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Abstract  8 

Through microbial fermentation, probiotics are essential for improving growth performance and gut health in broiler 9 

chickens. This study aimed to assess the effects of three additives on growth performance, cytokine levels, and cecal 10 

microbiota in broiler chickens. One-day-old Arbor Acres chicks (total 300) were randomized into four groups: (1) 11 

control: basal diet, (2) BS: Bacillus subtilis + basal diet, (3) EO: essential oil + basal diet, and (4) BV: Bacillus 12 

velezensis + basal diet. All chickens were fed and watered ad libitum throughout the experiment. Feed intake and 13 

body weight were measured weekly. On days 7 and 35, cecal contents of one bird per replicate, based on average 14 

body weight, were collected and analyzed for microbiota using 16S rRNA gene amplicon sequencing. The BS group 15 

exhibited enhanced growth performance, including increased final body weight, average daily gain, and reduced 16 

feed conversion ratio compared to that of the other groups. On day 7, the BS group exhibited a higher abundance of 17 

Eisenbergiella (8.24 %), and on day 35, there was an increased abundance of Firmicutes (99.63 %) and 18 

Lachnoclostridium (1.4 %). These results indicate that B. subtilis may be a promising probiotic for enhancing broiler 19 

health by modulating gut microbiota. 20 

Keywords: probiotics; broiler chickens; growth performance; gut microbiota; Bacillus subtilis 21 
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Introduction 24 

The gut is essential for nutrient absorption, and the development of the intestinal system can enhance nutrient 25 

absorption, growth performance, and animal health [1]. The poultry's digestive tract contains many microorganisms, 26 

commonly called microbiota. The gut microbiome regulates gut health. A balanced gut microbial population 27 

enhances feed digestibility and efficiency, thereby enhancing growth and feed conversion [2]. Various feed additives 28 

in poultry diets can affect the gut microbiome, with a few specifically used to modulate the gut microbiome [3]. 29 

For decades, antibiotics have been used in the poultry industry to improve production, growth, and health, thereby 30 

increasing economic benefits [4, 5]. Although antibiotics are crucial for combating bacterial infections, they can also 31 

have unintended consequences. For example, they can result in increased antibiotic resistance, food and egg 32 

contamination, and environmental pollution. Therefore, in 2006, the European Union banned non-therapeutic 33 

antibiotics for growth and production. Korea adopted a similar approach in 2011 [6]. Consequently, there is a need 34 

to develop alternatives to antibiotics, such as probiotics, to ensure the continued efficacy of antimicrobial agents. 35 

Probiotics are defined as living microorganisms that, when administrated in adequate amounts, confer a health 36 

benefit on the host and are widely used as feed additives in the poultry industry to improve health and welfare [7]. 37 

They offer numerous benefits, including stimulation of host intestinal microorganisms and immune modulation [8]. 38 

Recently, probiotics have gained popularity in the poultry industry as substitutes for antibiotics in nutritional 39 

supplements and feed additives [9]. These universal feed additives can be combined with other additives to improve 40 

the performance and health of poultry [10]. Their beneficial effects are observed directly in the gastrointestinal tract 41 

and indirectly through poultry immunomodulation [11]. Probiotic-fed flocks exhibit enhanced laying performance 42 

and egg quality, increased daily gain, and improved FCR [12,13]. Additionally, probiotics accelerate the maturation 43 

of gut microbiota in broiler chickens [14,15]. Therefore, probiotics have the potential to enhance the productivity 44 

and overall health of the poultry industry. 45 

Bifidobacteria, lactobacilli, and Saccharomyces boulardii are the most commonly used microorganisms in the 46 

production of probiotics. Probiotics are more effective in controlling microorganisms and less harmful to the 47 

environment compared to antibiotics. In poultry, probiotics can enhance growth performance and health by 48 

improving feed intake and efficiency, maintaining gut integrity, and promoting gut health [11]. Among these, 49 

