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Abstract 6 

Saliva, a non-invasive potential source of circulating microRNAs and microbiomes, is not well described in pigs. 7 

Salivary microRNA expression profiles and the functional significance in pigs were investigated in this study. Saliva 8 

samples were extracted from adult female pigs, and small RNA sequencing revealed 26 known and 223 novel 9 

miRNAs. The large number of novel miRNAs also demonstrates the differences between salivary miRNAs in pigs 10 

and other biological samples. Functional analysis of miRNA target genes indicated enrichments in molecular 11 

functions related to transcription regulator activity, cytoskeleton organization, and protein binding, suggesting roles 12 

for this interaction in gene expression and physiological control. Moreover, metagenomic analysis revealed 13 

microbial sequences representing around 39% of the total reads, with Corynebacterium genus, an important member 14 

of the oral microbiota, being the most prevalent. Combining miRNA with microbiome data indicates that porcine 15 

saliva is rich in molecular information that will be useful for salivary health monitoring and microbiome studies. 16 

This study underscores the potential of salivary miRNAs as biomarkers for physiological processes and microbiome 17 

interactions in pigs, paving the way for further research into their diagnostic and monitoring applications. 18 

Keywords (3 to 6): Saliva, MicroRNA, Microbiome, Pig, Non-invasive biomarker 19 
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Introduction 22 

MicroRNAs (miRNAs) are small non-coding RNAs with a length of 22 nucleotides [1]. They regulate the 23 

transcription and post-transcription of gene expression by mRNA degradation or translational repression depending 24 

on the binding to the 3’ untranslated region (UTR) of target mRNA [2,3]. MiRNAs derived from various cell types 25 

are secreted into the extracellular space through exosomes, protein complexes, etc. [4], and then transferred to the 26 

body fluid. These are commonly known as circulating miRNA, showing potential as biomarkers for disease 27 

diagnosis [5]. While most studies on circulating miRNAs have focused on human and livestock blood [6,7], recent 28 

studies have identified miRNAs in saliva, leading to an increase in saliva-based research [8,9]. Saliva shares various 29 

physiological characteristics and allows for repeated specimen collection, similar to blood. Saliva contains miRNAs, 30 

proteins, and hormones, providing insights into its physiological properties and offering further understanding of 31 

several biological processes [10]. Blood collection is painful and stressful, whereas saliva sampling does not cause 32 

pain and can be easily performed even by untrained individuals [11,12]. Investigating salivary miRNAs provides 33 

promising insights for the non-invasive monitoring of health status and related diseases. Additionally, saliva samples 34 

may contain diverse microorganisms that can provide further insights into its biological characteristics and 35 

relationship with the gut microbiome. Therefore, saliva sampling has attracted considerable interest in human 36 

research [13-15]. The miRNAs and the microbiome are widely recognized as key indicators of livestock health, 37 

productivity, stress, and disease [16-18]. And miRNAs have been used as biomarkers for monitoring health 38 

conditions, including inflammation, metabolic disorders, and stress responses, while the microbiome offers insights 39 

into gut health, immune function, and overall well-being. In pigs, salivary miRNAs such as miR-19b, miR-27b, and 40 

miR-365 have been identified as potential biomarkers for assessing pain and stress, particularly in response to 41 

procedures like castration and tail docking, with their expression levels suggesting a viable approach for non-42 

invasive pain monitoring [9]. However, studies on salivary circulating miRNA expression in pigs remain limited.  43 

Therefore, this study aimed to screen salivary miRNAs in pigs and investigate their biological functions. 44 

Additionally, we aimed to preliminarily explore the presence and potential role of the salivary microbiome, thereby 45 

enhancing our understanding of the biological value of porcine saliva. 46 

 47 

Materials and Methods 48 

Animals and saliva sample collection 49 
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Saliva samples were collected using specialized salivary tubes (Salivette, Sarstedt, Nümbrecht, Germany) from 50 

two adult female pigs, consisting of a gilt (Duroc, approximately 46-week-old) and a sow (Landrace, approximately 51 

