JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Lipidomics-based analysis of the effects of different feeding regimes on the fatty acid composition in the <i>longissimus dorsi</i> muscle of Tibetan lamb
Running Title (within 10 words)	-
Author	He Ding, Xiaozhen Liu, Tana, Xiaoqing Zhang
Affiliation	Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
ORCID (for more information, please visit	He Ding (https://orcid.org/0000-0003-2245-3847)
https://orcid.org)	Xiaozhen Liu (https://orcid.org/0000-0003-4208-0961)
	Tana (https://orcid.org/0000-0003-4906-0103)
	Xiaoqing Zhang (https://orcid.org/0000-0002-3334-282X)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	The present study was supported by the Hohhot Science and
State funding sources (grants, funding sources,	Innovation Fund of the Chinese Academy of Agricultural Sciences
grant if available	(CAAS No CAAS-ASTIP-2024-IGR-XT06) and Central Public-
	interest Scientific Institution Basal Research Fund (No.
	1610332022011).
Acknowledgements	The authors thank the staff of the Mengde village cooperative in
	Gangba County for their technical support in slaughtering and
	preparing carcasses.
Availability of data and material	Upon reasonable request, the datasets of this study can be available
	from the corresponding author.
Authors' contributions	Conceptualization: He Ding.
Please specify the authors' role using this form.	Data curation: He Ding.
	Formal analysis: He Ding, Xiaozhen Liu.
	Methodology: He Ding, Xlaozhen Liu.
	Soliware. He Dilig.
	Investigation: He Ding
	Writing - original draft: He Ding.
	Writing - review & editing: Xiaoging Zhang, Xiaozhen Liu, Tana.
Ethics approval and consent to participate	In the present research, the Animal Ethics Committee of the Chinese
	Academy of Agricultural Sciences approved our animal welfare and
	experimental procedure (No. AEC-CAAS-1610332022011).
4	

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Xiaoqing Zhang
Email address – this is where your proofs will be sent	zhangxiaoqing@caas.cn
Secondary Email address	-
Address	Institute of Grassland Research, Chinese Academy of Agricultural Sciences, No. 120, Wulanchabu East Road, Saihan District, Hohhot 010010, China
Cell phone number	86 156 4810 8199

Office phone number	0471-4926884
Fax number	-
6	

8 (Unstructured) Abstract (up to 350 words)

9 Lamb meat is consumed in various cultures worldwide, with lipids contributing to different 10 attributes, including appearance, color, flavor, and tenderness. However, the impacts of various 11 feeding regimes on fatty acid (FA) composition within lamb meat are not well elucidated. Hence, this 12 study was aimed at elucidating the impacts of different feeding regimes—grazing (G), semi-grazing 13 (SG), and stall feeding (SF) systems—on FA composition in the longissimus dorsi muscle (LDM) of 14 Tibetan sheep by analyzing lipid profile and related pathways through untargeted lipidomics. Notably, 15 LDMs of lambs under G and SG systems exhibited higher beneficial n-3 polyunsaturated FAs 16 (PUFA) contents and more favorable n-6/n-3 and PUFA/saturated FA ratios than LDMs of lambs 17 under the SF system (p < 0.05). Furthermore, 16 lipids closely associated with significant FAs were further analyzed (p < 0.05). Notably, C18:3n3 and c9t11-conjugated linoleic acid showed positive 18 relation to ceramide (d18:1/25:0), and C20:5n3 positively correlated with phosphatidylcholine 19 20 (16:0/14:0), phosphatidylserine (18:0/22:6), and sphingomyelin (d18:1/18:0) (p < 0.05). According to 21 Kyoto Encyclopedia of Genes and Genomes analysis, n-3 essential FAs were closely linked to 22 sphingolipids, glycerophospholipids, linoleic acid, glycerolipids, and alpha-linolenic acid 23 metabolisms (p < 0.05). Altogether, the findings in this study highlight the metabolic mechanisms 24 underlying diet-mediated changes in the FA compositions of LDM and identify specific lipid 25 biomarkers associated with essential FAs, suggesting their potential in future studies and practical 26 applications in the meat production industry.

27

28 Keywords (3 to 6):

29 n-3 essential fatty acids, Feeding regimes, Lipid profile, *Longissimus dorsi* muscle, Tibetan lamb

30

31

Introduction

Lamb meat is a part of the dietary practices of various cultures, and owing to its unique flavor,
palatability, and nutritional value, it is widely consumed worldwide. Recently, an increase in lamb

34 meat consumption because of economic development-driven enhancement of living standards has 35 notably heightened the interest of consumers in the quality of lamb meat [1]. Fatty acid (FA) 36 composition considerably affects the lamb meat quality and has substantial implications for human 37 health, particularly because of saturated FA (SFA)-unsaturated FA (UFA) balance and the presence of essential FAs such as omega-3 and -6 FAs, which are vital for cardiometabolic health, anti-38 39 inflammatory effects, and overall well-being [2]. Furthermore, ruminant-produced products such as 40 raw milk or meat can provide FAs that are not synthesized endogenously in humans, such as 41 conjugated linoleic acid (CLA), which exhibits numerous potential health benefits, including 42 reduction of body fat deposits, enhanced immunity, and the prevention of asthma, various cancer 43 types, and cardiovascular diseases [3].

44 Lipids are essential constituents of meat and notably influence consumer acceptance by 45 contributing to various desirable attributes, including appearance, color, flavor, and tenderness [4]. 46 Lipase-catalyzed hydrolysis breaks down lipids into free FAs and glycerol [5], with lipids serving as the primary source of both SFAs and UFAs in the meat. Lipids can be divided into the following eight 47 classes: fatty acyls (FAC), glycerides (GL), glycerophospholipids (GPs), sterol lipids (ST), 48 49 sphingolipids (SP), saccharolipids, prenol lipids, and polyketides [6]. Factors such as breed, diet, and 50 feeding regimes can alter FA composition of ruminant meat, and therefore, its lipid profile. 51 Lipidomics, a subdiscipline of metabolomics, is the comprehensive analysis of lipids and lipid-like 52 molecules across different classes under specific conditions and has garnered considerable attention in 53 nutrition and food research [7-9]. Lipidomics-based analysis of lipid compositions under specific 54 treatments is both feasible and scientifically valid and can provide insights into the effect of different 55 treatments on FA profiles.

Overgrazing causes a pronounced degradation of the environmental integrity of grasslands [10], and the Chinese government has performed the "Control Grazing for Grassland Recovery" policy to alleviate this degradation and introduced semi-grazing (SG) and stall feeding (SF) systems [11]. The impacts of different feeding strategies on FA composition in lamb meat have been reported. For instance, the traditional grazing (G) system generally increases the levels of beneficial UFAs, whereas concentrated feeding increases that of SFAs [12,13]. Tibetan sheep (>50 million) are among the three 62 primordial sheep populations in China and widely distributed in the Qinghai–Tibetan Plateau, 63 including Qinghai, Tibet, and Gannan of Gansu [14], and being the predominant livestock species, 64 they substantially affect the livelihoods of Tibetan herders [15]. Zhang et al. [16] indicated that n-3 65 poly-UFAs (PUFAs) were markedly increased in meat samples of Tibetan sheep under the traditional 66 G system compared with those reared in SF regimes.