Bacillus-based probiotics are particularly effective in enhancing health [16]. Bacillus spp. are used to improve 50 

production efficiency, boost the immune system, alter the intestinal environment, address metabolic and 51 

inflammatory problems, improve cholesterol profiles, and prevent or treat autoimmune diseases in broiler chickens 52 
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[17]. These strains support chickens' growth, digestion, and overall health, promoting a healthy gut [18]. Among 53 

them, B. subtilis has attracted significant attention in probiotic supplementation research due to its high resistance 54 

and survival in the hostile environment of the gastrointestinal tract [19]. Additionally, B. velezensis is known to 55 

facilitate plant growth by inhibiting plant pathogens, and its potential as a probiotic in animal feed has also been 56 

evaluated [20]. 57 

Essential oils (EOs) are volatile, aromatic compounds synthesized by plants with antimicrobial, antifungal, anti-58 

inflammatory, antioxidant, and antiviral properties [21,22]. Due to these characteristics, several studies have 59 

demonstrated their potential as alternatives to antibiotics [23,24]. In particular, essential oils have been shown to 60 

improve gut health, thereby enhancing growth performance and immune function in broilers [25,26] Additionally, 61 

the supplementation of EOs has been shown to enhance immune capacity and positively affect carcass 62 

characteristics in broilers. In this context, future studies should focus on identifying novel strategies to maintain 63 

animal health and well-being. Therefore, this study aimed to assess the effects of probiotic and EO supplementation 64 

on the growth performance and microbiome composition of broiler chickens. 65 

 66 

Materials and Methods 67 

Animal design and sampling  68 

All animal procedures were reviewed and approved by the National Institute of Animal Science (NIAS) Animal 69 

Use and Care Committee in Korea (NIAS-2021-0508). A total of 300 one-day-old broiler chicks (Arbor Acres, AA) 70 

were purchased from a commercial farm, sorted by sex (male), and weighed. Subsequently, the chicks were 71 

randomized into four experimental groups (1) control: basal diet, (2) BS: Bacillus subtilis (3 mg/kg) + basal diet, (3) 72 

EO: essential oil (3 mg/kg) + basal diet, and (4) BV: Bacillus velezensis (3 mg/kg) + basal diet. The oregostim used 73 

in the EO test is a natural oregano oil extract with antibacterial, antioxidant, and gut-regenerative properties. It was 74 

purchased from SOLTON (Seoul, Korea). Each group was housed in 12 replicate cages (1.5 m x 0.9 m x 0.5 m) 75 

containing 6 – 7 birds and were reared for 35 days. The chicks received starter, grower, and finisher diets at 1, 2 – 3, 76 

and 4 – 5 weeks, respectively. Throughout the experiment, all chickens were fed and watered ad libitum. The light 77 

period was 24 hours at 40 lux from 0 to 7 d, then 19 hours at 20 lux from 8 to 35 d. The experimental environment 78 

was controlled at 33 ± 1 °C and 50% relative humidity, then reduced by 2 ℃ each week to 24 °C. Room 79 

temperature was measured daily to ensure consistency. The temperature was manually monitored and controlled. 80 

Thermometers and manual ventilation were used. This method is labor-intensive but effective. The ventilation 81 
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system was activated to remove contaminated air and introduce fresh air. A low-power heater and humidifier were 82 

installed. The lighting system was put on a timer. Windows were insulated, and curtains were installed. On days 7 (n 83 

= 10) and 35 (n = 12), cecal contents were collected from one bird per replicate selected based on the average body 84 

weight for microbiome analysis. The control diet of the mesh type was based on maize and soybean meal (Table 1). 85 

Feed consumption and body weight per cage were measured weekly and weight gain and FCR were calculated for 86 

mortality. At 7 and 35 days of age, the chickens in the treatment groups were euthanized under carbon dioxide 87 

anesthesia. Blood was collected from the wing vein at 35 days. Cecal digesta were frozen in liquid nitrogen and 88 

stored at -80 °C. 89 

 90 

Hematology and cytokine analysis 91 

Blood samples were collected from wing vein into ethylenediaminetetraacetic acid (EDTA tubes; BD Vacutainer). 92 

Hematological parameters were assessed using a Mindray BC-5300 automated hematology analyzer (Mindray Co., 93 

Ltd., Shenzhen, China). The concentrations of pro-inflammatory cytokines, including interleukin 1 beta (IL-1β), IL-94 

6, and tumor necrosis factor-alpha (TNF-α), were measured using commercially available chicken enzyme-linked 95 

immunosorbent assay kits (EK780087, EK780053, and EK780062; AFG Scientific), following the manufacturer's 96 

protocol.  97 

 98 

DNA preparation and microbial community analysis 99 

DNA from cecal samples was extracted using the bead-beating plus column method with a QIAamp DNA kit 100 