197-week-old). All animals were housed and cared for at the Kongju National University Animal Farm. And the 52 

cotton roll was kept in the pig mouth, allowing the animal to chew it for 2-3 min followed by centrifugation of 53 

sponge-containing Salivette tubes at 3000rpm for 20 min to collect saliva. 54 

 55 

Small RNA extraction and sequencing 56 

Small RNA was extracted from the saliva using a XENOPURETM Plasma/Serum Small RNA Purification Kit 57 

(Xenohelix, Incheon, Republic of Korea). RNA quality was assessed using an Agilent Technologies TapeStation 58 

2200 (Agilent Technologies, Santa Clara, CA, USA). Sequencing was performed using 100 base single-end reads on 59 

a NovaSeq 6000 sequencer (Illumina, San Diego, CA, USA). 60 

 61 

Salivary small RNA processing and target gene prediction  62 

Raw reads were quality-checked using FASTQC (v0.12.1) [19], and adaptor and low-quality sequences were 63 

trimmed using Cutadapt (v4.7) [20]. Trimmed reads (≥ 15nt) were then aligned to the porcine reference genome 64 

(Sus scrofa 11.1.106, GCA_000003025.6) using Bowtie1 (v1.3.1) [21] for detecting miRNAs. Novel and known 65 

miRNAs were predicted using miRDeep2 with miR databases for various species, including Sus scrofa, Bos taurus, 66 

Equus caballus, Ovis aries, Canis familiaris, and Homo sapiens [22]. Separately from this, the trimmed reads were 67 

also aligned using STAR (v2.7.11b) to the presence of other types of small RNA transcripts with splicing events in 68 

porcine saliva [23]. 69 

 70 

Functional annotation 71 

To further explore the potential biological functions and processes of miRNAs in porcine saliva, the potential 72 

target genes of miRNAs were predicted using the TargetScan (v8.0) tool [24]. For the predicted target genes of 73 

salivary miRNAs, the biological process, cellular component, and molecular function from Gene Ontology (GO) 74 

were used to annotate functions using the Database for Annotation, Visualization, and Integrated Discovery [25] 75 

using the default options. A GO bubble plot was generated using the SRplot tool [26]. 76 

 77 

Taxonomic classification of microbial small RNAs 78 
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Taxonomic classification of salivary small RNA sequences in pigs was performed using Kraken2 [27], and the 79 

taxonomic composition was visualized using Krona [28]. 80 

 81 

Results and Discussion 82 

Identification of known and novel miRNAs in porcine saliva 83 

Saliva was collected from adult female pigs with well-developed salivary glands, and 26 known miRNAs were 84 

detected via small RNA sequencing (Fig. 1a; Table S1). Among these, miR-19b has been highlighted in a previous 85 

study as a potential biomarker of inflammatory responses in piglets after tail docking and castration [9]. Additionally, 86 

223 novel miRNAs were identified based on miRNA sequence databases of other species. This result may be related 87 

to the relatively low number of annotated miRNAs in pigs in miRBase 22.1 [29], compared with that in humans and 88 

other livestock species [30], which likely explains the high number of novel miRNAs annotated. Alternatively, these 89 

novel miRNAs could be saliva-specific. The sizable detection of novel miRNAs supports the potential of saliva as a 90 

specimen for investigating miRNA profiles and their biological processes in pigs. Saliva is a body fluid sample that 91 

can be easily collected by anyone through a noninvasive method, and it has various molecular characteristics, which 92 

may provide valuable insight as potential biomarkers for disease diagnosis and evaluating individual disease 93 

resilience. 94 

 95 

Functional analysis of miRNA target genes.  96 

GO analysis of the target genes of known miRNAs revealed their involvement in key biological processes, such 97 

as transcriptional regulation, cell structure maintenance, and neural development, primarily functioning within the 98 

nucleus and cytoplasm (Fig. 1b). In particular, RNA polymerase II is the key enzyme responsible for protein-coding 99 

genes transcription [31], and miRNAs can regulate gene expression in both positive and negative ways [32]. Their 100 

