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Abstract  8 
Broilers are bred at a higher density than large livestock, and their relatively small size makes monitoring 9 

challenging, requiring a reliable, cost-effective automatic monitoring system for precision farming. 10 

Particularly in the case of managing large-scale broiler breeding systems, such as multi-tier broiler 11 

houses, it is important to reduce investment in computing facilities and to improve productivity through 12 

automatic monitoring technology. However, financial ability of farmers to equip and manage the high-13 

specification computing equipment required by these technologies is limited, necessitating development 14 

of affordable monitoring systems. We there propose a lightweight broiler-detection model that augments 15 

YOLOv5 with two efficiency modules: Bi-directional Feature Pyramid Network (BiFPN), which fuses 16 

multi-scale features with learnable weights to sharpen small-object and GhostNet, which replaces many 17 

convolutions with inexpensive “ghost” operations to cut parameters. Performance was benchmarked 18 

against the original YOLOv5 on a high-spec local GPU machine and CPU based cloud platform. The 19 

proposed model attained 90.5% mAP@0.5, marginally below the baseline’s 92.8%, yet inference time 20 

dropped by 30% on CPU (50.9 ms) and 50% on GPU (1.8 ms). By implementing lightweight models, 21 

farmers can utilize monitoring systems from anywhere via mobile devices, leveraging cloud-based 22 

technology. This eliminates the necessity for expensive hardware, offering an affordable and practical 23 

solution for improving farming management. 24 

 25 

 26 
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 28 

Introduction 29 

The global broiler industry is a cornerstone of livestock production, with annual consumption 30 

surpassing 60 billion birds and continuing to grow through large-scale breeding operations [1, 2]. This 31 

intensification, while meeting market demand, magnifies critical challenges. The high density of birds in 32 
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large-scale farms increases the economic risks posed by infectious diseases and heightens concerns 33 

regarding animal welfare, demanding more sophisticated management and oversight [3-5]. 34 

In response, housing technologies are evolving from conventional floor-based systems to modern 35 

multi-tier cage systems. While traditional floor rearing faces difficulties with hygiene management and 36 

waste disposal [6-8], multi-tier houses offer enhanced spatial efficiency, automated cleaning, and 37 

improved sanitation [9-11]. However, this vertical structure makes direct, manual inspection of every tier 38 

impractical for farm workers, creating an urgent need for automated monitoring technologies to ensure 39 

flock health and productivity [12]. 40 

Precision Livestock Farming (PLF) offers a technological solution, employing sensors and artificial 41 

intelligence to automate monitoring tasks [13-15]. Machine vision, in particular, enables real-time 42 

analysis of broiler populations, health, and behavior [24-31]. A significant barrier, however, prevents its 43 

widespread adoption: the high computational demand of current object detection models. These models 44 

often require expensive, high-performance Graphics Processing Units (GPUs), placing them beyond the 45 

financial reach of many farmers and hindering the technology's practical application [19]. 46 

Cloud platforms present a viable pathway for deploying these AI services, offering scalable 47 

infrastructure and reducing maintenance overhead for end-users [20-22]. Yet, this approach introduces its 48 

own economic challenge. Cloud services that utilize high-performance GPUs for machine learning are 49 

substantially more expensive than standard CPU-based services [23]. Therefore, for a monitoring solution 50 

to be both scalable and affordable for the agricultural sector, it must be engineered to perform efficiently 51 

on low-cost CPU infrastructure. 52 

This study directly addresses this cost-performance challenge by developing an object detection model 53 

for broilers that is optimized for CPU-based cloud environments. To achieve this, we constructed a 54 

lightweight architecture using the CPU-efficient GhostNet [32] as a backbone and integrated Bi-55 

directional Feature Pyramid Network (BiFPN) module [33] to preserve high accuracy. We validated our 56 

model's performance against existing methods on both a local GPU machine and a CPU-based cloud 57 

server. The result is an economical and accessible solution that empowers farmers with real-time, remote 58 
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monitoring capabilities, thereby advancing the practical application of PLF in both multi-tier and 59 

conventional broiler farms. 60 

 61 

Materials and Methods 62 

Overall Architecture 63 

Fig. 1 shows the overall architecture of proposed system. Multiple cameras were installed on each floor 64 

to cover all areas, which is important to monitor health and distribution of broilers for PLF. The images 65 

for the training phase and the cloud-service phase were collected from the cameras. In the training phase, 66 

the images for training were sent to a local machine equipped with a GPU to build object detection 67 

models. A large number of images were collected as a priority and then sent to a local machine equipped 68 

with a GPU. The deep learning-based broiler detection model was optimized using the local machine. 69 

