JAST (Journal of Animal Science and Technology) TITLE PAGE

Upload this completed form to website with submission

3

1

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Genome Announcement
Article Title (within 20 words without	Complete genome sequence of Enterococcus faecium strain
abbreviations)	GB_C_05 with potential characteristics applicable as a bacteriocin-
	producing probiotic feed additive
Running Title (within 10 words)	Complete genome sequence of Enterococcus faecium strain
	GB_C_05
Author	Juyoun Kang ^{1#} , Hyunok Doo ^{1#} , Jinok Kwak ^{1#} , Eun Sol Kim ^{1, 2} , Gi
	Beom Keum ¹ , Yejin Choi ¹ , Haram Kim ¹ , Yeongjae Chae ¹ , Sheena
	Kim ¹ , Hyeun Bum Kim ^{1*} , and Ju-Hoon Lee ^{3*}
Affiliation	¹ Department of Animal Biotechnology, Dankook University,
	Cheonan 31116, Korea
	² Division of Infectious Diseases, Department of Pediatrics,
	University of North Carolina at Chapel Hill, Chapel Hill 27599,
	USA
	³ Department of Food Animal Biotechnology, Department of
	Agricultural Biotechnology, Center for Food and Bioconvergence,
	Seoul National University, Seoul 08826, Korea
ORCID (for more information, please visit	Juyoun Kang (https://orcid.org/0000-0002-3974-2832)
https://orcid.org)	Hyunok Doo (https://orcid.org/0000-0003-4329-4128)
	Jinok Kwak (https://orcid.org/0000-0003-1217-3569)
	Eun Sol Kim (https://orcid.org/0000-0001-8801-421X)
	Gi Beom Keum (https://orcid.org/0000-0001-6006-9577)
	Yejin Choi (https://orcid.org/0000-0002-7434-299X)
	Haram Kim (https://orcid.org/0009-0002-7504-5249)
	Yeongjae Chae (https://orcid.org/0009-0004-5573-1465)

	Sheena Kim (https://orcid.org/0000-0002-5410-1347)
	Hyeun Bum Kim (https://orcid.org/0000-0003-1366-6090)
	Ju-Hoon Lee (https://orcid.org/0000-0003-0405-7621)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources	This research was supported by a grant (22193MFDS538) from
State funding sources (grants, funding sources,	Ministry of Food and Drug Safety in 2025
equipment, and supplies). Include name and number of	
grant if available.	
Acknowledgements	Not applicable.
Availability of data and material	The complete genome sequences of <i>Enterococcus faecium</i> strain
	GB_C_05 was deposited in GenBank under the accession numbers
	CP142862.1 and CP142861.1. The BioSample accession number is
	SAMN39489522, and BioProject accession number is
	PRJNA1066497
Authors' contributions	Conceptualization: Kang J, Doo H, Kim HB, Lee JH
Please specify the authors' role using this form.	Data curation: Kim ES, Choi Y, Kim S
	Formal analysis: Kang J, Doo H, Kim ES, Choi Y, Chae Y
	Methodology: Kwak J, Keum GB
	Validation: Kwak J, Keum GB, Kim H, Kim S
	Writing - original draft: Kang J, Doo H, Kwak J
	Writing - review & editing: Kang J, Doo H, Kim S, Kim ES, Keum
	GB, Kwak J, Choi Y, Kim H, Chae Y, Kim HB, and Lee JH
Ethics approval and consent to participate	This article does not require IRB/IACUC approval because there are
	no human and animal participants.
4	

5 CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for	Fill in information in each box below
correspondence, proofreading, and reprints)	
First name, middle initial, last name	Hyeun Bum Kim
Email address – this is where your proofs will be sent	hbkim@dankook.ac.kr
Secondary Email address	
Address	Department of Animal Biotechnology, Dankook University,
	Cheonan 31116, Korea
Cell phone number	+82-10-3724-3416
Office phone number	+82-41-550-3653
Fax number	+82-41-565-2940
6	
7 CORRESPONDING AUTHOR CONTACT INI	FORMATION

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for	Fill in information in each box below
correspondence, proofreading, and reprints)	
First name, middle initial, last name	Ju-Hoon Lee
Email address – this is where your proofs will be sent	juhlee@snu.ac.kr
Secondary Email address	
Address	Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
Cell phone number	+82-10- 9678-5529
Office phone number	+82-2-880-4854
Fax number	+82-2-875-5095
8	