67 However, lipidomics-based studies on FA composition of Tibetan lamb meat reared under 68 various feeding regimes are lacking. As a result, this study was aimed at elucidating the impacts of 69 different feeding regimes on FA composition in lamb meat by employing lipidomics and identifying 70 specific lipids and associated pathways that can serve as biomarkers for significant FAs. It was 71 hypothesized that sheep subjected to the G regime would present a more advantageous FA profile, 72 with increased UFA content, compared to those under a concentrated feeding regime. Results in this 73 study may contribute to the advancement of meat science, facilitating the optimization of feeding 74 strategies to enhance the FA profiles of the ovine meat by regulating relevant lipids and pathways, 75 thereby improving meat quality and promoting superior health outcomes.

76

77

Materials and Methods

78 Experimental design and sample collection

79 In the present research, the Animal Ethics Committee of the Chinese Academy of Agricultural 80 Sciences approved our animal welfare and experimental procedure (No. AEC-CAAS-81 1610332022011). Gangba sheep, as a famous breed of Tibetan sheep, are an important source of food 82 and income for the local residents. Therefore, improving Gangba sheep meat quality is essential for 83 the improvement of human health and economic growth. Herein, 27 male Gangba lambs (3 months 84 old, the initial body weight of the experiment), with an identical genetic background and similar 85 weight (14.49 \pm 0.02 kg; mean \pm standard error of the mean), were randomly classified into the 86 following groups: G (n = 9), SG (n = 9), and SF (n = 9). All lambs were raised in separate units (1.5 m \times 2.0 m), and those in G group grazed (08:00–18:00) at the desertification grassland in the Gangba 87 county, Tibetan Autonomous Region, China (88°8'20"-88°56'47"E, 27°56'32"-28°45'27"N). This 88

89 region is abundant in Artemisia minor Jacquem.ex Besser, Iris collettii Hook.f., Festuca wallichanica 90 E. Alexeev, Kobresia capillifolia (Decne.) C. B. Clarke, and Kobresia deasgi C. B. Clarke. SG lambs 91 grazed the same steppe from 10:00 to 15:00h, and were supplied with 400–450g of a mixed pellet 92 feed and free access to oat hay when off-pasture, and 800–900g of the same mixed pellet feed as the 93 SG was given to lambs in the SF group and free access to oat hay (twice/day at 08:00 and 18:00 for 94 both oat hay and pellets). The supplemented oat hay was adjusted daily based on the previous day's 95 intake, allowing refusals of 20%. Concentrate supplementation was increased in the SG and SF 96 groups as body weight of experimental lambs increased, and the ratio of concentrate supplementation 97 of lambs between the SG and SF groups was consistently maintained at 1:2. Tables 1 and 2 illustrate 98 the ingredient composition of the basal diet and the nutrition of the basal diet and pasture, respectively. All animals were allowed to take water and food freely through the experimental duration of 95 days, 99 100 which included a 15-day adaptation period and an 80-day experimental period. After the experiment 101 was over, six Gangba lambs were randomly chosen from each group following 12 h of fasting. 102 Thereafter, animal slaughter was completed by professionals at the local commercial abattoir. 103 Immediately following slaughter, longissimus dorsi muscle (LDM) samples were harvested from from 104 11th and 12th ribs and promptly preserved within liquid nitrogen for further analysis.

105 FA analyses of LDM and feed

106 After collection, the pasture samples were quickly brought back to the laboratory, heated in an oven at 107 105°C for 2 hours to stop enzymatic activity, and then dried to a constant weight at 65°C for the 108 determination of pasture fatty acid composition. The chloroform-methanol mixture (2:1, v/v) was 109 adopted to extract total lipids from 1.0 g of lyophilized LDM and 2.0 g of dried feed powder (pasture 110 and concentrate), as described by Folch et al. [17]. Subsequently, acid (5% methanolic HCl) or base 111 (0.5 N sodium methoxide) catalysis was conducted to methylate lipid aliquots, as described by 112 Kramer et al. [18]. Henedecanoic acid methyl ester (1 mg/mL; 1 mL, 11:0) served as the endogenous 113 reference. The resultant FA methyl esters (FAMEs) were analyzed using the Varian 450-GC gas 114 chromatograph (Varian Chromatography Systems, Walnut Creek, CA, USA) with the flame-115 ionization detector and fused silica capillary column (SP-2560; length, 100 m; film thickness, 0.20 µm; 116 internal diameter, 0.25 mm; Supelco Inc., Bellefonte, PA, USA). Both detector and injector

117 temperatures were consistently kept under 260°C. Initially, we set oven temperature at 120°C for a 5-118 min duration, later elevated it to 230°C at 3°C/min, where it was held for another 3 min, and finally 119 elevated it to 240°C at 1.5°C/min and held it for 13 min. Nitrogen at 1 mL/min was the carrier gas. In 120 addition, 1 μ L of sample was injected using the automated split injector configured at the 1:30 split 121 ratio. Each FAME was detected by comparing obtained retention times (RTs) with authentic standards, 122 including a FAME mix (Supelco Inc.) and c9, t11-CLA (Larodan Fine Chemicals, AB, Sweden). The 123 quantification was performed as depicted by Vahmani et al. [19]. FA concentrations (mg/100 g dry 124 matter) were determined by analyzing the peak areas in the chromatograms and converting them using 125 the appropriate conversion factors for each FAME.

126 Lipidomics

127 Lipid extraction

In terms of lipid extraction, solid samples (50 mg) were taken in the 2-mL plastic microtubes and 128 129 added methanol:water (2:5, v/v) mixture (280 µL) and methyl tertiary butyl ether (400 µL). Before extraction, all samples were homogenized at -10°C using 6-mm grinding beads and the high-130 131 throughput tissue grinder (Wonbio-96c, Shanghai Wonbio Technology Co., LTD) at 50 Hz for a 6-132 min duration, prior to sonication for 30 min at 40 kHz and 5°C. Following standing at -20°C for 20 133 min, samples were subject to centrifugation at 13000 ×g and 4°C for 15 min. Each lipid extract from 134 the upper phase (350 µL) was moved to a new tube for evaporation till dryness under a nitrogen 135 atmosphere. For ultra-high-pressure liquid chromatography (UHPLC)-tandem mass spectrometry 136 (MS/MS) analysis, samples were reconstituted into an isopropanol (IPA):acetonitrile (ACN) loading 137 solution (100 µL, 1:1, v/v) before 5 min of sonication at 40 kHz while positioned in a 5°C-water bath. 138 Finally, the extracts were subject to 10 min of centrifugation at 13000 ×g and 4°C with the bench-top 139 centrifuge to collect supernatants into sample vials. Finally, samples (2 µL each) were loaded for 140 UHPLC-MS/MS analysis.

141 Quality control (QC) sample

Samples at equivalent amounts (20 μ L) were mixed to prepare the combined QC sample for QC and system conditioning. Notably, this QC sample was subjected to the same analyses as all tested samples, and it was injected regularly (every 10 samples) to monitor the analysis stability. 145 UHPLC-MS/MS technology

146 UHPLC-MS/MS technology was performed with the Thermo UHPLC-Q Exactive HF-X Vanquish 147 Horizon system and Accucore C30 column (100 mm \times 2.1 mm i.d., 2.6 μ m; Thermo, USA) by 148 Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). Mobile phases contained ammonium 149 acetate (10 mM) within ACN:H2O (1:1, v/v; 0.1% [v/v] formic acid; solvent A) and ammonium 150 acetate (2 mM) within ACN:IPA:H2O (10:88:2, v/v/v; 0.02% [v/v] formic acid). A 5 µL reaction 151 system was prepared under the parameters including column temperature, 40°C; flow rate, 0.4 152 mL/min; and chromatographic separation, 20 min. Additionally, the solvent gradient was defined as 153 following: 35%–60% B, 0–4 min; 60%–85% B, 4–12 min; 85%–100% B, 12–15 min; 100% B, 15–17 154 min; 100%-35% B, 17-18 min; and 35% B after separation was completed. Every sample was 155 preserved under 4°C throughout the analysis.