After training, the final model was migrated to a CPU-based cloud platform. In the cloud-service phase, 70 

once images were captured from the multiple cameras, it was directly sent to the cloud platform and 71 

object detection was conducted. Then, the broiler detection results were delivered and visualized on a web 72 

browser, mobile, or tablet. 73 

This study does not require IRB/IACUC approval because the data in this research was collected by 74 

cameras which were already installed in a farm, there was no physical contact or any action that would 75 

cause psychological stress with the broilers. 76 

Data Acquisition and Data Augmentation 77 

The experimental data, as depicted in Fig. 1(a), were collected from a multi-tier broiler house (13.8 m × 78 

70 m × 13.4 m) located in Gangneung city, Gangwon Province, South Korea, in June 2022. 79 

Approximately 3,000 broilers (Ross × Ross 708) were raised per tier. The image data were captured using 80 

cameras positioned for both the top and side views on each floor. A Raspberry Pi camera (RPI 8MP 81 

Camera V2, Raspberry Pi Foundation, UK) was used to obtain images from the top as shown in Fig. 1(b), 82 

while images from side were captured using an IP Camera (HIKVISION DS2CD 4 mm, Hangzhou 83 
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HIKVISION Digital Technology Co., Ltd, China) at a resolution of 640 × 640 pixels, as shown in Fig. 84 

1(c). 85 

A total of 420 images were captured, with 218 taken from the top view and 202 from the side view. To 86 

collect images of broilers in various poses and appearances, the images were taken at 3-hour intervals 87 

over a two-day period. The collected images were divided into training, validation, and test sets in a 6:2:2 88 

ratio. Specifically, the training set consisted of 252 images and the validation set comprised 84 images, 89 

both of which were used to optimize the deep learning model. The test set included 84 images, evenly 90 

split with 42 images from each view, and these were not augmented. On the other hand, the training and 91 

validation dataset were augmented through various methods to improve the generalization performance of 92 

the object detection. Augmentation can significantly increase the diversity of data that can be used for 93 

model training without collecting additional data. In this study, horizontal and vertical flipping, brightness 94 

and contrast adjusting, and blurring were randomly applied as shown in Fig. 2. Finally, a total of 2,016 95 

augmented images, 1,056 top views and 960 side views were used for model training and validation. Note 96 

that the data augmentation process was applied before the training process to reduce the time spent on 97 

learning. 98 

Specification of Local Machine and Cloud Platform 99 

In this study, a local machine with a GPU and the NCP, a cloud platform service, were used. For the 100 

local environment, a computer with an Nvidia RTX GPU 3090 (Nvidia Corporation, California, USA) 101 

was employed. However, no GPU was used on NCP to prioritize cost efficiency while still meeting 102 

affordable computational demands. 103 

 The CPU used in NCP was an Intel Xeon E5 v4 2660 (Intel Corporation, California, USA), a model 104 

released in 2016 that is commonly found in servers and workstations [34]. Detailed hardware 105 

specifications are provided in Table 1. 106 

The broiler detection results were automatically transferred to user devices through FarmOS (version 107 

3.0, FarmOS, Anyang, Republic of Korea). FarmOS is a cloud-based software and an environmental 108 

control system that provides information to farmers to help them grow crops and raise livestock. 109 

Broiler Detection Model for the Cloud Environment 110 
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To achieve real-time monitoring of broilers in a multi-tier broiler house, improving both the accuracy 111 

and inference time for the object detection model is crucial for effectively managing the large volume of 112 

images taken by multiple cameras. Most farmers can’t afford a high-performance computer with a GPU, 113 

which is necessary for processing images from the cameras. The performance of existing object detection 114 

models was verified using GPU-based computers. However, when using a CPU-based cloud, the existing 115 

models are not suitable in terms of inference time, as they were developed with a focus on GPU 116 

optimization. This difference leads to inefficiencies when operating under CPU environments, 117 

highlighting the need for models that are tailored for CPU-based processing. In this study, the existing 118 

