,666 12,666 121.600 

 - Second 17,733 7,600 12,666 121,600 

 - Third 17,733 7,066 20,266 121,600 

  285 
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Table 2. Seasonal and annual measurements of PM and NH3 emission concentrations. 286 

Seasons PM10 (μg/m3) PM2.5 (μg/m3) NH3 (ppm) 

Autumn (Sep. ~ Nov., 2021) 332.1b 47.6b 3.79ab 

Winter (Dec., 2021 ~ Feb., 2022) 391.6a 50.4b 9.33a 

Spring (Mar. ~ May, 2022) 346.4b 62.8a 8.37a 

Summer (Jun. ~ Jul., 2022) 223.7c 37.5c 1.50b 

SEM1 81.09 6.96 4.21 

P-Value <0.05 <0.05 <0.05 

Year (Sep., 2021 ~ Aug., 2022) 323.5 49.6 5.75 

1 SEM, standard error of means (n=6,048). 287 

a,b Means in same rows with different superscripts are significantly different (p<0.05). 288 

  289 
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Table 3. Seasonal and annual measurements of PM and NH3 emission factors (kg/head/year). 290 

Seasons PM10  PM2.5  NH3  

Autumn (Sep. ~ Nov., 2021) 0.025b 0.0039b 0.208c 

Winter (Dec., 2021 ~ Feb., 2022) 0.006b 0.0011b 0.167c 

Spring (Mar. ~ May, 2022) 0.016b 0.0027b 0.490b 

Summer (Jun. ~ Jul., 2022) 0.062a 0.0103a 0.666a 

SEM1 0.1298 1.7409 0.0769 

P-Value <0.05 <0.05 <0.05 

Year (Sep., 2021 ~ Aug., 2022) 0.027 0.0045 0.383 

1 SEM, standard error of means (n=21). 291 

a,b Means in same rows with different superscripts are significantly different (p<0.05). 292 

 293 
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(a) (b) 

Figure 1. Photographs of measuring devices. (a) GRIMM Optical particle counter; (b) MultiRAE NH3 gas meter 295 
(yellow device). 296 
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Figure 2.  Schematic representation of the laying hen house layout with ventilation fans, air inlets, and sampling locations. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3. Changes in PM (PM10, PM2.5) and NH3 emission concentrations over a year. (a) PM10; (b) PM2.5; (c) 297 

NH3. 298 

  299 
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(a) 

 

(b) 

 

(c) 

 

Figure 4. Changes in PM (PM10, PM2.5) and NH3 emission factors over a year. (a) PM10; (b) PM2.5; (c) NH3 300 

 301 
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