interactions with RNA polymerase II suggest that miRNAs may act as significant regulators of gene expression. The 101 

cytoskeleton organization process is crucial for maintaining the structural stability of cells. MiRNAs involved in this 102 

process can regulate the expression of genes that control the assembly and dynamics of the cytoskeleton. According 103 

to previous studies, miRNAs are an important role in regulating cytoskeletal proteins [33-35], which affects cell 104 

signaling and structural integrity. Furthermore, the dentate gyrus development term, which is essential for 105 

neurogenesis and neuronal development [36], was significantly enriched in the GO analysis. This implies that 106 
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miRNAs can regulate the expression of genes involved in dentate gyrus development [37]. In addition, the high 107 

enrichment of 'protein binding' suggests that salivary miRNAs may influence various physiological functions in pigs 108 

by regulating protein-protein interactions. These results suggest that porcine saliva contains functional miRNAs with 109 

important roles in the physiological regulation of gene expression and various physiological functions in pigs. 110 

 111 

Microbial composition of porcine saliva 112 

The STAR (29.4–33.5%) and Bowtie (2.04–3.42%) mapping rates differed notably (Table S2), likely due to 113 

ability of STAR to recognize splicing events [23]. Overall, the relatively low mapping rates suggest the substantial 114 

presence of externally derived microorganisms in porcine saliva. Classification via comparison with a diverse 115 

microbial species database identified approximately 39% of the total reads as microbes (Fig. 2), including the 116 

Corynebacterium genus, which is highly abundant in the oral microbiome [38]. Corynebacterium is a meaningful 117 

genus in the oral microbiome, particularly abundant in human saliva, where it contributes to maintaining oral health. 118 

Several studies have shown that Corynebacterium plays a role in restoring the balance of oral biofilms, suggesting 119 

its potential to promote oral health [39-41]. Additionally, they have been found to secrete various fatty acids with 120 

anti-inflammatory effects [42], further supporting their beneficial roles in regulating oral health. Overall, 121 

Corynebacterium appears to be strongly associated with oral health and may actively coordinate health-promoting 122 

activities. Recently, research has also identified Corynebacterium as a predominant genus in the oral microbiome of 123 

sows, suggesting its importance in maintaining the health of the oral microbiome in pigs [43]. This finding asserts 124 

the potential of Corynebacterium in influencing the overall health and resilience of pigs, particularly in relation to 125 

oral health and immune functions. Moreover, a reciprocal interaction between miRNAs and microorganisms have 126 

been extensively studied [44]. MiRNAs can regulate immune responses, which in turn may influence the abundance 127 

of the microbiome, including the abundance of beneficial bacteria [45]. Conversely, microorganisms can also affect 128 

host miRNA expression, influencing biological processes such as inflammation and immune responses [46].  129 

This result demonstrates the potential of saliva as a meaningful sample in pig microbiome research. Salivary RNA 130 

and microbiome composition can be influenced by various factors, such as diet [47], sample collection timepoint 131 

and methods [48]. Therefore, these variables could be considerable in further studies to improve the accuracy and 132 

reliability of saliva samples. 133 

 134 

Conclusions 135 
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In this study, we identified both known and novel miRNAs in porcine saliva, highlighting its potential as a 136 

valuable sample for miRNA exploration and microbiome analysis. The diverse microbial presence, including known 137 

oral microbiota, such as Corynebacterium, suggests that saliva is a promising sample for noninvasive monitoring of 138 

microbiome diversity and physiological states in pigs. However, the origin of the unmapped reads remains unclear 139 

and requires further investigation. This study lays the groundwork for future research on the diagnostic potential of 140 

miRNAs and unidentified components in porcine saliva, offering new possibilities for noninvasive health 141 

monitoring in pigs. 142 
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Fig. 1. The number of salivary miRNAs in pigs (a) and bubble plot for GO analysis of their 286 

candidate target genes (b). 287 
 288 
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Fig. 2. Krona plot for taxonomic abundance of salivary small RNAs in pigs 295 
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