YOLOv5 model was optimized to improve accuracy and computational cost in a CPU-based cloud 119 

environment. 120 

The architecture of YOLOv5, depicted in Fig. 3(a), is composed of five varied models: xlarge (X), 121 

large (L), medium (M), small (S), and nano (N). These models differ in size and computational demands, 122 

with the X model being the largest and slowest but yielding the highest accuracy, and the N model, the 123 

smallest and fastest, more suitable for limited-resource environments or real-time processing needs. A 124 

notable aspect across these models is the trade-off between detection accuracy and computational cost, 125 

making each one uniquely suited to different application scenarios and hardware setups. The architecture 126 

of YOLOv5 is divided into three modules: the backbone, the neck, and the head. The backbone, which 127 

utilizes CSP-Darknet53 [35], a derivative of the original Darknet [36], plays a vital role in extracting 128 

image features and creating a feature map. This map, a rich multi-dimensional array of extracted features, 129 

forms the foundation for subsequent detection processes. The backbone excels in drawing out basic 130 

feature representations, which are essential for the detection process. The neck, incorporating Path 131 

Aggregation Network for Instance Segmentation (PANet) [23] structure, adeptly merges low- and high-132 

level features from this map. This fusion significantly bolsters the model's performance, leading to richer 133 

feature representations, enabling precise bounding box predictions and class identifications. The head of 134 

YOLOv5, critical for object detection, processes this enhanced feature map to determine object locations 135 

and generate the final output, including classes, objectness scores, and bounding boxes. YOLOv5's 136 

approach to object detection is both strategic and effective, employing predefined anchor boxes capable 137 
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of detecting objects of diverse sizes. The model is enhanced with three specialized detectors—small, 138 

medium, and large—to accommodate a wide spectrum of object scales. These three detectors ensure 139 

thorough object detection throughout the image. YOLOv5's multi-scale detection framework is pivotal in 140 

maintaining both accuracy and efficiency in object identification and classification, catering to various 141 

object sizes within the input imagery. 142 

To deploy a lightweight detection model in a CPU-based cloud at large-scale broiler house which has a 143 

large number of cameras, this study proposes a customized model derived from YOLOv5 as depicted in 144 

Fig. 3(b). CSP-Darknet53 generates a large number of parameters using a CNN, resulting in a significant 145 

computational load and is inefficient for deployment on devices without a GPU [37]. To overcome this 146 

problem, GhostNet was used to make the object detection model usable on a CPU-based cloud. Unlike 147 

CNNs, GhostNet can demonstrate similar performance with far fewer parameters by applying a linear 148 

transform [32]. Additionally, the original C3 layer which is based on CNNs was replaced with C3Ghost, 149 

and the Conv layer was replaced with GhostConv to improve the model inference time. The 150 

characteristics of GhostNet to maintain performance with fewer operations directly reduces computation 151 

cost, making it suitable for resource-limited CPU environments. In the neck, BiFPN was used instead of 152 

the PANet to improve detection performance. BiFPN, similar to PANet, has a pyramidal structure; 153 

however, unlike PANet's unidirectional approach, it introduces additional connections for a bidirectional 154 

approach to iteratively improve and fuse features, thereby expecting improved performance [33]. By 155 

facilitating efficient feature fusion and scaling, BiFPN enhances accuracy while minimizing a model 156 

complexity. Finally, in the head, the small and medium detectors were left. As the size of the broilers in 157 

the image was relatively large, the large detector, which is needed to recognize small objects, was 158 

removed. The head part uses only a total of six anchor boxes. This design results in a more lightweight 159 

model compared to existing models. 160 

Model Evaluation Metrics 161 

The performance of the proposed lightweight detection model was investigated by comparing it with 162 

five existing object detection models (EfficientDet, Faster R-CNN, SSD YOLOv5X and YOLOv5N). 163 
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The performance of each detection model was evaluated using mAP (mean Average Precision). To 164 

calculate mAP, a precision-recall curve and Average Precision (AP) are required. True Positve (TP), 165 

