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Abstract 8 

Non-starch polysaccharides (NSPs) in cereal grains can negatively affect the growth performance of early weaned 9 

pigs. Weaned pigs cannot digest NSPs due to a lack of endogenous enzymes. Feeds containing high levels of NSPs 10 

can decrease nutrient digestibility by increasing digesta viscosity and modulating the gut environment. Dietary 11 

xylanase (XYL) is used to increase nutrient utilization by degrading NSPs containing anti-nutritional factors. 12 

Therefore, this study was conducted to evaluate the effects of XYL on the high NSPs diet on growth performance, 13 

frequency of diarrhea, blood profiles, systemic immune responses, digesta characteristics, nutrient digestibility, 14 

and intestinal health parameters of weaned pigs. XYL improved (p < 0.05) the average daily gain (ADG) and gain 15 

to feed ratio from day 1 to 7 and day 1 to 14 compared with the control group (CON). Additionally, pigs fed XYL 16 

tended to have a higher (p = 0.098) ADG from day 8 to 14 than those fed CON. Pigs fed XYL tended to have a 17 

lower (p = 0.093) number of white blood cells on day 28 than those fed CON. The XYL group tended to increase 18 

(p = 0.088) digesta pH in the duodenum, but decreased digesta pH in the jejunum (p = 0.069) and cecum (p < 19 

0.05) on day 28 compared with the CON. Pigs fed XYL had higher (p < 0.05) apparent total tract digestibility 20 

(ATTD) and apparent ileal digestibility of dry matter on day 28 than those fed CON. Additionally, the XYL group 21 

tended to improve ATTD of energy (p = 0.083) and crude protein (p = 0.082) compared with the CON. Dietary 22 

XYL decreased concentrations of tumor necrosis factor-α (p < 0.05), immunoglobulin G (p = 0.066), 23 

malondialdehyde (p = 0.070) in jejunal mucosa compared with CON. In conclusion, supplementation of high 24 

NSPs diet with XYL enhanced the growth performance of weaned pigs by enhancing nutrient digestibility through 25 

the modulation of the intestinal environment. 26 

Keywords: Non-starch polysaccharides, Nutrients digestibility, Xylanase, Gut health, Weaned pigs.  27 ACCEPTED



Introduction 28 

Among the various factors affecting the swine industry, such as feed, disease, management, and 29 

environmental conditions, feed cost is regarded as the largest expense [1]. Additionally, cereal grain costs have 30 

continued to increase over the past 50 years. Moreover, the quantity of cereal grain available in swine diets is 31 

limited due to increasing consumer demand for meat following population growth and rising industrial demand, 32 

such as bioethanol and biodiesel production [2,3]. Therefore, swine nutritionists have been seeking substitutes for 33 

conventional feed ingredients to reduce feed costs. Grain co-products such as corn distiller’s dried grains with 34 

solubles (DDGS), wheat bran, and wheat middlings can be used as low-cost alternative ingredients [4,5]. However, 35 

these co-products have high concentrations of non-starch polysaccharides (NSPs) [6,7]. NSPs in feed encapsulate 36 

other nutrients that are hydrolyzed by endogenous enzymes in the intestine, thereby hindering their utilization 37 

[6,8]. 38 

Early weaned pigs are exposed to environmental, nutritional, physiological, and immunological changes 39 

during this period [9–11]. In particular, weaned pigs consume plant-based feedstuffs containing anti-nutrient 40 

factors, such as NSPs [12]. However, pigs have an immature digestive tract, which results in poor nutrient 41 

utilization [13]. NSPs are primarily composed of cellulose, hemicellulose, and pectin. They constitute a notable 42 

portion of the plant cell wall and more than 90% of its structural strength [14]. NSPs are classified as soluble 43 

and insoluble NSPs based on their physicochemical properties. Excessive NSP inclusion in feed leads to negative 44 

effects on the gastrointestinal tract and causes morphological changes [15]. Soluble NSPs have a high water-45 

holding capacity and can increase the bulk and viscosity of the digesta, affecting the passage rate. In contrast, 46 

insoluble NSPs suppress the enzymatic activity of nutrients in the digesta, thereby delaying transit time and 47 

disrupting intestinal motility [10,12]. These functions reduce nutrient absorption and lead to intestinal disorders 48 

due to local inflammation, which leads to diarrhea and pathogenic infections [16,17]. Xylanase (XYL) enzyme 49 

degrade NSPs such as xylan and arabinoxylan structures in cereal grains [12], which can improve growth 50 

performance and nutrient digestibility. Additionally, XYL can release metabolites from indigest nutrients through 51 

hydrolysis action, which not only modulates the gut environment and body immune status [10,18], but also the 52 

released metabolites can be utilized for energy utilization in the body [19]. However, the effects of dietary XYL 53 

on growth and health of pigs vary depending on the dietary grain composition [10,12,20]. Moreover, 54 

supplementation of dietary XYL in high level NSPs diets can be expected to have positive effects in pigs [21]. 55 