(Qiagen, Hilden, Germany). The samples were prepared for PacBio instrument sequencing following the single-101 

molecule real-time (SMRT) bell template preparation guide. SMRTbell libraries were constructed by ligating 102 

hairpin adapters to double-stranded DNA ends, followed by annealing sequencing primers and polymerase to the 103 

library for SMRT sequencing using Sequel II Binding Kit 2.1 and Sequel II DNA Internal Control Complex 1.0 104 

(PacBio, USA). For bacterial 16S rRNA sequencing, primers 27F (5′- AGRGTTYGATYMTGGCTCAG -3') and 105 

1492R (5′- RGYTACCTTGTTACGACTT -3') were used to amplify the full-length variable regions of the gene, 106 

resulting in a single amplicon of approximately 1,400 base pairs (bp). Polymerase chain reaction (PCR) 107 

amplification involved 25 cycles of denaturation at 95 °C for 30 s, annealing at 57 °C for 30 s, and extension at 108 

72 °C for 30 s. After cleanup, eight additional cycles were performed to attach the adapters. Negative controls were 109 

included. 110 
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The resulting amplicons were sequenced by Macrogen (Seoul, Korea) on an Illumina MiSeq platform (Illumina, 111 

San Diego, CA, USA) as previously described. We assessed the size of PCR-enriched fragments using an Agilent 112 

Technologies 2100 Bioanalyzer with a DNA 1000 chip. To ensure accurate data, we optimized cluster density in our 113 

prepared libraries using qPCR, following the Illumina guidelines. DADA2 (v1.20.0) was used to process Illumina 114 

sequences. First, primer sequences were removed and reads were trimmed based on length. Those with >5 expected 115 

errors were removed. The remaining reads were dereplicated and analyzed for sequencing errors using loessErrfun. 116 

True sequence variants were inferred, and forward and reverse reads were merged to obtain complete denoised 117 

sequences. Chimeric amplicon sequence variants (ASVs) were identified and removed. The remaining reads were 118 

annotated using the Silva v.138.1 database. 119 

Pacific Bioscience data were demultiplexed, and consensus circular sequences (CCS) were generated using the 120 

SMRT-Link analysis software (version 9). A mean of 19 high-fidelity passes were used. Subsequently, the obtained 121 

CCS underwent quality checks using the DADA2 R Statistics package (v1.20.0). Chimeric ASVs were removed, 122 

and the remaining reads were annotated using the naive Bayesian classifier from DADA2 against the Silva138.1 123 

database that comprises the species training set from the Silva138 database. An optimal match is designated only 124 

when the discrepancy between the initial and secondary optimal matches exceeds 2 %. The taxonomic annotations 125 

were subsequently used to generate contingency tables for each taxonomic rank. 126 

 127 

Statistical analysis 128 

Linear discriminant analysis (LDA) effect size (LEfSe) was used to analyze taxon profiles for differential 129 

abundance among the four treatment groups (LDA score > 3). Permutational multivariate analysis of variance 130 

(PERMANOVA) was used to compare beta diversity analysis and functional genetic profiles among the four 131 

treatment groups. Rarefaction curves, richness, and diversity analyses were performed using the minimum number 132 

of reads annotated at the ASV. Principal Coordinate Analysis (PCoA) was performed on Bray-Curtis distances to 133 

assess similarities between sample types and platforms. Analysis of variance was performed using PERMANOVA 134 

on distance matrices from the Vegan R package. Growth performance and blood analysis used two-way and one-135 

way analyses of variance, respectively, with a post-hoc Tukey's test. Significant differences (p < 0.05) were 136 

determined using Prism software (Ver 9.5.1). 137 

Results 138 

Growth performance in broiler chicken fed three different additives 139 
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Figure 1 illustrates probiotic treatment's effects on broiler chickens' growth performance. Initial body weights 140 

(40.0 ± 0.05 g) were similar among all dietary treatment groups. BW and ADG showed no significant difference 141 

among all groups for 7 days. However, the FCR exhibited an increase (p < 0.05) in all treatment groups compared to 142 

the control during the starter period (0 to 7 d). In the growing phase (8 to 21 d), the BW, ADG, and FCR were not 143 

significantly different in all diet groups. During the finishing phase (22 to 35 d), the final body weight of the BS 144 

group (1,947 ± 29.9 g) was significantly higher than that of the other groups, including the control (1,807 ± 24.4 g), 145 