False Positive (FP), False Negative (FN), and True Negative (TN) were used to calculate the Precision 166 

and Recall. The precision is the ratio of correct detections to all detections that the model claims are 167 

correct as shown in Equation (1). Specifically, it is the ratio of detections that were correctly detected as 168 

broilers to all detections detected as broilers. Recall is the ratio of correct detections made by the model to 169 

the actual correct values as shown in Equation (2). In particular, this is the ratio of detections that the 170 

model detects as broilers out of the ground-truth broilers. The precision-recall curve, plotted by varying 171 

threshold levels for precision and recall, offers a detailed view of a model’s performance at different 172 

confidence levels. It is crucial in imbalanced class scenarios, revealing the trade-off between precision 173 

and recall. AP represents the area under this precision-recall curve, and mAP is the average AP across all 174 

classes. In addition, the accuracy of object detection results varies depending on the threshold of IOU 175 

(Intersection over Union). In this study, the average accuracy was calculated for IOU values of 50 and 75. 176 

 177 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (1) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2) 

  

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑁𝑁
�𝐴𝐴𝐴𝐴𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (3) 

 178 

 179 

In terms of computational cost, average inference time for each model was measured by the test data 180 

set comprising 84 images. The primary metric for this evaluation was the mean time required to perform 181 

object detection on each individual image. 182 

 183 
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 184 

Results 185 

Broiler Detection Performance 186 

Fig. 4 shows the accuracy of the six object detection models used in this study as a function of the IOU 187 

threshold. Fig. 4(a) presents the performance of the six models at IOU@50. The EfficientDet, Faster R-188 

CNN, and SSD models exhibited faster precision decay as recall increased compared to the YOLOv5X 189 

models. The best performing model for IOU@50 was YOLOv5N with an accuracy of 92.6 mAPs. The 190 

proposed model showed the second-best performance with 92.4 mAP, which was not a significant 191 

performance difference compared to the YOLOv5N model. For IOU@75, the precision value decreased 192 

rapidly as the recall value increased for all models, as shown in Fig. 4(b). The best performer was 193 

YOLOv5X with an accuracy of 42.4 mAP. The second-best model was YOLOv5N with 41.8 mAP. The 194 

proposed model showed the third best performance with 32.2 mAP; however, unlike the results at 195 

IOU@50, it showed a significant difference at IOU@75 compared to YOLOv5X. However, the proposed 196 

model still showed competitive performance with higher accuracy than the EfficientDet, Faster R-CNN, 197 

and SSD models. These trends indicate that lightweight architectures, while competitive at relaxed 198 

thresholds, are more sensitive to stricter bounding-box requirements, whereas heavyweight models retain 199 

higher precision at the cost of speed. 200 

Computational Cost 201 

Fig. 5 shows the performance differences between the six object detection models used in this study in 202 

terms of inference time. Fig. 5(a) demonstrates the performance comparison of the inference time on a 203 

GPU machine. The best performers on the GPU machine were the proposed model, YOLOv5N, and SSD. 204 

The proposed model showed faster performance than YOLOv5N (3.6 ms), with an average processing 205 

time of 1.8 ms per image. Fig. 5(b) presents a performance comparison of the inference time in a CPU-206 

based cloud environment. Similar to the GPU results, the best performers in the CPU cloud were the 207 

proposed model, YOLOv5N, and SSD. The proposed model outperformed YOLOv5N (72.1 ms), with an 208 

average image processing time of 52 ms. In addition, the inference time rankings for YOLOv5X and 209 
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EfficientDet can be inverted between the GPU and CPU environments, highlighting the impact of 210 

hardware architecture on the computational costs of object detection models. 211 

 212 

Discussion 213 

Lightweight Detection for Broiler Monitoring 214 

Lightweight detection has practical value only if it preserves sufficient accuracy for timely 215 

decision‑making in barns. High‑precision architectures usually come with longer inference times, and 216 

latencies approaching even a few hundred milliseconds are impractical for real‑time barn monitoring, 217 

where alarms must follow abnormal events almost immediately. This situation highlights the familiar 218 

balance between speed and accuracy. Achieving real‑time performance usually requires leaner models 219 

and a small concession in precision. 220 

Many studies have focused on monitoring livestock diseases and behavior using deep learning-based 221 

object detection, proposing methods to automate the monitoring of animal behavior for accurate detection 222 

and tracking of their condition [38-40]. These approaches allow for real-time monitoring of animal health 223 

and welfare, minimizing the need for human intervention and enhancing farm productivity. However, 224 

most of these studies have used GPU-based machines, which have limitations in real-time object 225 

detection in general farms, primarily due to the high cost and maintenance of such specialized hardware 226 