10	Complete genome sequence of <i>Enterococcus faecium</i> strain GB_C_05 with potential characteristics applicable as a
11	bacteriocin-producing probiotic feed additive.
12	
13	Juyoun Kang ^{1#} , Hyunok Doo ^{1#} , Jinok Kwak ^{1#} , Eun Sol Kim ^{1, 2} , Gi Beom Keum ¹ , Yejin Choi ¹ , Haram Kim ¹ ,
14	Yeongjae Chae ¹ , Sheena Kim ¹ , Hyeun Bum Kim ^{1*} , and Ju-Hoon Lee ^{3*}
15	
16	
17	¹ Department of Animal Biotechnology, Dankook University, Cheonan 31116, Korea
18	² Division of Infectious Diseases, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill
19	27599, USA
20	³ Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and
21	Bioconvergence, Seoul National University, Seoul 08826, Korea
22	
23	# Equal contributors
24	
25	* Corresponding authors
26	Hyeun Bum Kim
27	Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
28	Tel: +82-41-550-3653
29	Email: hbkim@dankook.ac.kr
30	
31	Ju-Hoon Lee
32	Department of agricultural biotechnology. Seoul National University, Seoul 08826, Korea
33	Tel: +82-2-880-4854
34	Email: juhlee@snu.ac.kr
35	

36 Abstract (up to 150 words)

37 The whole genome of Enterococcus faecium GB C 05, a strain isolated from Sikhye, a traditional Korean rice 38 beverage, was successfully sequenced and analyzed using Oxford Nanopore Technologies. The complete genome 39 sequence of GB_C_05 contains a circular chromosome with a total length of 2,575,440 base pairs (bp) and a 40 guanine + cytosine (GC) content of 38.2%, along with one circular plasmid, which has a length of 230,283 bp and a 41 GC content of 35.2%. Annotation of the GB_C_05 genome revealed 2,756 protein-coding sequences (CDSs), 70 42 tRNAs, and 18 rRNAs on the chromosome. Notably, CDSs related to bacteriocin synthesis (Enterocin) and 43 carbohydrate metabolism (α -galactosidase, β -glucosidase and α -L-arabinofuranosidase), as well as genes potentially 44 involved in probiotic-associated functions such as adhesion and colonization, were identified. This comprehensive 45 study presents the complete genome sequence of Enterococcus faecium GB_C_05, providing insight into the diverse 46 additives utilized in animal farming to enhance nutritional quality and livestock productivity.

47 Keywords (3 to 6):

48 Whole genome

sequencing,

Enterococcus faecium,

Probiotics, Feed

additive

49 **The main text**

50 The genus Enterococcus ranks as the third largest lactic acid bacteria (LAB) group, following Lactobacillus and 51 Streptococcus [1]. Certain strains of Enterococcus faecium(E. faecium), when used as probiotics, have been shown 52 to contribute to immunomodulation within the intestinal mucosa and to aid in the development of the digestive 53 system. It is widely employed in the livestock industry as a substitute feed additive to enhance animal growth, 54 particularly in pig and poultry farming [1-3]. E. faecium strain GB_C_05 was isolated from Sikhye, a traditional 55 Korean rice beverage, obtained from a local market in Cheonan, South Korea. E. faecium GB_C_05 was cultured in 56 Enterococcosel (MBcell, Seoul, South Korea) broth at 37°C for 24 hours. The genomic DNA of Enterococcus 57 faecium GB C 05 was extracted from the cell pellet obtained from a 24-hour culture using the G-spin[™] Genomic 58 DNA Extraction Kit (for Bacteria) (Invitrogen, Waltham, MA, USA). The concentration of the extracted DNA was 59 determined using the Qubit[™] dsDNA HS Assay Kit (Invitrogen). Libraries were constructed using the Ligation 60 Sequencing Kit V14 (Oxford Nanopore Technologies, Oxford, UK) according to the manufacturer's instructions. 61 The purified library was loaded into a MinION flow cell (R10.4.1) (Oxford Nanopore Technologies, Oxford, UK) 62 and sequenced for 22 hours using a MinION sequencer (Oxford Nanopore Technologies, Oxford, UK). Oxford 63 Nanopore sequencing produced 128,994 long reads, for a total of 375,852,265 base pairs. The extracted raw data 64 was demultiplexed, and the adapters were trimmed using Porechop (version 0.2.4), followed by read quality 65 adjustment using Chopper (version 0.7.0) [4]. Assembly was performed using Canu (version 1.8) and Flye (version 66 2.9.2) tools, and errors occurring in nanopore sequencing data were identified and corrected through Homopolish 67 polisher (version 0.4.1) [4, 5]. Evaluation of the assembled genome was conducted using Quality Assessment Tool 68 for Genome Assemblies (QUAST) (version 5.0.2) and Benchmarking Universal Single-Copy Orthologs (BUSCO) 69 (version 5.4.6) [6, 7]. The web-based annotation tools RAST (version 2.0) and EggNOG-mapper (version 2.0) were 70 used to analyze the data and identify key genes and metabolic pathways [8, 9]. Virulence and antibiotic resistance 71 genes were identified using Virulence Factor Database (VFDB) and ResFinder (version 4.4.0) [10, 11]. Bacteriocin 72 genes were explored using the Bagel 4 web software [10].