The Thermo UHPLC-Q-Exactive HF-X Bench-top Orbitrap Mass Spectrometer was used to obtain mass spectrometry data using the heated-electrospray ionization source under both positiveand negative-ion modes. Then, conditions were set below: Aus gas heater temperature, 370°C; Aus and sheath gas flow rates, 20 and 60 psi, respectively; ion-spray voltage floating, +3000 V and -3000 V under positive and negative modes, separately; normalized collision energy, 20–40–60 V rolling during MS/MS. Data were acquired using the Data Dependent Acquisition mode and detected within the 200–2000 mass-to-charge ratio (m/z) range.

163 Data pre-processing and interpretation

Following UPLC-MS/MS analysis, the raw data was inputted in LipidSearch (Thermo, CA) to detect, align, and identify the peaks. MS/MS fragments were adopted for identifying lipids. Mass tolerances for fragment and precursor were 10 ppm. Grades A–D were adopted in the ID quality filter, whereas the m-score threshold was 2.0. All pre-processing analyses produced the data matrix comprising peak intensity, lipid class, m/z, and RT.

169 The public web-based Majorbio cloud platform (cloud.majorbio.com) was adopted to analyze 170 data. Lipidomic features measured from > 80% of each sample set were kept. Next, minimal 171 metabolite levels were assigned for certain samples whose metabolite contents were less than the 172 lower limit of quantitation, with all metabolic features being standardized through summation. For 173 reducing errors resulting from instrumental instability and sample preparation, sum normalization was 174 completed to normalize response intensities of sample mass spectral peaks, thus, the normalized data 175 matrix was acquired. Additionally, variables whose relative standard deviations were >30% of QC 176 sample were eliminated. Meanwhile, log10 transformation was carried out to acquire the eventual data 177 matrix in later analyses.

178 Statistical analyses

One-way analysis of variance (ANOVA) with the post hoc test of Games-Howell followed by 179 180 bonferroni for multiple testing correction was used to analyze the difference of the FAs concentration 181 and the lipids abundance in LDM within groups. The partial least square discriminant analysis (PLS-182 DA) of the lipidomic data obtained from LDM was conducted with 200 permutations using ropls 183 package of the R software (Version 1.6.2). Correlations between different lipids and FAs were 184 determined by Pearson correlation ($|\mathbf{r}| > 0.6$; P < 0.05), and their associations were visualized using 185 the Cytoscape software (Version 3.9.1). Additionally, the annotated lipidomic metabolites closely 186 related to differential FAs in LDM were subjected to Kyoto Encyclopedia of Genes and Genomes 187 (KEGG) pathway enrichment analysis (www.kegg.jp/kegg/pathway). Considerably enriched KEGG 188 pathways were screened through relative betweenness centrality analyses, and differential abundance scores and KEGG pathway bubble maps were plotted. The network of annotated lipidomic 189 190 metabolites closely related to differential FAs in LDM and corresponding pathways were visualized 191 using Cytoscape software (Version 3.9.1).

192

193

Results

194 Comparison of FA concentrations in the diets and lamb muscle samples

Examination of FA concentrations in the feed (pasture and concentrate) of G, SG, and SF groups (Table 3) revealed that the C16:0 and C18:0 FA levels within the pasture decreased compared with those in the concentrate, and the C18:1n9c and C18:2n6c concentrations remarkably decreased within the concentrate. Conversely, the C18:3n3 level within the pasture substantially increased relative to that in the concentrate. 200 As indicated by the FA composition in LDM samples (Table 4), the dominant FAs in LDM of various 201 groups were all C18:1n9c, C16:0, C18:0, C18:2n6c, and C14:0. The C14:0, C16:0, C17:0, C22:0, 202 SFA, and n-6/n-3 concentrations within the LDM in G group considerably decreased relative to those 203 in the SF group, whereas C18:3n3, C20:5n3, C22:6n3, n-3, and PUFA/SFA levels showed opposite 204 results (p < 0.05). Furthermore, n-6/n-3 in G group apparently reduced relative to SG group (p < 0.05). 205 C16:0, C17:0, SFA, and n-6/n-3 levels in the SG group substantially decreased compared with those 206 in the SF group, whereas levels of c9t11-CLA, C22:6n3, and PUFA/SFA in the SG group tended to 207 significantly increase relative to those in the SF group (p < 0.05).

208 Number and categories of detected lipids in the *longissimus dorsi* muscle

209 The lipids identified through different ion modes of UHPLC-MS/MS are listed in Table S1. In total, 210 1,538 raw lipid metabolites were detected in the LDM, with 951 under positive-ion and 587 under 211 negative-ion modes. The origin data were obtained after filtering, filling the missing values, 212 transforming, and normalizing the raw data, presenting 1,269 total lipid metabolites in the LDM, with 213 756 under positive-ion mode and 513 under negative-ion mode. These lipids were divided as FAC, 214 glycerolipids (GL), GP, ST, and SP categories, and included 21 (1.65%), 314 (24.74%), 694 (54.69%), 215 233 (18.36%), and 7 (0.55%) lipids, respectively (Figs. 1A and 1B). Furthermore, four subclasses 216 were identified in the FAC category (namely acylcarnitine, coenzyme, FA, and oacyl-[gamma-217 hydroxylfa). Four subclasses were identified in the GL category (namely diglyceride (DG), 218 monoglyceride, monogalactosyldiacylglycerol, and triglyceride (TG)). The GP category consisted 18 219 bis-methyl phosphatidic subclasses (namely acid, cardiolipin, lysophosphatidylcholine, 220 lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylinositol, 221 lysodimethylphosphatidylethanolamine, monolyso-cardiolipin, methyl phosphatidylcholine, 222 phosphatidic acid, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylethanol, 223 phosphatidylglycerol, phosphatidylinositol, phosphatidylmethanol, phosphatidylserine (PS), and 224 dimethylphosphatidylethanolamine). The SP category consisted of nine subclasses (namely ceramides 225 N-acetylglucosamine monohexosyl ceramide, gangliosides, (Cer), simple glc series 226 monohexosylceramide, simple glc series dihexosylceramide, lysosphingomyelin, sphingomyelin (SM), sphingosine, and sphingomyelin). Lastly, three subclasses were identified in the ST category (namely

228 cholesterol ester, acylglcsitosterol ester, and acylglcstigmasterol ester) (Figs. 1A and 1B).