[19]. In this study, a lightweight detection model was developed that improves the accuracy and inference 227 

time of object detection on a CPU-based cloud platform, aiming to use object detection in a multi-tier 228 

house with multiple cameras, and verified its performance by comparing it with other object detection 229 

models. 230 

Comparative Results 231 

Table 2 shows the comparative results of the object detection models and the proposed model. The 232 

performance of the proposed model was 90.5 % for IOU@50 and 32.2 % for IOU@75. The COCO 233 

dataset benchmark of the object detection models developed in 2021 achieved mAPs of approximately 234 

50–60 for IOU@50 and 30–40 for IOU@75. Therefore, the proposed model performs well for IOU@50 235 
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but has an average performance for IOU@75 compared to the models developed in 2021. The overall 236 

accuracy of the proposed model lags behind that of the YOLOv5 models, which appears to be a problem 237 

caused by reducing the number of detectors in the head part of the existing architecture to two and 238 

applying GhostNet. 239 

However, in terms of computational cost, the proposed model significantly reduces the size of the 240 

model. In particular, the proposed model was the lightest among the six models at 1.8 MB. The advantage 241 

of lightening the size of the model parameters is that it reduces the loading time when the computer loads 242 

the deep learning model, as well as does not require high-performance hardware, a critical factor for 243 

enabling deployment on diverse and cost-effective IoT devices [41]. This suggests that future IoT systems 244 

for barns could be adapted for embedded boards or mobile devices, making them more accessible [42]. 245 

Ablation Study 246 

Table 3 shows the ablation study results obtained by changing the architecture of YOLOv5N. First, 247 

applying the BiFPN instead of the traditional PANet improves the overall accuracy performance 248 

compared to the model using PANet. However, BiFPN also increases the number of parameters, and the 249 

size of the model, which is likely due to the increased computation of the model by applying BiFPN, 250 

which is a two-way pyramid instead of a one-way pyramid. 251 

Second, by applying GhostNet, the YOLOv5N model reduced the number of parameters by 252 

approximately 52 % from 1.76 m to 0.93 m compared to the previous model. The weight of the model 253 

was reduced from 3.7 MB to 2.2 MB as the number of parameters decreased. This is likely because the 254 

number of unnecessary features for detecting objects was reduced by using Linear Transfer instead of 255 

Convolution. However, the overall IOU value decreased in GhostNet compared to the original YOLOv5. 256 

The synergistic combination of BiFPN and GhostNet provides additional feature‑fusion depth 257 

from BiFPN that compensates for the accuracy loss introduced by parameter of GhostNet pruning, 258 

yielding a more favorable accuracy–latency balance than either modification alone. 259 

By reducing the number of detectors in the head of the YOLOv5 model, a corresponding reduction in 260 

model parameters was achieved, contributing to reduced computational load and faster inference times. 261 

Specifically, the number of detectors for large objects was reduced, resulting in a significant decrease in 262 
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both model size and number of parameters. It was noted that in the absence of small or medium object 263 

detectors, connected layers such as GhostConv, Concat and C3Ghost were still required to process 264 

information for the large object detector. By contrast, with the removal of the large object detector, as 265 

shown in architecture Fig. 3(b), such layers became redundant, further minimizing the complexity and 266 

parameter footprint of the model. The removal of the large object detector resulted in a more significant 267 

improvement in accuracy than the removal of the small or medium detectors. This improvement was 268 

attributed to the predominant presence of large objects, such as chickens, in the evaluation dataset, which 269 

were adequately detected without the need for a dedicated large object detector. Conversely, the removal 270 

of the small object detector, which is responsible for detecting finer details and smaller objects, was found 271 

to be more detrimental to the overall performance of the model than maintaining the original, unmodified 272 

model. This approach underscores the importance of detector specificity relative to the scale of objects 273 

within the target dataset and suggests that a model optimized for large object detection may forego the 274 

complexity traditionally associated with multi-scale detection frameworks. 275 

The impact of data augmentation on model performance was also analyzed. As shown in Table 4, data 276 

augmentation led to 0.8% improvement in IOU@50 while 1.2% improvement in IOU@75, demonstrating 277 

its effectiveness in improving the performance of the broiler detection model. These results highlight the 278 

importance of data augmentation in enhancing the performance of the proposed model, indicating its 279 

essential role in strengthening the robustness and generalization of broiler detection tasks. 280 