Therefore, the objective of this study was to evaluate the effect of XYL supplementation on growth performance, 56 
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frequency of diarrhea, blood profiles, systemic immune responses, digesta characteristics, nutrients digestibility, 57 

and intestinal health parameters of weaned pigs fed high NSPs diets. 58 

 59 

Materials and methods 60 

Experimental design, animals, and diets 61 

The protocols for this animal study were approved by the Institutional Animal Care and Use Committee 62 

of Chungnam National University, Daejeon, Republic of Korea and followed the guidelines and regulations for 63 

animal use (approval# 202112-CNU-182). 64 

A total of 60 newly weaned pigs [(Landrace × Yorkshire) × Duroc; 8.04 ± 0.99 kg of average initial 65 

body weight (BW); 4 weeks of age] were assigned to 2 dietary treatments (5 pigs per pen; 6 replicate pens per 66 

dietary treatment) using a randomized complete block design (block = initial BW). Control (CON) pigs were fed 67 

a high NSPs diet, and the other pigs were fed a CON diet with 0.03% XYL for 28 days. The experimental diet 68 

was formulated to meet or exceed the nutrient requirements of the weaned pigs, as estimated by the National 69 

Research Council [22] (Table 1). The experimental diet was designed with high NSPs content using corn DDGS 70 

and wheat. XYL product was obtained from a commercial company (CJ Blossom Park, Suwon, Republic of 71 

Korea). During the last week of the study, chromium oxide (Daejung Chemicals & Metals Co. Ltd., Siheung-si, 72 

Gyeonggi-do, Republic of Korea) was added at a concentration of 3 g/kg to the dietary treatments as an indicator 73 

of nutrient digestibility [23]. All pigs had ad libitum access to feed and water and were housed in pens of equal 74 

size (2 m × 2 m) with automatically controlled temperature, humidity, and lighting during the experimental period. 75 

 76 

Data and sample collection 77 

Feed intake and pigs’ BW in each pen were recorded on day 1, 7, 14, and 28 to calculate growth 78 

performance parameters, including average daily gain (ADG), average daily feed intake (ADFI), and gain to feed 79 

ratio (G:F). The frequency of diarrhea in pigs was recorded during the first 2 weeks after weaning by visual 80 

observation with a score ranging from 1 to 5 (1 = dry feces, 2 = normal feces, 3 = slightly mild feces, 4 = mild 81 

diarrhea, and 5 = watery severe diarrhea) and was calculated by counting the number of days with a pen average 82 
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diarrhea score of 4 or higher [24]. Blood samples were collected from one randomly selected pig in each pen on 83 

days 1, 7, 14, and 28 using a 10 mL vacutainer tube with or without ethylenediaminetetraacetic acid (EDTA) to 84 

yield whole blood and serum, respectively [25]. Serum samples were obtained after centrifugation of non-EDTA 85 

tubes at 3,000 × g for 15 min at 4 ℃. The supernatant after centrifugation was collected and stored at -80℃ until 86 

analysis of immune responses [26]. Fecal samples were collected from one randomly selected pig per pen by rectal 87 

stimulation for 3 days following a four day adaptation period and stored at -20 ℃ for subsequent analysis of 88 

apparent total tract digestibility (ATTD) [12]. On the last day of the study, two randomly selected pigs per pen 89 

were anesthetized with 2 mL of suxamethonium chloride (Succicholine; Ilsung Pharm. Co. Ltd., Seoul, Republic 90 

of Korea). Immediately after injection, the pigs were euthanized by exposure to CO2 gas. Ileal digesta samples 91 

were collected into 50 mL tubes from a site 30 cm proximal to the ileocecal junction and stored at -20 ℃ until 92 

apparent ileal digestibility (AID) analysis [27]. To measure the viscosity and pH of digesta, samples were collected 93 

from the stomach, duodenum, jejunum, ileum, and cecum. The samples for viscosity analysis were placed into 50 94 

mL tubes and stored at -20 ℃, while digesta pH was measured immediately after collection using a digital pH 95 

meter (Accumet; Fisher Scientific, Hampton, NH, USA) [26]. Mid-jejunal segments were collected, rinsed with 96 

distilled water, and fixed in 50 mL conical tubes with 10% neutral buffered formalin solution for 97 

histomorphological measurements. Mucosal samples were scraped from the remaining mid-jejunum, placed into 98 

2 mL microtubes, and stored at -80 ℃ freezer to determine the mucosal immune responses and oxidative stress 99 

indicators.  100 

 101 

Blood profiles and systemic immune responses 102 

Whole blood samples in EDTA tubes were analyzed by an automated hematology analyzer (scil Vet abc 103 

hematology analyzer, scil animal care company, F-67120 Altorf, France) for evaluating the number of white blood 104 

cells (WBC), platelet, red blood cells, mean corpuscular volume, hemoglobin, mean corpuscular, hematocrit, and 105 

mean corpuscular concentration. Serum samples were used to measure tumor necrosis factor- alpha (TNF-α; R&D 106 