The chromosome of *E. faecium* strain GB_C_05 comprises 2,575,440 bp with a GC content of 38.2%, and contains 2,756 predicted protein-coding sequences, along with 18 rRNA genes and 70 tRNA genes. In addition, a circular plasmid, 230,283 bp in length and with a GC content of 35.2%, was identified separately from the chromosome. Additionally, the plasmid contained 391 CDSs, with no tRNA or rRNA genes identified. The most abundant COG categories, excluding 'Unknown function [S]', were 'Carbohydrate transport and metabolism [G]' (254 genes,

78 10.28%) and 'Replication, recombination, and repair [L]' (254 genes, 10.28%), comprising a total of 20.56%. This 79 was followed by 'Transcription [K]' (250 genes, 10.11%). The genome map and COG functional classification of E. 80 faecium GB_C_05 are shown in Fig. 1A and 1B. Genes encoding enzymes essential for carbohydrate transport and 81 metabolism, such as α -galactosidase (EC 3.2.1.22), β -glucosidase (EC 3.2.1.21), and α -L-arabinofuranosidase (EC 82 3.2.1.55), were identified. This genetic composition suggests the potential for efficient carbohydrate utilization and 83 energy extraction from various carbohydrate substrates. Genes related to carbohydrate metabolism may help 84 improve feed digestibility and enhance livestock productivity, providing a crucial competitive advantage in the 85 livestock industry [3]. The genome of E. faecium strain GB C 05 contains bacteriocin gene clusters encoding 86 bacteriocin-like inhibitors, including Enterocin A, Listeriocine 743A, Enterocin P, Enterocin SE-K4 and Enterolysin 87 A. Enterocin, produced by *Enterococcus*, is a small antibacterial peptide known to exhibit broad-spectrum inhibitory 88 activity against spoilage bacteria and foodborne pathogens [1]. Among them, the structural peptide of Enterocin P 89 was predicted to contain an N-terminal signal sequence, suggesting the possibility of extracellular secretion and 90 functional activity. Although signal peptides were not detected in the remaining candidates, their localization within 91 organized operon-like gene clusters, which include structural, immunity, and transporter components, may still 92 imply potential antimicrobial functions. These features are consistent with previously reported enterococcal 93 bacteriocin operons and suggest that these gene clusters may encode functionally active bacteriocins, although 94 further experimental validation is required to confirm their phenotypic expression (Table 2) [1]. The genes 95 associated with probiotic features, such as bacteriocin production, acid and bile salt tolerance, epithelial cell 96 adhesion, and stress response, are detailed in Table 1.

97 In the complete genome of E. faecium strain GB_C_05, the species-specific antibiotic resistance genes aac(6')-Ii and 98 msr(C) were detected on the chromosome rather than on a plasmid, suggesting a low likelihood of their transmission 99 to other microorganisms [11]. In the VFDB results, a total of 15 genes associated with virulence factors were 100 identified in the chromosome. It contains genes acm, sagA, sgrA, and pilB, which are adherence-related genes and 101 are involved in biofilm formation, and these genes are commonly found in Enterococcus. The presence of these 102 genes may confer advantages to the strain by facilitating effective gut colonization, enhancing adhesion to the 103 intestinal epithelium, and providing protection against harmful bacteria [10]. Notably, key virulence determinants 104 such as gelatinase (gelE), cytolysin (cyl), and vancomycin resistance genes (vanA, vanB) were not detected. While 105 experimental validation is necessary, the absence of these major virulence markers may suggest a potential safety 106 profile for *E. faecium* GB C 05 as a probiotic candidate.

107 In summary, although experimental validation is needed to confirm the phenotypic expression of genes encoding 108 enzymes essential for carbohydrate transport and metabolism, such as α -galactosidase, their presence suggests the 109 potential for supporting beneficial microbial activity and contributing to carbohydrate metabolism. Such functional 110 traits may help enhance the nutritional value of livestock products and support the strain's possible application as a 111 feed additive. Therefore, the whole genome analysis of Enterococcus faecium GB_C_05 is expected to unlock 112 possibilities in field additives. various application the livestock industry and the of feed