Cloud-Based Broiler Monitoring 281 

Fig. 6 illustrates the results of object detection using mobile phones. Leveraging the cloud platform 282 

allows farmers to access the monitoring results at any time and location. As the data are perpetually 283 

uploaded to the cloud, they are safeguarded against losses due to fire or other physical hazards. This 284 

continuous data stream could prove to be a valuable resource for future agricultural operations. Compared 285 

with prior GPU-based on farm systems, the cloud deployment eliminates local server costs and lets a 286 

single dashboard supervise multiple houses, which represents a practical innovation over existing research 287 

that often relies on localized, on-premise computing infrastructure [18, 20]. This shift towards a CPU-288 
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based cloud model directly addresses the economic challenges of scaling PLF technologies, as GPU 289 

instances on cloud platforms remain significantly more expensive [26]. 290 

In this study, a lightweight and high-performance broiler detection model was developed that is capable 291 

of rapidly processing a large number of images from multiple cameras installed for continuous broiler 292 

monitoring. The object detection model, which was improved for use in a cloud environment, 293 

demonstrated a more streamlined and faster performance without a significant loss of accuracy compared 294 

to YOLOv5N. Although the proposed model demonstrates much faster inference times, its performance is 295 

slightly lower than the original object detection model. However, since the broiler monitoring system 296 

operates continuously, the speed advantage can compensate for the minor reduction in accuracy. Thanks 297 

to this advantage, the design of a cloud platform facilitates fast access for operators through mobile or 298 

computer web browsers. 299 

Limitation and Future Work 300 

Images were captured using Raspberry Pi cameras and IP Cameras in a multi-tier broiler house. 301 

However, challenges were encountered in regularly collecting images due to environmental factors within 302 

the house, such as dust and ammonia, which resulted in insufficient image collection for the experiment. 303 

For instance, issues occurred with the Raspberry Pi camera installed in the top view where chickens 304 

attacked the exposed camera module, the Raspberry Pi board broke down owing to high concentrations of 305 

environmental ammonia, and images could not be obtained on time. Dust accumulation on the camera 306 

lens during the experiment also hindered the acquisition of clear images. This issue may pose challenges 307 

in larger broiler houses, where even dustier environmental conditions could result in dust accumulating on 308 

the camera lens. To get stable and clear images, future endeavors would require a dustproof camera or a 309 

suitable alternative to prevent from dust accumulation on the lens. This represents a well-known 310 

challenge in applying computer vision systems within real-world farm environments [27]. Furthermore, 311 

object detection errors, such as detecting a feeder as a broiler, happened occasionally from the side view. 312 

This occurred because of imprecise bounding boxes during the labeling process when chickens were 313 

feeding in or around the feeder. In the future, more precise bounding boxes should be drawn and labeled, 314 

anticipating to further enhanced performance. 315 
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Although this study did not predict diseases by targeting only the images of broilers, the proposed 316 

model could help develop an early disease detection system, paving the way for potential future 317 

extensions. Our approach is expected to enable the uninterrupted monitoring of broilers via a cloud 318 

platform, mitigating the negative impacts of epidemics and diseases on the broiler industry through early 319 

detection. Future work could build upon this model to detect subtle visual cues like posture, feather 320 

condition, or cosmetic issues, which have been identified as potential early indicators of animal health 321 

and welfare [19, 30]. 322 

 323 

CONCLUSIONS 324 

This study demonstrates that an object detection model, which requires high-end computing, can be 325 

effectively implemented in a low-cost cloud-computing environment while maintaining high accuracy by 326 

utilizing of lightweight models. Although the proposed model showed slightly lower performance 327 

compared to the original YOLOv5, it achieved significant improvements in inference time across both 328 