System Inc., Minneapolis, MN, USA), transforming growth factor- beta1 (R&D System Inc., Minneapolis, MN, 107 

USA), immunoglobulin G (IgG; Bethyl Laboratories Inc., Waltham, MA, USA), IgA (Bethyl Laboratories Inc., 108 

Waltham, MA, USA), interleukin-10 (IL-10; R&D System Inc., Minneapolis, MN, USA), and C-reactive protein 109 

(CRP; Aviva Systems Biology Inc., San Diego, CA, USA) using porcine-specific enzyme-linked immunosorbent 110 

assay (ELISA) kits following the provided manufacturer protocols. Absorbance was measured at 450 nm using a 111 
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microplate reader (Epoch microplate spectrophotometer, BioTek Instruments Inc., Winooski, VT, USA) and 112 

software (Gen5 Data Analysis Software, BioTek Instruments Inc., Winooski, VT, USA), and the concentrations 113 

were calculated based on the standard curve from each ELISA kit. 114 

 115 

Viscosity of digesta 116 

The procedure for determining the digesta viscosity was adapted from a previous study [15]. The 117 

viscosity of the digesta in the stomach, jejunum, ileum, and cecum was measured using a viscometer (Model DV-118 

II Version 2.0; Brookfield Engineering Laboratories Inc., Stoughton, MA, USA). The stored sample tubes were 119 

centrifuged at 1,000 × g for 10 min to obtain the liquid phase. After centrifugation, the liquid phase was transferred 120 

to a 2 mL microtube to second centrifuge at 1,000 × g for 10 min. The supernatant was obtained and transferred 121 

to a 2 mL microtube for further analysis. Before measuring 0.5 mL of digesta supernatant, the viscometer was set 122 

to 25°C. The viscometer results were calculated as the average between 45.0/s and 22.5/s shear rates and recorded 123 

as millipascal-seconds. 124 

 125 

Nutrient digestibility 126 

Diets, ileal digesta, and fecal samples were dried using air-forced drying oven at 65 ℃ for 72 h. All 127 

samples were ground to powder using a grinder (80350, Hamiltonbeach Inc, Virginia, USA) for AID and ATTD 128 

analysis. The bomb calorimeter (Parr 1261EA Bomb Calorimeter, Parr Instrument CO, Moline, IL, USA) was 129 

used for measuring energy [28]. Dry matter (DM; method 930.15), crude protein method (CP; method 988.05), 130 

and crude fiber (CF; method 962.09) were analyzed based on Association of Official Analytical Chemists [29]. 131 

NSPs were analyzed based on a previous report [30]. The chromium concentration was analyzed using an 132 

absorption spectrophotometer (Hitachi Z-5000 Absorption Spectrophotometer, Hitachi High-Technologies Co, 133 

Tokyo, Japan). The calculation methods for AID and ATTD have been described in a previous study [27,31]. 134 

 135 

Histomorphological analysis 136 

Histomorphological analyses were performed as previously described [12,32]. The two sections from 137 

the mid-jejunum were dehydrated, embedded in paraffin wax, sectioned to 5 μm and stained using hematoxylin 138 

and eosin. The villus height to crypt depth ratio (VH:CD) was measured from stained slides using an Olympus 139 
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CX31 microscope (Lumenera Corporation, Ottawa, Canada) equipped with an Infinity 2-2 digital CCD camera. 140 

Fifteen well-oriented, intact villi and their associated crypt depths were measured on each slide. The length was 141 

measured from the top of the villi to the villus crypt junction, and the crypt depth was measured from the villus 142 

crypt junction to the bottom of the crypt. The images for counting Ki-67 positive cells in the crypt were cropped 143 

into 15 intact images from each slide, and the ImageJS software was used to calculate the percentage of Ki-67 144 

positive cells to total cells in the crypt. 145 

 146 

Intestinal immune responses and oxidative stress indicators 147 

Mucosal samples were weighed, suspended in 1 mL of phosphate-buffered saline, homogenized on ice 148 

using a tissue homogenizer (Tissuemiser; Thermo Fisher Scientific Inc., Waltham, MA USA), and centrifuged at 149 

14,000 × g at 4 °C for 3 min. After centrifugation, the supernatant was collected and stored at -80 ℃ until further 150 

analysis [10]. Jejunal mucosal immune responses [TNF-α (R&D System Inc., Minneapolis, MN, USA), IgG 151 

(Bethyl Laboratories Inc., Waltham, MA, USA), IgA (Bethyl Laboratories Inc., Waltham, MA, USA), IL-6 (R&D 152 

System Inc., Minneapolis, MN, USA), and IL-8 (R&D System Inc., Minneapolis, MN, USA)] and oxidative stress 153 

[malondialdehyde (MDA; Cell Biolabs, San Diego, CA, USA), protein carbonyl (PC; Cell Biolabs, San Diego, 154 