229 Differential lipids within groups

230 PLS-DA generated an overview of the similarities and differences within the lipid dataset, with score 231 plots showing distinct lipid profiles in the LDM samples of the G, SG, and SF groups (Fig. 2A). In 232 PLS-DA score plots, the first and second principal components interpreted 63.1% and 9.7% of overall 233 variance, respectively, separately of the dataset, warranting the analysis of differences in lipid 234 abundances within groups. Permutation testing was adopted for confirming the PLS-DA model (200 235 random permutations) and a Q2Y intercept value of <0.05 suggested the robustness and good 236 predictability of the model for the lipidomics data (Fig. 2B). The identity of differential lipids within feeding regime groups was further validated through linear mixed models. Notably, 313 differential 237 238 lipids were identified in LDM samples of all groups, including GP (177, 57%), GL (96, 31%), SP (36, 11%), FA (3, 1%), and ST (1, 0%) (Fig. 3A). Among them, 40 lipids in the LDM were annotated in 239 240 the KEGG database and used for subsequent analysis (Fig. 3A and 3B).

Different feeding regimes considerably affected the lipids belonging to the GP, GL, and SP categories, and the various feeding regimes mainly affected the lipids in the GP category for LDM. Herein, the number of differential GP lipids (including PC, PS, and PE) accounted for 64% (LDM) of the total differentially expressed lipids. The most affected lipids within the GP category belonged to the PC subclass and accounted for 52% of the total differential lipid number within the LDM. Furthermore, DGs in the LDM accounted for up to 10% of the total differential lipids (Fig. 3A and 3B).

Notably, 40 significantly different lipids were detected in the LDM samples of groups (Fig. 4,
bar charts). Detailed information is in Table S2. The abundances of PC(16:0/20:5), PC(18:3/20:5),
PC(16:0/16:0), PC(15:0/18:1), PC(16:0/14:0), PC(15:0/16:0), PC(22:5/20:4), PC(20:1/20:4),
PC(14:0/14:0), PC(20:0/16:0), PC(22:5/22:6), PC(18:0/18:0), PC(18:0/15:0) (Fig. 4A), PC(16:0/14:1),
PC(15:0/16:1), PC(20:5/20:4), PC(14:0/20:4), PC(22:5/18:2), PC(18:4/16:0), PS(18:0/22:5),
PS(18:0/18:1), PS(18:0/22:6) (Fig. 4C), DG(18:0/16:0), DG(18:0/20:1), DG(18:0/20:4),
DG(16:0/20:4) (Fig. 4B), SM(d18:1/18:0), SM(d18:0/18:0), Cer(d18:1/22:0), Cer(d18:1/25:0), and

255 Cer(d18:1/20:0) (Fig. 4D) within LDM of the SG and SF groups, and that of SM(d18:1/12:0) (Fig. 5D) 256 in the SG group markedly reduced relative to G group (p < 0.05). Furthermore, PC(18:1/18:1), 257 PC(16:1/18:1), PE(18:0/20:0) (Fig. 5C), DG(16:0/18:1), DG(16:1/18:1), and TG(18:0/18:1/20:1) (Fig. 258 5B) in the SG and SF groups, PE (16:1/18:1) (Fig. 5C) in the SF group, and TG(18:0/18:1/20:0) (Fig. 259 5B) in the SG group showed evidently elevated abundances relative to G group (p < 0.05). 260 Additionally, PC(18:1/18:1), PC(16:1/18:1), PE(16:1/18:1) (Fig. 5C), TG(18:0/18:1/20:1), 261 DG(18:0/16:0) (Fig. 5B) and SM(d18:1/12:0) (Fig. 5D) levels markedly elevated in SF group relative 262 to SG group (p < 0.05). Contrarily, PC(20:5/20:4), PC(14:0/20:4), PC(22:5/18:2), PC(18:4/16:0) (Fig. 263 5C), TG(18:0/18:1/20:0) (Fig. 5B), Cer(d18:1/22:0), and Cer(d18:1/25:0) exhibited opposite results 264 (Fig. 5D) (*p* < 0.05).

265 Correlation analysis of differential lipids and FAs

The 40 differential lipids and various FA concentrations or indices previously mentioned were 266 267 subjected to Pearson correlation analysis to identify significant lipids that could serve as biomarkers 268 for key FA indices (Fig. 5). In total, the following 16 lipids were found to be significantly correlated with specific FAs: C22:0 was positively correlated to PC(22:5/22:6); C18:3n3 and c9t11-CLA were 269 270 positively related to Cer(d18:1/25:0); C20:5n3 was positively correlated to PC(16:0/14:0), PS(18:0/22:6), and SM(d18:1/18:0); C22:6n3 showed a positive relationship to SM(d18:1/18:0), 271 272 PC(18:3/20:5), PC(18:4/16:0), and PC(14:0/20:4); n-3 PUFA was positively correlated with 273 PC(16:0/14:0), PC(16:0/20:5), SM(d18:1/18:0), and PC(18:3/20:5); n-6/n-3 exhibited negative 274 relation with PC(20:5/20:4), PC(18:0/18:0), PC(16:0/14:0), PC(16:0/20:5), PS(18:0/22:6), 275 SM(d18:1/18:0), PC(18:3/20:5), and PC(16:0/16:0), whereas it was positively correlated with 276 PE(16:1/18:1), PC(18:1/18:1), and PC(16:1/18:1); and PUFA/SFA was positively related to 277 PS(18:0/22:6), PC(18:3/20:5), and PC(18:4/16:0), whereas it showed negative relation to 278 TG(18:0/18:1/20:1) (all p < 0.05).

279 Differential Kyoto Encyclopedia of Genes and Genomes pathways and mapped lipids

The 16 lipids that were closely related to FA concentrations were mapped to the KEGG database (http://www.kegg.jp/kegg/pathway.html). The bubble chart for KEGG topology for different lipids within the LDM across varying feeding regimes (Fig. 6A) showed that GP, SP, linoleic acid, GL, and 283 alpha-linolenic acid metabolisms were considerably affected by various feeding regimes. Figs. 6B, 6C, 284 and 6D show the differential abundance score analysis of the KEGG pathways. The GP, linoleic acid, 285 and alpha-linolenic acid metabolism pathways for SG versus G and SF versus G were downregulated, 286 whereas the GL metabolism in SG versus G and SF versus G was upregulated. Additionally, the SP 287 metabolism in SF versus G was downregulated. The GP, SP, GL, linoleic acid, and alpha-linolenic 288 acid metabolisms in SF versus SG were downregulated. Notably, all lipids in the PC category were 289 related to GP, linoleic acid, and alpha-linolenic acid metabolisms and those in the PE and PS category 290 were mainly involved in the GP metabolism. Furthermore, lipids belonging to TG were only involved 291 in the GL metabolism, those in the SM and Cer subclasses only participated in the SP metabolism 292 (Fig. 7).

- 293
- 294

Discussion

295 Fatty acid composition in pasture and concentrate

296 FA compositions found in the pasture (fed under G and SG systems) and concentrate (fed under SG and SF systems) diets used in the current work are in consistent with the findings previously reported, 297 298 indicating relatively consistent FA type and proportion patterns among these feeding regimes [13]. 299 Herein, the pasture diet contained lower concentrations of SFAs, specifically C16:0 and C18:0, 300 compared with those in the concentrate diet. Similarly, Nuernberg et al. [20] reported that grass-based 301 diets contain lower SFA content than that in concentrate diets. The concentrate diet presented higher 302 levels of C18:1n9c and C18:2n6c, conforming to the findings of Yang et al. [13]. Additionally, the 303 characteristic high concentration of C18:3n3, an essential omega-3 FA, was found in the pasture diet, 304 as reported previously [13,20]. The high levels of C18:3n3 in the pasture diet caused a more favorable 305 n-6/n-3 ratio, causing more health benefits for animals.