CPU and GPU environments. This allows for the deployment of efficient and fast monitoring systems on 329 

low-spec computers, particularly for broiler monitoring. By successfully adapting object detection to 330 

resource-constrained environments, this research offers a practical solution for cases where computing 331 

power is limited. The proposed model can be integrated into existing farm systems such as real-time 332 

livestock monitoring and animal behavior tracking, making it accessible to more farms and improving the 333 

efficiency of animal management. 334 

 335 
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Tables and Figures 450 

Table 1. Specifications of the hardware. 451 
 Local Naver Cloud Platform 

OS Ubuntu 18.04 

CPU 12th Intel I9-12900 Intel Xeon E5 v4 2660 (x 2) 

Memory 32 GB 4 GB 

GPU RTX3090 None 
OS, operating system; CPU, central processing unit; GPU, graphics processing unit. 

 452 
Table 2. Results of the object detection models. 453 
  EfficientDet Faster R-CNN SSD YOLOv5X YOLOv5N Proposed 

model 

mAP 80.65 54.76 75.3 87.5 88.3 87.7 

IOU@50 89.5 88.8 88.6 91.4 92.8 90.5 

IOU@75 18.4 23.2 26.9 42.4 41.8 32.2 
Inference time 
in CPU (ms) 915 3390 225 1449 72.1 50.9 

Inference time 
in GPU (ms) 28 39 12 15 3.6 1.8 

Size (MB) 23.4 369.8 6.5 169.0 3.7 1.8 
mAP, mean average precision; IOU, intersection over union. 

 454 
  455 
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Table 3. Ablation study results for YOLOv5 architectures. 456 
 457 

 458 
 459 
Table 4. Broiler detection performance according to applying data augmentation techniques. 460 
Models IOU@50 IOU@75 

Ours with data augmentation 90.5 32.2 
Ours without data 
augmentation 89.7 31.0 

 461 
  462 

Models IOU@50 IOU@75 
Inference time 
(ms) Size 

(MB) 
Params 
(Millions) CPU GPU 

YOLOv5N 92.8 41.8 72.1 3.6 3.7 1.76 
Without large detector 91.9 43.4 71.3 3.5 2.8 1.31 
Without medium detector 90.0 42.0 71.9 3.6 3.7 1.75 
Without small detector 90.4 41.2 72.1 3.6 3.6 1.75 
YOLOv5N+BiFPN 93.0 43.8 76.6 3.6 3.8 1.77 
Without large detector 92.0 42.2 71.9 3.4 2.9 1.32 
Without medium detector 90.8 41.6 75.1 3.5 3.7 1.77 
Without small detector 90.5 40.5 72.9 3.5 3.6 1.77 
YOLOv5N+GhostNet 90.6 32.9 63.8 2.0 2.2 0.93 
Without large detector 89.8 32.0 51.9 1.8 1.9 0.71 
Without medium detector 86.5 31.2 53.9 1.9 2.2 0.93 
Without small detector 84.4 29.3 53.4 2.0 2.1 0.93 
YOLOv5N+GhostNet+BiFPN 91.2 32.8 61.5 2.0 2.2 0.95 
Without large detector 90.5 32.2 50.9 1.8 1.8 0.73 
Without medium detector 89.5 31.5 54.2 1.9 2.2 0.95 
Without small detector 89.0 29.7 54.7 1.9 2.1 0.95 
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Figure captions 463 
 464 
Fig. 1. System architecture. (a) Multi-tier closed broiler house. (b) Images from top. (c) Images from side. 465 
 466 
Fig. 2. Samples of the data augmentation. 467 
 468 
Fig. 3. Architecture of object detection models. (a) Original architecture of YOLOv5. (b) Architecture of proposed 469 
model. 470 
 471 
Fig. 4. Precision-recall (PR) curve of models. (a) IOU@50. (b) IOU@75. 472 
 473 
Fig. 5. Inference time of models in each environment. (a) GPU-based local. (b) CPU based cloud. 474 
 475 
Fig. 6. Visualization of object detection with mobile phone under cloud platform. (a) IP camera in the broiler coop. 476 
(b) Select dates. (c) Result display. 477 
  478 