EO (1,860 ± 46.6 g), and BV (1,821 ± 27.6 g) groups (p < 0.05). The BS group also had the highest ADG at the end 146 

of the study compared to the other groups (p < 0.05). The BS group had the lowest FCR compared to the other 147 

groups (p < 0.05). 148 

 149 

Serum biochemical analysis and cytokine levels of broiler chicken fed three different additives 150 

Figure 2 illustrates the effects of probiotic treatment on the hematological and cytokine parameters of broiler 151 

chickens at 35 days. Cytokine parameters (TNF-α, IL-1B, and IL-6) were not significantly different among the 152 

probiotic-treated groups (Figure 2A). Additionally, hematological parameters, including WBC, RBC, hemoglobin, 153 

mean corpuscular volume, and platelet counts, exhibited no significant differences among the probiotic-treated 154 

groups (Figure 2B). 155 

 156 

Cecal microbiota composition of broiler chicken supplemented three different additives 157 

Alpha diversity of the cecal microbiota was assessed using the observed and the Chao 1 indices to analyze the 158 

effects of age and the four dietary treatments. Additionally, beta diversity was analyzed using PCoA with the Bray–159 

Curtis index to assess differences in the microbial community composition. No significant differences in alpha or 160 

beta diversity were observed between the three probiotic treatments. However, the observed and Chao 1 indices 161 

were significantly higher in 35-day-old broiler chickens than that in the 7-day-old broiler chickens (p < 0.001; 162 

Figure 3A and B). PCoA-based beta diversity analysis using the Bray–Curtis index indicated a distinct separation 163 

between the microbial communities of 7-and 35-day-old broiler chickens (p < 0.001; Figure 3C). 164 

 165 

Cecal microbiota composition of broiler chickens supplemented with B. subtills 166 

Figure 7 illustrates the alpha diversity analysis using the observed and Chao1 indices and beta diversity analysis 167 

using PCoA with the Bray–Curtis index in the BS group. The observed and Chao1 indices were significantly higher 168 
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in 35-day-old broiler chickens than that in 7-day-old broiler chickens (p < 0.001; Figure 7A and B). The Bray–169 

Curtis index indicated a distinct separation between the microbial communities of 7- and 35-day-old broiler chickens 170 

(p < 0.001; Figure 7C). 171 

Figure 8 illustrates the taxonomic bar plots for the BS group in 7- and 35-day-old broiler chickens, demonstrating 172 

their mean relative abundance. At the phylum level, Firmicutes were dominant in both 7- (97.75 %) and 35-day-old 173 

(99.63 %) broiler chickens (Figure 8A). At the genus level, Eisenbergiella (8.24 %), Ruminococcus torques group 174 

(X), and Butyricicoccus (6.38 %) were dominant on day 7, and Faecalibacterium (13.98 %), Clostridia_UCG_014 175 

(X), and Lactobacillus (7.84 %) were dominant on day 35. In the BS group, LEfSe analysis demonstrated that 7-176 

day-old broiler chickens exhibited a relative abundance of Proteobacteria at the phylum level, whereas 35-day-old 177 

broiler chickens exhibited a relative abundance of Firmicutes and Cyanobacteria (Figure 9A). At the genus level, 7-178 

day-old broiler chickens were relatively abundant in Eisenbergiella, Butyricicoccus, Escherichia–Shigella, 179 

Enterococcus, Erysipelatoclostridium, Oscillibacter, Lachnoclostridium, Anaerotruncus, Anaeroplasma, and 180 

Tyzzerella, whereas 35-day-old broiler chickens were relatively abundant in Faecalibacterium, Lactobacillus, 181 

Romboutsia, Blautia, Fusicatenibacter, Ruminococcus, Gastranaerophilales, and Anaerostipes (Figure 9B). 182 