306 FA composition in LDM under various feeding regimes

307 FA composition in LDM in lambs fed through different feeding regimes underscores the substantial

308 impact of the diet on nutritional quality. Predominant FAs identified across all experimental groups

309 included C18:1n9c, C16:0, C18:0, C18:2n6c, and C14:0, exhibiting similarity to the characteristic FA

310 profiles observed in ruminant muscle tissues [12]. Herein, the predominant FA in lamb muscle was 311 C18:1n9c, constituting approximately 40% of the total FAs, consistent with the findings of Wang et al. 312 [12] and Nuernberg et al. [20]. Notably, different feeding regimes mainly affected the concentrations 313 of FAs and did not alter their composition. The levels of C14:0, C16:0, C17:0, C22:0, and total SFA 314 in G group notably decreased relative to SG and SF groups, conforming to the findings of Nuernberg 315 et al. [20] and Wang et al. [12], who reported low SFA content in the muscle of grass-based diet-fed 316 lambs. The biohydrogenation process within the rumen, which is influenced by the dietary 317 composition, exerts a crucial role in identifying the nutritional outcome. PUFA-rich pasture diets can 318 lead to less extensive hydrogenation than concentrate-based diets, further resulting in lower SFA 319 levels within the muscle tissue. Consistent with the findings of higher omega-3 content in the sheep fed with pasture diet than that in the concentrate diet [13], herein, omega-3 FAs, including C18:3n3, 320 321 C20:5n3, and C22:6n3, presented markedly increased concentrations in the G group, underscoring the 322 nutritional benefits of the pasture-based diet. This may be attributed to the microbial activity-driven 323 biohydrogenation process within the rumen. In pasture-based diets, the microbial ecosystem of the 324 rumen downregulates the hydrogenation of PUFA, particularly C18:3n3, resulting in their higher 325 concentrations for absorption and subsequent incorporation into muscle tissues. Furthermore, pasture-326 based diets are abundant in secondary metabolites, including flavonoids, polysaccharides, tannins, and 327 polyphenols, which considerably affect the microbial activity within the rumen, potentially inhibiting 328 the biohydrogenation process, and thereby preserving the more significant proportion of PUFA from 329 converting into less desirable SFA [21]. The increased omega-3 FA concentrations and decreased n-330 6/n-3 ratio observed in the G group were particularly significant, as the decreased n-6/n-3 ratio is 331 associated with anti-inflammatory effects and improved overall health outcomes [22]. The c9t11-CLA 332 content in the SG group tended to significantly increase compared with that in the SF group, 333 indicating the partial biohydrogenation of C18:2n6c within the rumen. The equilibrium between 334 forage and concentrate possibly created favorable conditions in the SG group for CLA synthesis, a FA 335 recognized for its health benefits, including anti-carcinogenic properties [3]. The World Health 336 Organization (WHO) recommends the n-6/n-3 ratio to be below 5:1 [23], and that in the G and SG 337 groups were within the recommended limit, presenting a balanced consumption of both omega-6 and

338 omega-3 FAs. According to the WHO and other health authorities, the recommended PUFA/SFA 339 ratio for the normal diet should be >0.4 [24]. Although the G group presented the highest PUFA/SFA 340 (0.24) among all groups, it still does not meet the recommended standards, warranting further 341 optimization of basal diets to meet dietary guidelines. Overall, the G and SG feeding regimes could 342 improve the nutritional quality of lamb meat, making it a healthier option for consumers.

343 Differential lipids analysis in the LDM under different feeding regimes

344 Based on chemical structures and biosynthetic pathways, lipids are classified into eight categories by 345 Lipid Metabolites and Pathways Strategy Consortium, namely FA, GL, GP, SP, ST, prenol lipids, 346 polyketides, and saccharolipids [25]. Li et al. [26] detected FA, SP, GP, and GL lipids in the psoas 347 major muscle of castrated and intact Hu sheep; however, unlike the findings of the present study, they 348 did not detect ST lipids. Furthermore, herein, GP lipids exhibited the highest relative response 349 (54.69%), followed by GL (24.74%), in the LDM of the Gangba lambs, and Li et al. [26] reported GL 350 (58.96%) as the highest, followed by GP (23.78%). These differences were attributed to the difference 351 in the animal breeds (Hu sheep versus Gangba sheep).

352 The dietary FA composition considerably affects the FA profile in lipids. Herein, differential 40 353 lipids affected by various feeding regimes were categorized into GP, GL, and SP categories. The most 354 affected subclass was the PC subclass, which contained n-3 beneficial FAs (C18:4, eicosapentaenoic 355 acid [EPA] [C20:5n3] and docosahexaenoic acid [C22:6]), such as PC(18:4/16:0), PC(16:0/20:5), 356 PC(18:3/20:5), PC(20:5/20:4), and PC(22:5/22:6). Notably, they showed the highest abundance in the 357 LDM of the G group, possibly because of the production of beneficial PUFAs through lipolysis 358 during the early post-mortem period. Additionally, PS and DG subclasses lipids contained certain 359 PUFAs such as C22:5, C22:6, and C20:4. Conversely, FAs in PE, TG, SM, and Cer subclasses were 360 SFAs and mono-UFAs (MUFAs), which contributed to increased contents of free SFAs and MUFAs 361 after lipidolysis. The close relations among these significant lipids and differential FAs in LDM were 362 revealed by correlation analysis to identify the closely related lipids.

363 Lipids closely related to significant FAs

The correlation analysis between differential lipids and FAs revealed significant interactions,
 providing insights into associated complex metabolic processes of FAs in LDM under different

366 feeding regimes. In total, 16 lipids were identified to be significantly correlated with specific FAs, 367 underscoring the intricate relationship between lipid metabolism and FA composition of the lamb 368 meat. The positive correlation between C22:0 and PC(22:5/22:6) suggested that PC-related lipids may 369 serve as biomarkers for the accumulation of long-chain SFAs in muscle tissues. Notably, this 370 relationship highlights the role of PC-related lipids in regulating membrane fluidity and stability, 371 which are critical factors for meat quality [16]. Additionally, the positive correlations of C18:3n3 and 372 c9t11-CLA with Cer(d18:1/25:0) highlighted the importance of Cer metabolism in regulating essential 373 FAs. Cer exerts crucial effects on cellular signaling and apoptosis, and their association with 374 beneficial FAs such as CLA suggests potential pathways associated with dietary intervention-375 mediated enhancement of meat quality [27]. Notably, EPA positively correlated with multiple lipids, including PC(16:0/14:0), PS(18:0/22:6), and SM(d18:1/18:0). These findings suggest a robust 376 377 interaction of n-3 PUFA with specific phospholipids, which may facilitate their anti-inflammatory 378 properties. Moreover, SM involvement in these correlations underscores the role of SPs in modulating 379 immune responses and maintaining cellular homeostasis. The n-6/n-3 ratio was negatively related to 380 many PC species, indicating the association of an increased n-6/n-3 ratio to pro-inflammatory states, 381 which may be counteracted by specific phospholipids. This finding aligns with those of previous 382 studies indicating that a balanced n-6/n-3 ratio is crucial for optimal health and meat quality. The 383 positive correlations between the PUFA/SFA ratio and lipids such as PS(18:0/22:6) and PC(18:3/20:5) 384 highlighted the potential of these lipids as indicators of a healthier FA profile, which is desirable in 385 meat production. Conversely, the negative correlation of TG(18:0/18:1/20:1) indicated that TGs might 386 be less favorable in producing a beneficial PUFA/SFA ratio in meat.