CA, USA), and endotoxin (Aviva Systems Biology Inc., San Diego, CA, USA)] were determined using ELISA 155 

kits following the manufacturer’s instruction. The absorbance was measured using a microplate reader (Epoch 156 

microplate spectrophotometer, BioTek Instruments Inc., Winooski, VT, USA) and software (Gen5 Data Analysis 157 

Software, BioTek Instruments Inc., Winooski, VT, USA). All concentrations were calculated based on standard 158 

curve generated from the concentration and absorbance of each standard. 159 

 160 

Statistical analyses 161 

All data, except for the frequency of diarrhea, were analyzed using the GLM procedure in SAS (SAS 162 

Inst. Inc., Cary, NC, USA), using a randomized complete block design (block = initial BW). The experimental 163 

unit used was a pen. Statistical models for growth performance, digesta characteristics, nutrient digestibility, 164 

jejunal health parameters, blood profiles, and systemic immune responses included effects of dietary treatments 165 

as the main effects and BW as a covariate. Chi-square test was used to determine the frequency of diarrhea. 166 
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Statistical significance and tendency between dietary treatments were considered at p < 0.05 and 0.05 ≤ p < 0.10, 167 

respectively.  168 

 169 

Results 170 

Growth performance and frequency of diarrhea 171 

XYL increased (p < 0.05) ADG and G:F from day 1 to 7 and from day 1 to 14 compared with the CON 172 

(Table 2). Additionally, pigs fed XYL tended to have a higher (p = 0.098) ADG from day 8 to 14 than those fed 173 

CON. However, there was no difference on ADFI of weaned pigs during overall experimental period between the 174 

treatments. There was no difference in frequency of diarrhea between CON and XYL.  175 

 176 

Blood profiles and systemic immune responses 177 

 Pigs fed XYL tended to have lower (p = 0.093) WBC counts on day 28 than those fed the CON (Table 178 

3). However, no differences were observed in serum immune responses of weaned pigs between the CON and 179 

XYL (Table 4). 180 

 181 

Digesta characteristics and nutrient digestibility 182 

Pigs fed XYL tended to have a higher (p = 0.088) digesta pH in the duodenum than those fed the CON 183 

(Table 5). In contrast, the XYL group digesta pH decreased in the jejunum (p = 0.069) and cecum (p < 0.05). 184 

However, no differences were observed in the digesta viscosity of the stomach, duodenum, jejunum, ileum, and 185 

cecum between the dietary treatments. Dietary XYL increased the AID and ATTD of DM (p < 0.05) and ATTD of 186 

energy (p = 0.083) and CP (p = 0.082) on day 28 compared with the CON (Table 6). 187 

 188 

Intestinal histomorphology, immune responses, and oxidative stress indicators 189 

 No differences were found in VH:CD and percentage of Ki-67 positive cells in the jejunum between the 190 

dietary treatments (Table 7). However, pigs fed XYL had lower (p < 0.05) concentrations of TNF-α and IgG in 191 
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the jejunal mucosa than those fed CON. In addition, dietary XYL tended to decrease (p = 0.070) MDA level in 192 

the jejunal mucosa compared with CON.  193 

 194 

Discussion 195 

In this study, we demonstrated that supplemental dietary XYL in weaned pigs fed a high NSPs diet 196 

improved growth performance and nutrient digestibility, modulated digesta pH in the gut, and reduced local 197 

immune responses and oxidative stress indicator. These positive effects of dietary XYL may be attributed to the 198 

increased nutrient utilization efficiency and the regulation of the gut environment through the enzymatic 199 

breakdown of NSPs in the grain cell walls.  200 

The high NSPs diets used in this study included corn DDGS and wheat, which contained approximately 201 

3.1 and 2.4% soluble NSPs and 25.2 and 9.0% insoluble NSPs, respectively [33–35]. The negative effects of 202 

DDGS inclusion in swine diets on growth performance and nutrient digestibility reported in previous studies could 203 

be explained by the increased NSPs levels in the feed, which reduce nutrients availability and gut functions 204 

[17,35,36]. Additionally, wheat is a relatively viscous grain compared to corn, and wheat-based diets have a higher 205 

total NSP content than corn-based diets [13,37]. NSPs are not degraded by the endogenous digestive enzymes of 206 

pigs, which limit their nutrient utilization [38]. Dietary XYL, an exogenous enzyme, has been used to break down 207 

the structural bonds of NSP, thereby modulating digesta characteristics and enhancing nutrient utilization in the 208 

feed [7]. However, the effects of dietary XYL on the growth performance of pigs have been inconsistent [15,20]. 209 

In the present study, the addition of dietary XYL improved ADG and G:F in pigs for the first 2 weeks after weaning. 210 

The differences in the effects of XYL on growth performance may be attributed to the differences in NSPs content 211 

in the diet, and the effects of XYL were relatively pronounced when supplemented with high NSP diet [18,20]. 212 