113 **References**

- Ben Braïek O, Smaoui S. Enterococci: Between Emerging Pathogens and Potential Probiotics. Biomed Res Int. 2019;2019.https://doi.org/10.1155/2019/5938210
- Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011;151(2):125-40.https://doi.org/10.1016/j.ijfoodmicro.2011.08.014
- Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, et al. Understanding the Diversity and Roles of the Ruminal Microbione. J Microbiol. 2024;62(3):217-30.10.1007/s12275-024-00121-4
- Landman F, Jamin C, de Haan A, Witteveen S, Bos J, van der Heide HG, et al. Genomic surveillance of multidrug-resistant organisms based on long-read sequencing. medRxiv. 2024:2024.02.
 18.24301916.https://doi.org/10.1101/2024.02.18.24301916
- Lee JY, Kong M, Oh J, Lim J, Chung SH, Kim JM, et al. Comparative evaluation of Nanopore polishing tools
 for microbial genome assembly and polishing strategies for downstream analysis. Sci Rep.
 2021;11(1).https://doi.org/10.1038/s41598-021-00178-w
- Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly
 and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210 2.https://doi.org/10.1093/bioinformatics/btv351
- 129 7. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies.
 Bioinformatics. 2013;29(8):1072-5.https://doi.org/10.1093/bioinformatics/btt086
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: Rapid annotations using subsystems technology. Bmc Genomics. 2008;9.https://doi.org/10.1186/1471-2164-9-75
- Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021;38(12):5825-9.https://doi.org/10.1093/molbev/msab293
- 136 10. Kim D, Kim SA, Jo NG, Bae JH, Nguyen MT, Jo YM, et al. Phenotypic and genomic analyses of bacteriocin producing probiotic Enterococcus faecium EFEL8600 isolated from Korean soy-meju. Front Microbiol.
 2023;14.https://doi.org/10.3389/fmicb.2023.1237442
- 139
 11. Urshev Z, Yungareva T. Initial safety evaluation of Enterococcus faecium LBB.E81. Biotechnol Biotec Eq. 2021;35(1):11-7.https://doi.org/10.1080/13102818.2020.1840438

Туре	BioProject	BioSample	Accession No.	Length (bp)	GC content (%)	CDSs	tRNA	rRNA
Chromosome	DD DIA 1000007	CAN DI20 400522	CP142862.1	2,575,440	38.2	2756	70	18
Plasmid	PRJNA1000497	SAIMIN39489322	CP142861.1	230,283	35.2	391	-	81 <u>0</u>

В

143

COG functional categories

Figure 1. Genome map of *Enterococcus faecium* strain GB_C_05 and the functional categorization of predicted protein coding genes. In the visualization, the outer ring signifies the positions of all annotated gene coding regions (ORFs), while the inner ring highlighted in red represents the guanine + cytosine (GC) content. GC skew is indicated by pink and green color variations, and rRNA and tRNA operons are marked with orange and skyblue arrows, respectively. (A) Circular genome map of Enterococcus faecium GB_C_05 with annotated ORFs colorcoded according to Clusters of Orthologous Groups (COG). (B) COG functional categorization of predicted proteincoding sequences.

Categories	Related protein	Start position	End position
Bacteriocin	Enterocin_A	2180744	2200936
	Listeriocine_743A	35153	55273
	Enterocin_P	50144	70294
	Enterocin_SE-K4	153539	173719
	Enterolysin_A	120245	140788
pН	Alkaline phosphatase synthesis transcriptional regulatory protein PhoP	891851	892555
	ATP synthase subunit A	704929	706710
	ATP synthase subunit B	706703	708078
	ATP synthase subunit C	703620	704606
	ATP synthase gamma chain	743042	743944
	ATP synthase epsilon chain	745387	745809
Bile	Choloylglycine hydrolase	882795	883769
Temperature	Copper chaperone	261689	261916
	Chaperone protein DnaJ	1040454	1041740
	Chaperone protein DnaK	1038474	1040303
	Chaperone protein ClpB	1149148	1151757
	60 kDa chaperone	2166820	2168445
Oxidation	Glutathione reductase	2543903	2545249
	Glutathione peroxidase	435175	435645
	Glutathione biosynthesis bifunctional protein	106865	109132
	NADH peroxidase	333723	335018
	NADH dehydrogenase	2474259	2474888
	Thioredoxin	244216	244536
	Thioredoxin reductase	800216	801142
	Quinone oxidoreductase	643735	644718

153 Table 1. Predicted CDSs involved in probiotic potency in <i>Enterococcus faecium</i> (GB_	<u>C</u>		0	5
--	-----	----------	--	---	---

	155	Table 2. Summary of identifi	ed bacteriocin-related	gene clusters in	Enterococcus faecium	GB_C_	_05.
--	-----	------------------------------	------------------------	------------------	----------------------	-------	------

Identified Bacteriocin (AOI Class)	Location	Signal peptide	Match(%)	Molecular weight (kDa)
Enterocin A	Chromosome	NO	100	3.74
Listeriocin 743A	Plasmid	NO	100	4.84
Enterocin P	Plasmid	Yes	100	7.81
Enterocin SE-K4	Plasmid	NO	N/A*	N/A*
Enterolysin A	Plasmid	NO	35.93	44.11

156 "*" indicates values not assigned due to the absence of a confidently matched structural protein, although the cluster

157 was predicted in the BAGEL4 AOI region.