The KEGG pathway analysis further elucidated the underlying mechanisms of diverse feeding regimes that affected lipid metabolism. The downregulation of GP, SP, linoleic acid, and alphalinolenic acid metabolisms in the SG versus G group and SF versus G group comparisons suggested that more intensive feeding practices may suppress essential FA metabolism pathways, implicating the meat quality, particularly regarding the associated health benefits. Interestingly, the upregulation of GL metabolism in the abovementioned comparisons indicated a shift toward GL synthesis, which may affect the overall lipid profile and energy storage in muscle tissues. The exclusive involvement of PC lipids in GP, linoleic acid, and alpha-linolenic acid metabolisms and the participation of SM and Cer in SP metabolism indicate a mechanistic link among lipids, the regulation of associated metabolic pathways, and FAs concentrations that regulates the FA composition and quality in meat. Similar to the finding of this study, Xiong et al. [8] also found linoleic acid, and alpha-linolenic acid metabolisms were significantly affected by feeding regimes (grazed feeding vs stall feeding).

Altogether, the significant correlations of specific lipids and FAs with differential modulation of KEGG pathways underscore the intricate interplay between diet, lipid metabolism, and meat nutrition quality. Based on these findings, the associated lipids may be utilized as potential biomarkers for optimizing lamb meat production through targeted dietary strategies to enhance the nutritional value and sensory attributes of the meat product.

- 404
- 405

Conclusion

Overall, the present study elucidates the significant impact of different feeding regimes on FA 406 compositions and lipid metabolisms in lamb muscles, underscoring their importance regarding the 407 408 meat nutritional quality. Lambs in the G and SG groups exhibited higher levels of beneficial n-3 409 PUFA and more favorable PUFA/SFA and n-6/n-3 ratios than those in the SF group. Untargeted 410 lipidomics analysis revealed 16 lipids that are closely associated with beneficial FAs, showing 411 positive correlations among different lipids such as Cer(d18:1/25:0), C18:3n3, and c9t11-CLA and 412 PC(16:0/14:0), PS(18:0/22:6), SM(d18:1/18:0), and C20:5n3. Notably, C22:6n3 was strongly 413 associated with SM(d18:1/18:0), PC(18:3/20:5), PC(18:4/16:0), and PC(14:0/20:4), and the n-3 414 essential FAs were closely linked to GP, SP, linoleic acid, alpha-linolenic acid, and GL metabolic 415 pathways. In contrast, c9t11-CLA was specifically associated with SP metabolism. Altogether, the 416 results of this study highlight the metabolic mechanisms underlying diet-mediated changes in the FA 417 composition and provide potential biomarkers for optimizing feeding strategies in order to enhance 418 the nutritional quality of the lamb meat. However, metabolomic and transcriptomic analyses of 419 muscle tissues are recommended for future studies, as they would allow us to investigate the gene 420 expression related to fatty acid metabolism under different feeding regimes at the molecular level.

Acknowledgments

421

The present study was supported by the Hohhot Science and Technology Innovation Field Talent
Project (no grant number), Innovation Fund of the Chinese Academy of Agricultural Sciences (CAAS,
No. CAAS-ASTIP-2024-IGR-XT06) and Central Public-interest Scientific Institution Basal Research
Fund (No. 1610332022011). The authors thank the staff of the Mengde village cooperative in Gangba
County for their technical support in slaughtering and preparing carcasses.

References

 An J, Li Y, Zhang C, Zhang D. Rapid nondestructive prediction of multiple quality attributes for different commercial meat cut types using optical system. Food Sci Anim Resour. 2022;42:655-671. https://doi.org/10.5851/kosfa.2022.e28

- 433 2. Sergi D, Sanz JM, Lazzer S, Brombo G, Zuliani G, Biolo G, Šimunič B, Pišot R, Dalla Nora E,
 434 Passaro A. Interleukin-18 is a potential biomarker linking dietary fatty acid quality and insulin
 435 resistance: Results from a cross-sectional study in northern Italy. Nutrients. 2023;15:1782.
 436 https://doi.org/10.3390/nu15071782
- 437 3. Shokryazdan P, Rajion MA, Meng GY, Boo LJ, Ebrahimi M, Royan M, Sahebi M, Azizi P,
 438 Abiri R, Jahromi MF. Conjugated linoleic acid: A potent fatty acid linked to animal and human
 439 health. Crit Rev Food Sci. 2017;57:2737-2748. https://doi.org/10.1080/10408398.2015.1060190
- 440 4. Kumar V, Chatli MK, Wagh RV, Mehta N, Kumar P. Effect of the combination of natural antioxidants and packaging methods on quality of pork patties during storage. J Food Sci Tech. 2015;52:6230-6241. https://doi.org/10.1007/s13197-015-1734-2.
- 443 5. López-López A, López-Serrano M, Sánchez-Muniz FJ, García-Fernández MC. Fatty acid
 444 composition and oxidative stability of chitosan-emulsified linseed oil. J Am Oil Chem Soc.
 445 2002;79:715-719. https://doi.org/10.1007/s11746-002-0549-9
- Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer
 G, Wakelam MJO, Dennis EA. Update of the LIPID MAPS comprehensive classification system
 for lipids1. J Lipid Res. 2008;50:S9-S14. https://doi.org/10.1194/jlr.R800095-JLR200
- Jia W, Di C, Shi L. Applications of lipidomics in goat meat products: Biomarkers, structure,
 nutrition interface and future perspectives. J Proteomics. 2023;270:104753.
 https://doi.org/10.1016/j.jprot.2022.104753
- 452 8. Xiong L, Pei J, Wang X, Guo S, Guo X, Yan P. Effect of lipids in yak muscle under different
 453 feeding systems on meat quality based on untargeted lipidomics. Animals-Basel. 2022;12:2814.
 454 https://doi.org/10.3390/ani12202814
- 455
 9. Zhang M, Su R, Corazzin M, Hou R, Zhang Y, Sun L, Hu G, Dou L, Guo Y, Su L. Lipid
 456
 457
 458
 459
 459
 459
 450
 450
 450
 450
 451
 451
 451
 452
 451
 452
 453
 454
 454
 455
 455
 455
 455
 456
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 458
 457</l
- 458 10. Ma J, Huang X, Qin X, Ding Y, Hong J, Du G, Li X, Gao W, Zhang Z, Wang G. Large 459 manipulative experiments revealed variations of insect abundance and trophic levels in response 460 Rep-Uk. the cumulative effects of sheep grazing. Sci 2017;7:11297. to 461 https://doi.org/10.1038/s41598-017-11891-w
- 462 11. Zhang Y, Huang D, Badgery WB, Kemp DR, Chen W, Wang X, Liu N. Reduced grazing