 183 

Discussion 184 

In this study, no significant differences in growth performance were observed among dietary treatments on day 7 185 

post-hatching, except for FCR. Consistent with our findings, several studies have also failed to demonstrate 186 

significant effects of supplementing B. subtilis, essential oils, and B. velezensis on growth performance at day 7 187 

post-hatching [27-29]. Nevertheless, B. subtilis supplementation significantly enhanced weight gain and feed 188 

efficiency at the finisher phase, contributing to the improved growth performance in broilers. Molnár et al. [30] 189 

observed that providing 7.27 × 10⁹ colony-forming units (CFU)/g of B. subtilis-supplemented diets increased body 190 

weight and feed conversion ratio (FCR) in broiler chickens from days 7 to 42 post-hatching. Additionally, Amerah 191 

et al. [31] demonstrated that supplementing 1.5 × 10⁸ CFU/kg of B. subtilis improved FCR in broiler chickens at 42 192 

days post-hatch. Consistent with previous studies, our findings highlight the positive effects of B. subtilis on growth 193 

performance. This enhancement when using B. subtilis as a probiotic supplement may result from its role in 194 

maintaining a beneficial balance in the intestinal microbiome by increasing the population of beneficial bacteria and 195 

inhibiting the growth of pathogenic bacteria [32,33].  196 
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However, in this study, supplementation with essential oils and B. velezensis did not significantly affect the growth 197 

performance of broiler chickens throughout the experimental period. Similarly, Jang et al. [34] supplemented 25 and 198 

50 mg/kg of essential oils in the diet but observed no significant difference in growth performance compared to the 199 

basal diet. In contrast, Khattak et al. [35] supplemented 100, 200, 300, 400, and 500 mg/kg of essential oils and 200 

found that all treatments improved growth performance compared to the control group after 10 days of age. In our 201 

study, 3 mg/kg of essential oil was added to the diet, which may explain the discrepancy in results due to the 202 

relatively low concentration. Tsai et al. [36] supplemented broiler chickens with 1.5 × 10⁹ CFU/mL of B. velezensis 203 

for 35 days but did not observe a significant improvement in growth performance. 204 

In contrast, Zhu La et al. [29] reported that broilers supplemented with 1 × 10⁹ CFU/mL of B. velezensis for 42 205 

days exhibited increased daily weight gain after 10 days of age and improved final body weight on day 42. Our 206 

study's lack of significant improvement in final body weight may be attributed to the shorter testing period, 7 days 207 

less than that of Zhu La et al. [29]. Several studies have also demonstrated that probiotics improve growth 208 

performance from 21 days of age and significantly improve body weight at 42 days [27]. Furthermore, this study 209 

was conducted under laboratory-scale conditions with a fully controlled environment and feeding regimen, which 210 

may have masked the growth-promoting effects of the additives. Jang et al. [34] suggested that dietary antibiotic 211 

replacements may fail to induce improvements in growth-related parameters under well-nourished and highly 212 

controlled conditions. Thus, the effects of probiotics on growth performance, feed conversion, and productivity in 213 

farm animals remain inconsistent under certain conditions, potentially rendering their use economically unviable in 214 

specific situations [37]. Consequently, further studies focusing on appropriate dosage and experimental duration are 215 

required to validate the efficacy of essential oils and B. velezensis on growth performance compared to previous 216 

studies. 217 

In general, adequate probiotic supplementation can enhance the intestinal mucosa, providing a major barrier 218 

against pathogens [38]. These effects may contribute to various aspects of the immune response, such as regulating 219 

cytokine production [39,40]. In this study, we assessed the cytokine-modulating ability of B. subtilis, essential oils, 220 

and B. velezensis supplementation in the diet of broiler chickens and observed no significant enhancement. 221 

Additionally, blood cell analysis revealed no effects of dietary treatments. Moreover, these additives do not 222 

significantly affect the hematology and cytokine regulation in broiler chickens [41]. In contrast to our results, 223 

cytokines, including TNF-α, IL-1β, and IL-6 were significantly upregulated by B. subtilis supplementation [42]. 224 

Moreover, essential oil supplementation increased cytokine levels, such as IL-1β and IFN-γ [43]. Furthermore, B. 225 
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velezensis regulates various cytokines, such as TNF-α, IL-1β, IL-6, and IL-10 in the blood of broiler chickens [38]. 226 

However, the studies above and our study differed in dosage, experimental period, and rearing environment 227 

(presence of litter, temperature). These differences may explain the controversial results in blood biochemical 228 

parameters [44,45]. Furthermore, in well-controlled experimental settings, reduced corticosterone levels in broilers 229 

can enhance humoral immunity by promoting the production of anti-inflammatory cytokines and immunoglobulins 230 

[46]. This may have mitigated the additive's effects on immunological parameters in this study. Therefore, further 231 

studies are required to clarify the efficacy of these additives on broiler chickens' immune regulation ability. 232 