The high NSP diet used in this study is considered sufficient as a substrate for enzymatic XYL activity, thereby 213 

improving nutrient utilization and resulting in beneficial performance in weaned pigs. Thus, our results showed 214 

that although supplemental XYL did not influence the frequency of diarrhea for the first 2 weeks after weaning, 215 

the growth performance indicated a result indicates positive effect of dietary XYL during the critical period after 216 

weaning. 217 
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The viscosity of digesta in the small intestine is related to the structure and molecular weight of the 218 

polysaccharides, which can have a greater influence on viscosity than the type of linkage or sugar composition of 219 

the polysaccharide [13]. The high digesta viscosity in the digestive tract can disturb nutrient digestibility and 220 

absorption and can also increase the level of oxidative stress and inflammatory responses, which results in damage 221 

to the intestinal histomorphology [12]. Previous studies have demonstrated the functional effects of supplemental 222 

XYL on the digestive tract of weaned pigs fed a high NSPs diet [10,12]. However, the effect of dietary XYL on 223 

digesta viscosity can varies depending on the presence of primary cereal grains. Several studies have evaluated 224 

the effects of supplemental XYL in corn-soybean meal or corn-soybean meal-corn DDGS-based diets on intestinal 225 

digesta viscosity [10,20,39] and have also assessed the absence of interactions between dietary XYL and corn 226 

DDGS [18]. In this study, we observed that the addition of dietary XYL to corn-soybean meal-corn DDGS-wheat-227 

based diets containing high levels of NSPs did not affect the viscosity of gastrointestinal digesta in weaned pigs. 228 

Cereal co-products generally do not elevate digesta viscosity to a similar extent as conventional cereal grains 229 

because of their higher levels of insoluble NSPs [13,33]. Nevertheless, corn DDGS and wheat in the basal diets 230 

of this study not only had higher levels of soluble NSPs than corn and soybean meal but also contained more 231 

insoluble NSPs than soluble NSPs [34,40]. The lack of a substantial effect on digesta viscosity despite XYL 232 

supplementation may be attributed to the high content of insoluble NSPs in the experimental diets, which may not 233 

have been readily degraded by exogenous XYL. Previous studies have shown that the porcine digestive tract 234 

digestibility of insoluble NSP following XYL addition is lower than that of soluble NSP [41,42]. Unlike soluble 235 

NSPs, which contribute to digesta viscosity, insoluble NSPs act as physical barriers to digestive enzymes in the 236 

gastrointestinal tract [43], thereby impeding nutrient utilization. Therefore, high levels of NSPs in the diet may 237 

provide sufficient substrates for XYL activity, but the impact on digesta viscosity is limited due to high levels of 238 

insoluble NSPs in the diets. 239 

We found that dietary XYL modulated intestinal digesta pH in weaned pigs. Soluble NSPs are primarily 240 

degraded in the proximal intestine [44], and the observed increase in duodenal digesta pH following XYL addition 241 

may be associated with the accelerated degradation of NSPs. This change enhances the hydrolysis of NSPs, 242 

making nutrients more accessible to endogenous digestive enzymes. In contrast, the lower digesta pH in the 243 

jejunum and cecum of XYL supplemented pigs may indicate the fermentation of NSPs and/or their degradation 244 

products. In general, the water-holding capacity of fibers affects fermentability, soluble NSPs are more 245 

fermentable than insoluble NSPs [39] supplemental XYL indirectly provides fermentable xylooligosaccharides 246 
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(XOS) via hydrolysis of the xylan backbone [45]. Fermentation of NSPs end-products, such as XOS, by 247 

commensal gut microbiota leads to the production of short-chain fatty acids (SCFAs), which lower the pH of the 248 

gut [46,47]. In addition, SCFAs produced by gut microbiota play crucial roles in gut health by modulating barrier 249 

function and immune responses [47]. Therefore, it is suggested that the pH of the gut digesta modified by XYL 250 

supplementation may contribute not only to improved accessibility to nutrients but also to changes in the gut 251 

environment of weaned pigs. 252 

Our findings on nutrient digestibility further support the beneficial effects of XYL supplementation. 253 

Supplemental XYL did not affect NSP digestibility in weaned pigs but improved the AID of DM and ATTD of 254 

DM, energy, and CP. The proposed mode of action of supplemental XYL to enhance nutrient digestibility is to 255 

degrade the main chains of NSPs in the diet, thereby increasing the accessibility of nutrients to endogenous 256 

digestive enzymes [48]. This hydrolysis converts the digesta compounds into smaller molecules that can be 257 

absorbed more efficiently into the intestine. However, the improvement in nutrient digestibility did not support 258 

the improvement in growth performance, which would require consideration of nutrient absorption. Furthermore, 259 

further studies are needed to evaluate the dosage of diePtary XYL at different growth stages to effectively feed 260 

animals for the long-term translation of growth enhancement through nutrients in feed. Although improvements 261 

in nutrient digestibility did not lead to improved growth performance of weaned pigs, findings of this study 262 

suggests that the addition of XYL to high NSPs diets can enhance nutrient availability rather than directly 263 

improving NSP digestion by mitigating the NSP-induced physical barrier to digestion. Additionally, the marked 264 

improvement in ATTD, relative to AID, suggests that the large intestinal microbiota may contribute to nutrient 265 

digestibility through fermentation, as supported by the digesta pH in the hindgut. Further studies are needed to 266 

investigate the effect of dietary XYL on different diet compositions and its effects on the proximal to distal gut 267 

may provide its potential to enhance growth by improving nutrient utilization in weaned pigs. 268 