- 463 pressure delivers production and environmental benefits for the typical steppe of north China. Sci
 464 Rep-Uk. 2015;5:16434. https://doi.org/10.1038/srep16434
- 465 12. Wang B, Wang Y, Zuo S, Peng S, Wang Z, Zhang Y, Luo H. Untargeted and targeted 466 metabolomics profiling of muscle reveals enhanced meat quality in artificial pasture grazing tan 467 lambs via rescheduling the rumen bacterial community. J Agr Food Chem. 2021;69:846-858.
 468 https://doi.org/10.1021/acs.jafc.0c06427
- Yang Z, Liu C, Dou L, Chen X, Zhao L, Su L, Jin Y. Effects of feeding regimes and postmortem aging on meat quality, fatty acid composition, and volatile flavor of Longissimus thoracis muscle in Sunit sheep. Animals-Basel. 2022;12:3081. https://doi.org/10.3390/ani12223081
- 472 14. Yang X, Zhao Y. Review on the genetic diversity of Tibet sheep. Journal of Gansu Agricultural
 473 University. 2002;4:395–400. https://doi.org/10.13432/j.cnki.jgsau.2002.04.001
- 474 15. Xin GS, Long RJ, Guo XS, Irvine J, Ding LM, Ding LL, Shang ZH. Blood mineral status of
 475 grazing Tibetan sheep in the Northeast of the Qinghai–Tibetan Plateau. Livest Sci.
 476 2011;136:102-107. https://doi.org/10.1016/j.livsci.2010.08.007
- 477 16. Zhang X, Han L, Hou S, Raza SHA, Wang Z, Yang B, Sun S, Ding B, Gui L, Simal-Gandara J.
 478 Effects of different feeding regimes on muscle metabolism and its association with meat quality
 479 of Tibetan sheep. Food Chem. 2022;374:131611.
 480 https://doi.org/10.1016/j.foodchem.2021.131611
- 481 17. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides
 482 from animal tissues. J Biol Chem. 1957;226:497-509. https://doi.org/10.1016/S0021483 9258(18)64849-5
- 484 18. Kramer JKG, Hernandez M, Cruz-Hernandez C, Kraft J, Dugan MER. Combining results of two
 485 GC separations partly achieves determination of all cis and trans 16: 1, 18: 1, 18: 2 and 18: 3
 486 except CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids.
 487 2008;43:259-273. https://doi.org/10.1007/s11745-007-3143-4
- Vahmani P, Rolland DC, McAllister TA, Block HC, Proctor SD, Guan LL, Prieto N, López-Campos Ó, Aalhus JL, Dugan MER. Effects of feeding steers extruded flaxseed on its own before hay or mixed with hay on animal performance, carcass quality, and meat and hamburger fatty acid composition. Meat Sci. 2017;131:9-17. https://doi.org/10.1016/j.meatsci.2017.04.008
- 492 20. Nuernberg K, Nuernberg G, Ender K, Dannenberger D, Schabbel W, Grumbach S, Zupp W,
 493 Steinhart H. Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots
 494 in lambs. Eur J Lipid Sci Tech. 2005;107:737-745. https://doi.org/10.1002/ejlt.200501141
- 495 21. Girard M, Dohme-Meier F, Silacci P, Ampuero Kragten S, Kreuzer M, Bee G. Forage legumes
 496 rich in condensed tannins may increase n-3 fatty acid levels and sensory quality of lamb meat. J
 497 Sci Food Agr. 2016;96:1923-1933. https://doi.org/10.1002/jsfa.7298

- Li L, Wang H, Dong S, Ma Y. Supplementation with alpha-glycerol monolaurate during late
 gestation and lactation enhances sow performance, ameliorates milk composition, and improves
 growth of suckling piglets. J Anim Sci Biotechno. 2023;14:47. https://doi.org/10.1186/s40104023-00848-x
- World Health Organization. (2013). Research for universal health coverage: World health report
 2013. https://apps.who.int/iris/handle/10665/85761
- Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M.
 Effects of fatty acids on meat quality: a review. Meat Sci. 2003;66:21-32.
 https://doi.org/10.1016/S0309-1740(03)00022-6
- 507 25. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell
 508 DW, Seyama Y, Shaw W. A comprehensive classification system for lipids1. J Lipid Res.
 509 2005;46:839-861. https://doi.org/10.1194/jlr.E400004-JLR200
- 510 26. Li J, Yang Y, Tang C, Yue S, Zhao Q, Li F, Zhang J. Changes in lipids and aroma compounds in
 511 intramuscular fat from Hu sheep. Food Chem. 2022;383:132611.
 512 https://doi.org/10.1016/j.foodchem.2022.132611
- Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM
 cycle" in cancer. Cell Signal. 2021;87:110119. https://doi.org/10.1016/j.cellsig.2021.1101

Tables and figures

Fig. 1. Lipids in the *longissimus dorsi* muscle of Gangba lambs under three feeding regimes. (A) Proportions of different lipid categories and subclasses. (B) Percentage composition of different lipid categories and subclasses. FAC, fatty acyls; GL, glycerolipids; GP, glycerophospholipid; SP, sphingolipid; ST, sterol lipid; AcCa, acyl carnitine; Co, coenzyme; FA, fatty acid; OAHFA, oacyl-(gamma-hydroxy)fa; DG, diglyceride; MG, monoglyceride; MGDG, monogalactosyldiacylglycerol; TG, triglyceride; BisMePA, bis-methyl phosphatidic acid; CL, cardiolipin; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG, lysophosphatidylglycerol; LPI, lysophosphatidylinositol; LdMePE, lysodimethylphosphatidylethanolamine; MLCL, monolyso-

cardiolipin; MePC, methyl phosphatidylcholine; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEt, phosphatidylethanol; PG, phosphatidylglycerol; PI, phosphatidylinositol; PMe, phosphatidylmethanol; PS, phosphatidylserine; dMePE, dimethylphosphatidylethanolamine; Cer, ceramide; CerG2GNAc1, N-acetylglucosamine monohexosyl ceramide; GM3, ganglioside; Hex1Cer, simple glc series monohexosylceramide; Hex2Cer, simple glc series dihexosylceramide; LSM, lysosphingomyelin; SM, sphingomyelin; SPH, sphingosine; phSM, sphingomyelin (phytosphingosine); ChE, cholesterol ester; AcHexSiE, acylglcsitosterol ester; AcHexStE, acylglcstigmasterol ester.

Fig. 2. Multivariate statistical analysis of lipids in the *longissimus dorsi* muscle of Gangba lambs within different feeding regimes. (A) The plot of partial least square discriminant analysis (PLS-DA) scores for different feeding regimes. (B) The Q2Y-intercept in the permutation test indicating the good fitness and predictive ability of the PLS-DA model (-0.495; <0.05). G, the grazing group; SG, the semi-grazing group; SF, the stall feedlot group; QC, the quality-control group.

Fig. 3. Differential lipids profile: (A) Number of the significantly different lipids belonging to five differential classifications for the *longissimus dorsi* muscle. The bars with the category name, name-k, or with name-nk mean the various numbers of lipids of the specific category, and the different numbers of lipids of the particular category could be annotated to the KEGG database or not be annotated to KEGG database, respectively. FAC, fatty acyls; GL, glycerolipids; GP, glycerophospholipid; SP, sphingolipid; ST, sterol lipid; (B) The subclass and number of the differential compounds can be annotated to the KEGG database, which would be used for further analysis. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; DG, diglyceride; TG, triglyceride; SM, sphingomyelin; Cer, ceramide.

Fig. 4. The different lipids (the GP category, A and C; the SP and GL categories, B and D, respectively), determined in the *longissimus dorsi* muscle of Gangba lambs within three groups: G, the grazing group; SG, the semi-grazing group; SF, the stall feedlot group; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; DG, diglyceride; TG, triglyceride; SM, sphingomyelin; Cer, ceramide; The bars in a lipid, without significant differences share the same letters in graphs, whereas significantly different bars are indicated by diverse letters (a, b, and c).