The intestinal microbiota of broiler chickens develops throughout the gastrointestinal tract and plays a crucial role 233 

in maintaining health while also influencing productivity [47]. These beneficial microbes support gut health by 234 

aiding feed digestion, nutrient absorption, immune system development, and pathogenic bacterial growth inhibition 235 

[48,49]. In this study, no significant differences were observed in alpha or beta diversity in the cecal content 236 

between the control and treatment groups. Similar to our findings, previous studies have shown that supplementation 237 

with B. subtilis, essential oils, and B. velezensis did not significantly affect alpha diversity or beta diversity in broiler 238 

chickens [33, 50, 51]. The dynamic diversity of the gut microbiome is known to be influenced by diet and age. Still, 239 

age has been shown to have a more significant impact than feed additive supplementation [33, 52]. Indeed, the 240 

microbial diversity and community composition varied significantly between 7- and 35-day-old broiler chickens 241 

across all dietary treatments. Similar patterns were observed in the BS group. Microbial diversity increases with age 242 

and forms distinct clusters in the microbiota [48,53]. Our results demonstrated that Firmicutes was the most 243 

dominant phylum across all treatments, aligning with previous studies demonstrating that Firmicutes generally 244 

comprise the majority of the cecal microbiota for short-chain fatty acid production in broiler chickens [54,55]. At the 245 

genus level, the Ruminococcus torques group was dominant in 7-day-old broiler chickens, whereas 246 

Faecalibacterium was most abundant in 35-day-old broiler chickens. Similarly, at the genus level, the 247 

Ruminococcus torques group was dominant in 21-day-old broiler chickens, with Faecalibacterium becoming more 248 

prevalent in 39-day-old broiler chickens [56]. LEfSe analysis demonstrated differentially abundant taxa between the 249 

age groups. Host age affects the diversity and stability of microbiota. In broiler chickens, the gut microbiota is 250 

dynamic during the first few weeks of life, transitioning to a mature and stable state after 21 days of age [14,57]. In 251 

this study, Proteobacteria were relatively abundant in the early stages, and the abundance of Firmicutes increased 252 

with age, aligning with the previous studies [52,57,58]. At the genus level, Eisenbergiella, Butyricicoccus, and 253 

Escherichia–Shigella were relatively abundant at 7 days of age. Eisenbergiella and Butyricicoccus are significant 254 
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producers of butyric acid, an energy source for fast-growing broiler chickens [57,59]. Additionally, Escherichia–255 

Shigella is a rapidly colonizing microbial group that can dominate the gut of early broiler chickens [60]. However, 256 

Escherichia–Shigella can cause diseases, such as colibacillosis and shigellosis, highlighting the significance of an 257 

early hatching environment in preventing harmful microorganisms [60]. Faecalibacterium, which was most 258 

abundant at 35 days of age in our study, is known to dominate the mature microbiota after 21 days [55]. 259 

Additionally, this study included two feed transitions: from starter to grower feed, and subsequently to finisher feed. 260 

These dietary alterations have likely contributed to age-related shifts in the intestinal microbiota [56]. In summary, 261 

these findings indicate that the age of broiler chickens significantly affects the composition and diversity of their 262 

intestinal microbiota. 263 

Our findings demonstrated that B. subtilis supplementation increased the abundance of beneficial microorganisms 264 

in broiler chickens compared to other dietary treatments. On day 7, B. subtilis supplementation resulted in a relative 265 

dominance of Eisenbergiella. The abundance of Eisenbergiella was lower in the non-B. subtilis-treated group 266 

compared to that in the B. subtilis-treated group. Eisenbergiella plays a crucial role in producing butyric acid, which 267 

is the preferred energy source for intestinal epithelial cells [59]. Additionally, increasing the abundance of 268 

Eisenbergiella can improve feed efficiency and reduce FCR in broilers [61]. By day 35, B. subtilis supplementation, 269 

compared to other dietary treatments, increased the abundance of Firmicutes and Lachnoclostridium at the phylum 270 

and genus levels, respectively. Firmicutes are essential for growth that break down indigestible polysaccharides, 271 

facilitating nutrient absorption [62,63]. In this regard, the abundance of Firmicutes was shown to improve ADG and 272 

reduce FCR in broiler [64]. Lachnoclostridium can ferment dietary fiber by breaking down various indigestible 273 

polysaccharides and producing butyric and acetic acids [65]. Moreover, a previous study showed that the diet group 274 

enriched with Lachnoclostridium had improved ADG [64]. B. subtilis is known for maintaining the intestinal 275 

microbial ecosystem by enhancing mucosal immunity and regulating intestinal commensal microorganisms [66]. 276 