The inclusion of DDGS in the feed can cause oxidative stress in pigs, which may modulate their immune 269 

responses [49,50]. In addition, highly viscous soluble NSP can increase oxidative stress and inflammatory 270 

responses associated with intestinal enterotoxigenic Escherichia coli proliferation [51–53], and a positive 271 

correlation with post-weaning colibacillosis has been reported [54,55]. One of the final products of lipid and 272 

protein peroxidation are considered oxidative stress products such as MDA and PC [10], which can destroy the 273 

intestinal environment. Excessive levels of reactive oxygen species can damage cellular components such as the 274 

cell membrane, DNA, and proteins, leading to chronic inflammation [56]. Thus, oxidative stress can induce pro-275 
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inflammatory cytokines in intestinal immune cells and mucosal epithelial cells to modulate immune responses in 276 

the intestine [10,57]. In the present study, mucosal TNF-α, IgG, and MDA were reduced following dietary XYL 277 

addition, indicating that XYL appears to have anti-inflammatory and anti-oxidant effects in weaned pigs. In 278 

addition, the decrease in jejunal mucosal IgG levels following XYL supplementation suggests that the local 279 

immune response was modulated. As high levels of NSP in feed can act as anti-nutritional factors [58], effective 280 

NSPs degradation and fermentation by dietary XYL may be a result of a reduction in the antigenic components 281 

reaching the intestinal immune system. Furthermore, the reduced WBC count in XYL-supplemented pigs suggests 282 

a potential systemic immunomodulatory effect, because the number of WBC can be used as an indicator of 283 

systemic inflammatory responses. However, as no effects were found on the levels of systemic inflammatory 284 

cytokines, the impact of dietary XYL on systemic immune responses requires further investigation.  285 

 286 

Conclusion 287 

Our findings suggest that supplementation of high NSP diet with dietary XYL including corn DDGS 288 

and wheat, can improve the early growth performance and nutrient digestibility of weaned pigs. Dietary xylanase 289 

may play an important role in enhancing gut health by degrading and fermenting complex NSPs, thereby 290 

regulating nutrient utilization and the biochemical environment in the gut. In addition, the reduction in 291 

inflammatory markers and oxidative stress indicators suggests that dietary xylanase helps maintain intestinal 292 

integrity and functions, demonstrating its potential as a feed additive to improve the growth and health of weaned 293 

pigs. Further studies are needed to evaluate the effects of dietary xylanase on the growth performance, intestinal 294 

health, and local and systemic immune responses in weaned pigs fed in various cereal grain-based diets. 295 
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Table 1. Composition of experimental diets (as-fed basis) 466 

Item Control 

Ingredient, % 

Corn 12.50 

Corn distillers dried grains with soluble 30.00 

Soybean meal, 44% 14.00 

Wheat 30.00 

Whey permeate 5.00 

Spray dried porcine plasma 0.60 

Fish meal 1.00 

Soybean oil 3.30 

Limestone 1.30 

Dicalcium phosphate 0.75 

Iodized salt 0.20 

Vitamin-mineral premix1 0.35 

Lysine-HCl 0.71 

DL-Methionine 0.10 

L-Threonine 0.17 

L-Tryptophan 0.02 

Total 100 

Calculated energy and nutrient contents 

Dry matter, % 88.44 

Metabolizable energy, kcal/kg 3398.69 

Crude protein, % 21.93 

SID2 lysine, % 1.23 

SID2 methionine, % 0.40 

SID2 cysteine + methionine, % 0.69 

SID2 threonine, % 0.73 

SID2 tryptophan, % 0.20 

Calcium, % 0.78 

Total phosphorus, % 0.60 

STTD3 phosphorous, % 0.38 

ATTD4 phosphorous, % 0.33 

Non-starch polysaccharides, % 15.47 
1Provided per kilogram of diet: vitamin A, 12,000 IU; vitamin D3, 2,500 IU; vitamin E, 30 IU; vitamin 467 

K3, 3 mg; D-pantothenic acid, 15 mg; nicotinic acid, 40 mg; choline, 400 mg; and vitamin B12, 12 μg; Fe, 90 mg 468 

from iron sulfate; Cu, 8.8 mg from copper sulfate; Zn, 100 mg from zinc oxide; Mn, 54 mg from manganese oxide; 469 