Fig. 5. Correlation analysis between differential lipids and fatty acids (P < 0.05; |R| > 0.6). PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; TG, triglyceride; SM, sphingomyelin; Cer, ceramide.

Fig. 6. Bubble chart of KEGG topology analysis of lipids in *longissimus dorsi* muscle of different feeding regimes (A); Differential abundance (DA) score analysis of KEGG pathway at SG versus G (B), SF versus G (C), and SF versus SG (D) of *longissimus dorsi* muscle, respectively. G, the grazing group; SG, the semi-grazing group; SF, the stall feedlot group.

Fig. 7. Network of the 16 differential lipids and related metabolic pathways. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; TG, triglyceride; SM, sphingomyelin; Cer, ceramide.

Ingredients	Content (%)
Chopped maize	55
Barley	10
Pea	23.5
Wheat bran	10
Limestone	1
Premix ¹	0.5

Table 1 Ingredients composition of the concentrate.

¹Additive: Vitamin A, 10,500 IU; vitamin D3, 2,110 IU; vitamin E, 43 mg; Mn, 40 mg; Fe, 32mg; Zn, 95 mg; Cu 16 mg (per kilogram of dry matter provided).

Nutrient level	Feed		
	Concentrate	Pasture	
Dry matter	88.3	90	
Digestible energy ¹ , MJ/kg	15.1	-	
Crude protein	16.1	8.9	
Neutral detergent fiber	8.7	59.8	
Acid detergent fiber	6	48	
Calcium	0.5	2.3	
Phosphorus	0.4	0.1	

Table 2 Nutrient level of the concentrate and pasture.

¹Digestible energy was calculated value.

30

	Feed			
Fatty acids (mg/100g) ²	Concentrate	Pasture		
C8:0 (octanoic acid)	1.44	1.96		
C10:0 (decanoic acid)	1.94	4.23		
C12:0 (dodecanoic acid)	3.39	8.17		
C14:0 (myristic acid)	7.08	13.04		
C15:0 (pentadecanoic acid)	2.26	5.74		
C16:0 (palmitic acid)	435.53	351.48		
C17:0 (heptadecanoic acid)	3.80	6.24		
C18:0 (stearic acid)	57.03	47.87		
C20:0 (arachidic acid)	13.16	28.34		
C21:0 (heneicosanoic acid)	1.60	2.65		
C22:0 (behenic acid)	14.52	32.34		
C23:0 (tricosanoic acid)	2.11	3.34		
C24:0 (lignoceric acid)	12.95	35.83		
SFA	562.12	541.23		
C16:1 (palmitoleic acid)	10.69	40.21		
C18:1n9c (9-cis-Octadecenoic acid)	608.24	42.52		
C20:1 (eicosenoic acid)	12.19	4.95		
C22:1n9 (erucic acid)	5.19	4.19		
C24:1 (nervonic acid)	3.02	4.53		
MUFA	639.33	96.40		
C18:2n6c (linoleic acid)	1,095	322.23		
C18:3n3 (alpha-linolenic acid)	184.84	1,004		
PUFA	1,280	1,326		
P:S	2.28	2.45		
n-6:n-3	5.92	0.32		

Table 3 Fatty acids content of the concentrate and pasture.

 $^{-1}$ SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; CLA = conjugated linoleic acid; PUFA = polyunsaturated fatty acids.

Fatty acids (mg/100g) ¹	Groups ²			SEM ³	n voluo
	G	SG	SF	SEIVI	<i>p</i> -value
C8:0 (octanoic acid)	1.73	1.66	1.94	0.12	0.889
C10:0 (decanoic acid)	10.9	11.94	16.34	1.20	0.148
C12:0 (dodecanoic acid)	7.73	10.51	14.18	1.20	0.085
C14:0 (myristic acid)	172.76 ^b	185.48^{ab}	288.40^{a}	20.09	0.024
C15:0 (pentadecanoic acid)	29.97	30.26	42.8	2.65	0.062
C16:0 (palmitic acid)	1,937 ^b	2,031 ^b	3,111 ^a	188	0.008
C17:0 (heptadecanoic acid)	95.98 ^b	95.56 ^b	141.25 ^a	8.27	0.023
C18:0 (stearic acid)	1,540	1,664	1,979	96	0.159
C20:0 (arachidic acid)	16.07	14.92	13.94	1.04	0.792
C21:0 (heneicosanoic acid)	54.36	49.36	49.25	2.83	0.711
C22:0 (behenic acid)	8.42 ^a	7.24 ^{ab}	6.47 ^b	0.40	0.049
C23:0 (tricosanoic acid)	12.42	10.97	12.15	0.61	0.67
C24:0 (lignoceric acid)	10.85	9.07	8.36	0.54	0.106
SFA	3898 ^b	4122 ^b	5685 ^a	307	0.023
C14:1 (myristoleic acid)	5.96	5.61	9.39	0.85	0.166
C16:1 (palmitoleic acid)	149.43	129.83	210.85	14.77	0.054
C18:1n9c (9-cis-	2202	2220	4510	261	0.056
Octadecenoic acid)	3202	5239	4310	201	0.030
C20:1 (eicosenoic acid)	11.96	10.22	11.63	0.89	0.743
C22:1n9 (erucic acid)	4	3.34	2.53	0.25	0.055
C24:1 (nervonic acid)	8.71	7.74	6.71	0.48	0.344
MUFA	3,382	3,396	4,751	277	0.057
C18:2n6c (linoleic acid)	468.07	449.75	434.37	22.14	0.843
C20:3n6 (eicosatrienoic acid)	16.68	20.52	20.43	1.31	0.421
C20:4n6 (arachidonic acid)	212.04	170.75	169.01	10.86	0.193
CLA-c9t11 (Conjugated linoleic acid (C9, t11))	16.25 ^{ab}	20.30 ^a	13.56 ^b	1.20	0.042
CLA-t10c12 (Conjugated linoleic acid (T10, c12))	9.3	9.3	7.62	0.54	0.339
n-6	722.33	670.62	644.99	32.77	0.643
C18:3n3 (alpha-linolenic acid)	102.95 ^a	85.97 ^{ab}	69.45 ^b	5.76	0.049
C20:3n3 (eicosatrienoic acid)	2.76	2.13	2.42	0.17	0.278
C20:5n3 (eicosapentaenoic acid)	58.53 ^a	44.95 ^{ab}	32.62 ^b	3.97	0.019
C22:6n3 (docosahexaenoic acid)	17.34 ^a	14.07 ^a	10.31 ^b	1.08	0.02
n-3	181.58ª	147.12^{ab}	114.80 ^b	10.44	0.022
C22:2 (docosadienoic acid)	7.11	6.98	8.53	0.47	0.257
PUFA	911.02	824.73	768.32	41.82	0.397
P:S	0.24 ^a	0.21 ^a	0.14 ^b	0.01	0.004
n-6:n-3	4.00 ^c	4.56 ^b	5.79 ^a	0.24	0.001

Table 4 Fatty acid composition of the *longissimus dorsi* muscle of Gangba lambs under three feeding regimes.

¹SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; CLA = conjugated linoleic acid; PUFA = polyunsaturated fatty acids; ²G = the grazing system; SG = the semi-grazing system; SF = the stall-feeding system. ³SEM = the standard error of the mean. ^{abc} Means within a row with different superscripts differ (p < 0.05).