This may promote the growth performance broilers and may provide the basis for our study results showing 277 

improved body weight and FCR in BS group broilers. Therefore, our results demonstrate that B. subtilis 278 

supplementation modulates commensal microbiota and supports the findings of previous studies. 279 

Our study assessed the effects of three dietary treatments B. subtilis, essential oils, and B. velezensis on the growth 280 

performance, cytokine levels, and gut microbiome composition of broiler chickens over five-weeks. We observed 281 

that B. subtilis supplementation enhanced the growth performance of broiler chickens and increased the abundance 282 

of beneficial microorganisms throughout their life cycle. This highlights its potential as a promising probiotic to 283 
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enhance broiler health. Additionally, we observed age-related alterations in the gut microbiome composition, 284 

indicating the significance of growth and health management throughout the broiler life cycle. However, the study 285 

did not reveal any significant effects of the three dietary treatments on the immune regulatory ability of broiler 286 

chickens, which may be attributed to various complex factors. Therefore, further studies—considering various 287 

factors—are required to fully understand the effects of probiotics on the immune capacity of broiler chickens. 288 
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Table 1. Feed ingredients for broiler chickens at different growth periods 496 

 Starter Grower Finisher 

Ingredient    

Maize (%) 53.95 37.95 52.75 

Wheat grain (%) 0.00 20.00 15.00 

Soybean meal (%) 38.46 33.25 20.12 

Corn gluten meal (%) 0.00 0.00 5.45 

Soybean oil (%) 3.00 5.00 3.00 

Methionine (%) 0.19 0.46 0.39 

L-Lysine (%) 0.31 0.23 0.42 

L-Threonine (%) 0.00 0.10 0.11 

Mono-Dicalcium phosphate (%) 1.90 1.50 1.26 

Limestone (%) 1.44 0.76 0.75 

Salt (%) 0.25 0.25 0.25 

Vitamin premix* (%) 0.50 0.50 0.50 

Total (%) 100.00 100.00 100.00 

Calculated nutrient value    

Dry matter (%) 87.08 87.42 87.16 

Metabolizable energy (kcal/kg) 2886.68 3051.18 3101.88 

Crude protein (%) 22.00 21.51 19.50 

Crude fat (%) 5.68 7.39 5.74 

Crude fiber (%) 3.01 2.86 2.55 

Crude ash (%) 6.59 5.30 4.47 

* Vitamin premix (kg-1): vitamin A (6250000 IU), vitamin D3 (1000000 IU), vitamin E (15000 IU), vitamin K3 497 

(1000 mg), vitamin B1 (500 mg), vitamin B2 (2500 mg), vitamin B6 (2500 mg), vitamin B12 (10 mg), pantothenic 498 

acid (600 mg), nicotinic acid (15000 mg), folic acid (500 mg), biotin (35 mg), choline chloride (150000 mg), iron 499 

(20000 mg), copper (2500 mg), zinc (25000 mg), manganese (15000 mg), iodine (600 mg), cobalt (400 mg), and 500 

butylated hydroxytoluene (anti-oxidant, 125000 mg). 501 
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Figure 1. Growth performance of broiler chickens treated with additives, such as Bacillus subtilis, essential oils, and 505 

Bacillus velezensis for growth phases. Data are presented as the mean and standard error of the mean. (A) body 506 

weight. (B) Average daily gain. (C) Feed conversion ratio. Control, basal diet; BS, B. subtilis + basal diet; EO, 507 

essential oil + basal diet; and BV, B. velezensis + basal diet. Similar lowercase (e.g., a, b) letters indicate no 508 

significant differences, and different letters indicate significant differences (p < 0.05) using two-way analysis of 509 

variance (ANOVA) with post-hoc Tukey honest significant difference. Three phases: starter (0 to 7 d), grower (8 to 510 