I, 0.35 mg from potassium iodide; Se, 0.30 mg from sodium selenite. 470 

2SID, standardized ileal digestible. 471 

3STTD, standardized total tract digestible. 472 

4ATTD, apparent total tract digestible. 473 
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Table 2. Effects of dietary xylanase on growth performance of weaned pigs1 474 

Item2 CON XYL SEM p-value 

Day 1 to 7     

Initial BW, kg 8.04 8.05 0.44 0.985 

Final BW, kg 8.94 9.40 0.46 0.497 

ADG, g/d 128.57 192.86 17.12 0.026 

ADFI, g/d 225.52 245.90 12.84 0.288 

G:F, g/g 0.574 0.785 0.056 0.014 

Day 8 to 14     

Initial BW, kg 8.94 9.40 0.46 0.497 

Final BW, kg 10.86 11.76 0.53 0.255 

ADG, g/d 274.29 337.14 24.87 0.098 

ADFI, g/d 397.19 434.67 30.71 0.408 

G:F, g/g 0.688 0.776 0.064 0.306 

Day 1 to 14     

Initial BW, kg 8.04 8.05 0.44 0.985 

Final BW, kg 10.86 11.76 0.53 0.255 

ADG, g/d 201.43 265.00 15.25 0.014 

ADFI, g/d 311.36 340.29 19.96 0.330 

G:F, g/g 0.647 0.779 0.045 0.043 

Day 15 to 28     

Initial BW, kg 10.86 11.76 0.53 0.255 

Final BW, kg 16.82 18.22 0.93 0.311 

ADG, g/d 425.71 461.43 32.08 0.455 

ADFI, g/d 801.29 857.00 47.65 0.428 

G:F, g/g 0.532 0.539 0.020 0.644 

Day 1 to 28     

Initial BW, kg 8.04 8.05 0.44 0.985 

Final BW, kg 16.82 18.22 0.93 0.311 

ADG, g/d 313.57 363.21 19.33 0.100 

ADFI, g/d 556.32 598.64 31.80 0.369 

G:F, g/g 0.564 0.607 0.020 0.105 

Frequency of diarrhea, % 20.24 14.29 - 0.391 

 1Each value is the mean value of 6 replicates (5 pigs/pen). 475 

2CON, high non-starch polysaccharides diet; XYL, CON + 0.03% dietary xylanase; BW, body weight; 476 

ADG, average daily gain; ADFI, average daily feed intake; G:F, gain to feed ratio; Frequency of diarrhea for the 477 

first two weeks after weaning = (number of diarrhea with score higher than 4 / number of pen days) × 100.478 
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Table 3. Effects of dietary xylanase on blood profiles of weaned pigs1 479 

Item2 CON XYL SEM p-value 

White blood cell, ×103/µL     

Day 1 13.95 14.65 2.67 0.859 

Day 7 19.70 18.50 1.53 0.592 

Day 14 24.95 22.95 2.55 0.591 

Day 28 25.45 21.42 1.54 0.093 

Platelet, ×103/ µL     

Day 1 426.25 480.00 48.54 0.463 

Day 7 430.00 514.50 122.13 0.652 

Day 14 719.00 637.33 108.32 0.591 

Day 28 485.00 515.17 515.17 0.612 

Hematocrit, %     

Day 1 32.15 31.18 1.81 0.716 

Day 7 34.98 28.65 3.06 0.175 

Day 14 29.33 28.60 2.08 0.808 

Day 28 30.68 30.32 1.05 0.810 

Red blood cell, ×106/µL     

Day 1 5.65 5.53 0.30 0.783 

Day 7 5.53 7.34 0.99 0.226 

Day 14 4.68 5.63 0.46 0.178 

Day 28 6.11 5.95 0.23 0.627 

MCV, fL     

Day 1 56.75 56.50 0.91 0.852 

Day 7 49.67 50.50 2.64 0.828 

Day 14 48.50 50.83 2.33 0.494 

Day 28 50.33 51.00 1.29 0.722 

Hemoglobin, g/dL     

Day 1 10.95 10.70 0.59 0.775 

Day 7 9.65 12.78 1.98 0.289 

Day 14 7.88 9.85 0.88 0.143 

Day 28 10.50 10.35 0.35 0.770 

MCH, pg     

Day 1 19.33 19.45 0.51 0.868 

Day 7 16.95 17.17 0.82 0.855 

Day 14 16.85 17.47 0.80 0.597 

Day 28 17.27 17.38 0.47 0.864 

Hematocrit, %     

Day 1 32.15 31.18 1.81 0.716 

Day 7 34.98 28.65 3.06 0.175 

Day 14 29.33 28.60 2.08 0.808 

Day 28 30.68 30.32 1.05 0.810 

MCHC, g/dL     

Day 1 34.03 34.50 0.52 0.544 

Day 7 34.28 34.12 0.45 0.796 

Day 14 34.88 34.32 0.50 0.443 

Day 28 34.20 34.12 0.20 0.772 
1Each value is the mean value of 6 replicates (1 pig/pen). 480 