21 d), finisher (22 to 35 d).  511 
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Figure 2. Cytokine levels and hematological analysis of broiler chickens treated with additives, such as Bacillus 517 

subtilis, essential oils, and Bacillus velezensis at 35 days. Data are presented as the mean and standard error of the 518 

mean (n = 48). (A) Tumor necrosis factor-alpha (TNF-α). (B) Interleukin-1 beta (IL-1β). (C) IL-6. Control, basal 519 

diet; BS, B. subtilis + basal diet; EO, essential oil + basal diet; BV, B. velezensis + basal diet; WBC, white blood 520 

cell; RBC, red blood cell; Hb, hemoglobin; and MCV, mean corpuscular volume. For statistical analysis, one-way 521 

analysis of variance (ANOVA) with post-hoc Tukey honest significant difference used to compare each group. 522 
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 525 

Figure 3. Alpha and beta diversity indices analyzed from the cecal contents of 7- and 35-day-old broiler chickens in 526 

all treatment groups. (A) Alpha-diversity index using observed index (p < 0.001). (B) Alpha-diversity index using 527 

Chao 1 index (p < 0.001). (C) Beta-diversity using principal coordinates analysis (PCoA) with the Bray–Curtis 528 

index (p < 0.001). 7 days, 7-day-old broilers in all groups; 35 days, 35-day-old broilers in all groups. 529 
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Figure 4. Profiles of cecal microbiota at (A) the phylum and (B) genus levels in broiler chickens supplemented with 535 

additives, such as Bacillus subtilis, essential oils, and Bacillus velezensis on 7 and 35 days. The relative abundance 536 

of major phyla in broiler chickens is illustrated. Genera representing < 0.5 % of all sequences across all 48 cecal 537 

samples are shown as “Others”. Control, basal diet; BS, B. subtilis + basal diet; EO, essential oil + basal diet; and 538 

BV, B. velezensis + basal diet. 539 
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Figure 5. Differentially abundant (A) phyla and (B) genera in 7- and 35-day-old broiler chickens. Linear 546 

discriminant analysis (LDA) effect size is used to analyze major phyla and genera that differ in abundance between 547 

age groups (LDA score > 4). 7 days, 7-day-old broilers in all groups; 35 days, 35-day-old broilers in all groups. 548 
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Figure 6. Differentially abundant (A) genera at day 7, (B) phyla at day 35, and (C) genera at day 35 in broiler 556 

chickens based on all probiotic treatments. Major phyla and genera that are differentially abundant among the four 557 

treatment groups are analyzed using the linear discriminant analysis (LDA) effect size (LEfSe) (LDA score > 4). 558 

Control, basal diet; BS, Bacillus subtilis + basal diet; EO, essential oil + basal diet; and BV, Bacillus velezensis + 559 

basal diet. 560 
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 563 

Figure 7. Alpha and beta diversity indices analyzed from the cecal contents of 7- and 35-day-old broiler chickens 564 

supplemented with Bacillus subtilis. (A) Alpha-diversity index using observed index (p < 0.001). (B) Alpha-565 

diversity index using Chao 1 index (p < 0.001). (C) Beta-diversity using principal coordinates analysis (PCoA) with 566 

the Bray–-Curtis index (p < 0.001). BS_.: 7-day-old broiler chickens from the group supplemented with B. subtilis 567 

and BS_35d: 35-day-old broiler chickens from the group supplemented with B. subtilis. 568 
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Figure 8. Profiles of cecal microbiota at the (A) phylum and (B) genus levels in broiler chickens treated with 574 

Bacillus subtilis on 7 and 35 days. The relative abundance of major phylum and genera in broiler chicken are 575 

illustrated. Genera accounting for < 0.5 % of all sequences across all 48 cecal samples are plotted as “Others”. BS_7 576 

days; 7-day-old broiler chickens from the group supplemented with B. subtilis and BS_35 days: 35-day-old broiler 577 

chickens from the group supplemented with B. subtilis. 578 
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Figure 9. Differentially abundant (A) phyla and (B) genera in 7- and 35-day-old broiler chickens supplemented with 583 

Bacillus subtilis. Major phyla and genera that are differentially abundant with variations between age groups are 584 

supplemented with B. subtilis group and analyzed using the linear discriminant analysis (LDA) effect size (LEfSe) 585 

(LDA score > 4). BS_7 d: 7-day-old broiler chickens from the group supplemented with B. subtilis and BS_35 d: 586 

35-day-old broiler chickens from the group supplemented with B. subtilis. 587 
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