2CON, high non-starch polysaccharides diet; XYL, CON + 0.03% dietary xylanase; MCV, mean 481 

corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration.482 
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Table 4. Effects of dietary xylanase on systemic immune responses of weaned pigs1 483 

Item2 CON XYL SEM p-value 

Day 1     

TNF-α, pg/mL 150.24 148.24 1.33 0.398 

TGF-β1, pg/mL 2124.29 1888.61 100.22 0.172 

IL-10, pg/mL 48.49 37.26 4.43 0.215 

CRP, ng/mL 18.44 18.88 0.82 0.740 

IgG, mg/mL 20.02 20.12 13.79 0.996 

IgA, mg/mL 0.15 0.17 0.06 0.831 

Day 28     

TNF-α, pg/mL 130.61 96.29 19.81 0.249 

TGF-β1, pg/mL 2014.28 1840.31 167.33 0.479 

IL-10, pg/mL 74.00 145.17 55.92 0.389 

CRP, ng/mL 114.28 108.16 5.75 0.469 

IgG, mg/mL 22.29 13.17 4.09 0.146 

IgA, mg/mL 0.20 0.26 0.06 0.493 
1Each value is the mean value of 6 replicates (1 pig/pen). 484 

2CON, high non-starch polysaccharides diet; XYL, CON + 0.03% dietary xylanase; TNF-α, tumor 485 

necrosis factor-α; IgG, immunoglobulin G; IgA, immunoglobulin A; IL-10, interleukin-10; CRP, C-reactive 486 

protein; TGF-β1, transforming growth factor- β1. 487 
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Table 5. Effects of dietary xylanase on pH and viscosity of gut digesta of weaned pigs1 488 

Item2 CON XYL SEM p-value 

Digesta pH     

Stomach 3.42 3.66 0.32 0.600 

Duodenum 6.20 6.43 0.10 0.088 

Jejunum 6.25 6.07 0.07 0.069 

Ileum 7.00 7.15 0.13 0.419 

Caecum 6.07 5.91 0.05 0.048 

Digesta viscosity     

Stomach 1.15 1.05 0.05 0.183 

Duodenum 1.16 1.23 0.05 0.278 

Jejunum 1.17 1.12 0.04 0.304 

Ileum 1.50 1.55 0.08 0.663 

Caecum 1.88 1.88 0.15 0.985 
1Each value is the mean value of 6 replicates (2 pigs/pen). 489 

2CON, high non-starch polysaccharides diet; XYL, CON + 0.03% dietary xylanase.490 
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Table 6. Effects of dietary xylanase on nutrient digestibility of weaned pigs1 491 

Item2 CON XYL SEM p-value 

Apparent ileal digestibility, %     

Dry matter 73.16 75.41 0.52 0.013 

Energy 70.36 71.84 1.62 0.531 

Crude protein 67.56 69.54 2.07 0.514 

Crude fiber 40.79 41.59 2.95 0.852 

Non-starch polysaccharides 38.38 43.09 2.17 0.156 

Apparent total tract digestibility, %     

Dry matter 81.95 84.43 0.54 0.008 

Energy 82.96 86.33 1.24 0.083 

Crude protein 79.79 81.32 0.56 0.082 

Crude fiber 51.32 52.52 5.30 0.876 

Non-starch polysaccharides 51.69 52.05 3.12 0.936 
1Each value is the mean value of 6 replicates (1 pig/pen). 492 

2CON, high non-starch polysaccharides diet, XYL, CON + 0.03% dietary xylanase.493 
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Table 7. Effects of dietary xylanase on intestinal health parameters of weaned pigs1 494 

Item2 CON XYL SEM p-value 

Histomorphology     

VH:CD, μm/μm 3.45 3.47 0.22 0.952 

Ki-67 positive, % 35.28 34.32 1.21 0.575 

Mucosal immune responses     

TNF-α, pg/mg 0.56 0.14 0.05 < 0.001 

IL-6, pg/mg 0.49 0.62 0.11 0.404 

IL-8, ng/mg 0.58 0.57 0.09 0.927 

IgG, μg/mg 7.02 4.41 0.97 0.066 

IgA, μg/mg 1.51 2.54 0.45 0.110 

Mucosal oxidative stress     

MDA, μM/mg 0.34 0.21 0.05 0.070 

PC, nmol/mg 0.57 0.50 0.05 0.341 

Endotoxin, EU/mL 94.90 60.28 17.50 0.167 
1Each value is the mean value of 6 replicates (2 pigs/pen). 495 

2CON, high non-starch polysaccharides diet; XYL, CON + 0.03% dietary xylanase; VH:CD, villus 496 

height to crypt depth ratio; TNF-α, tumor necrosis factor-α; IgG, immunoglobulin G; IgA, immunoglobulin A; 497 

IL-6, interleukin-6; IL-8, interleukin-8; MDA, malondialdehyde; PC, protein carbonyl. 498 
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